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Background: Protein glycosylation has been confirmed to be involved in the

pathological mechanisms of Alzheimer’s disease (AD); however, there is still

a lack of systematic analysis of the immune processes mediated by protein

glycosylation-related genes (PGRGs) in AD.

Materials and methods: Transcriptomic data of AD patients were obtained

from the Gene Expression Omnibus database and divided into training and

verification datasets. The core PGRGs of the training set were identified by

weighted gene co-expression network analysis, and protein glycosylation-

related subtypes in AD were identified based on k-means unsupervised

clustering. Protein glycosylation scores and neuroinflammatory levels of

different subtypes were compared, and functional enrichment analysis and

drug prediction were performed based on the differentially expressed genes

(DEGs) between the subtypes. A random forest model was used to select

important DEGs as diagnostic markers between subtypes, and a line chart

model was constructed and verified in other datasets. We evaluated the

differences in immune cell infiltration between the subtypes through the

single-sample gene set enrichment analysis, analyzed the correlation between

core diagnostic markers and immune cells, and explored the expression

regulation network of the core diagnostic markers.

Results: Eight core PGRGs were differentially expressed between the training

set and control samples. AD was divided into two subtypes with significantly

different biological processes, such as vesicle-mediated transport in synapses

and neuroactive ligand-receptor interactions. The high protein glycosylation

subtype had a higher level of neuroinflammation. Riluzole and sulfasalazine

were found to have potential clinical value in this subtype. A reliable

construction line chart model was constructed based on nine diagnostic

markers, and SERPINA3 was identified as the core diagnostic marker. There
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were significant differences in immune cell infiltration between the two

subtypes. SERPINA3 was found to be closely related to immune cells, and

the expression of SERPINA3 in AD was found to be regulated by a competing

endogenous RNA network that involves eight long non-coding RNAs and

seven microRNAs.

Conclusion: Protein glycosylation and its corresponding immune process play

an important role in the occurrence and development of AD. Understanding

the role of PGRGs in AD may provide a new potential therapeutic target for AD.

KEYWORDS

Alzheimer’s disease, diagnostic model, immune cells, protein glycosylation-related
genes, molecular subtypes

Introduction

Alzheimer’s disease (AD) is an irreversible, progressive,
polygenic, neurodegenerative disease that accounts for
approximately 70% of dementia cases (Li et al., 2022; Tank
et al., 2022). The onset of AD is unknown, and nerves undergo
pathological changes decades before the onset of symptoms
(Alzheimer’s Association, 2021). Exploring the prominent
clinical features of AD, including its complex etiology and
high phenotypic heterogeneity, is essential because the exact
pathogenesis of AD remains to be fully elucidated, which limits
the development of effective drugs (Servick, 2021; Gherardelli
et al., 2022). The course of disease evolution and differences
in drug sensitivity among patients are generally believed to be
related to the molecular heterogeneity of the disease (Mohamed
Abd-El-Halim et al., 2021). Therefore, considering that existing
therapeutic drugs and regimens can only slow down the
progression of AD but not prevent or reverse it, evaluating
the types of AD based on specific molecular mechanisms and
developing corresponding therapeutic drugs is an effective
strategy for achieving accurate medical goals.

Protein glycosylation, the process by which glycosidic chains
form glycosidic bonds with certain amino acid residues on
proteins catalyzed by glycosyltransferases, is an important
posttranslational modification that occurs in 50–70% of
proteins in cells. According to the glycoside chain type,
protein glycosylation modification is mainly divided into four
types, of which N-linked and O-linked glycosylation are
the two main modification types (Schjoldager et al., 2020).
Protein glycosylation regulates the function and activity of
proteins, affecting many important cellular activities, such
as cell recognition, differentiation, signal transduction, and
immune response. Protein glycosylation disorders affect the
pathological mechanisms of AD by mediating a variety of
biological processes, such as neuroinflammation and cellular
signal transduction (Zhang et al., 2020). For example, tau is

a microtubule-associated protein, and the total level of tau
in cerebrospinal fluid reflects the degree of neuronal damage
in AD (Zetterberg, 2017). Tau has shown significant N-linked
glycosylation in AD brain tissue but not in the normal brain
(Wang et al., 1996). The hydrolysis of N-linked glycosylated
amyloid β precursor protein (APP) to amyloid β peptide is a
marker of AD, and O-linked glycosylation interferes with the
proteolysis of APP and affects the pathological changes related
to AD (Singh et al., 2022). Additionally, protein glycosylation is
closely related to immune cells and immune response in AD.
Some studies have found that most of the glycoproteins with
site-specific glycosylation in the serum of patients with AD are
involved in immune function and induce specific inflammatory
pathways and immune responses (Tena et al., 2022). Although
existing studies have preliminarily revealed the relationship of
protein glycosylation and protein glycosylation-related genes
(PGRGs) with AD, there is still a lack of comprehensive analysis
of the role of PGRGs in the occurrence and development of AD
combined with immune imbalance.

In this study, we screened the key PGRGs related to
AD and explored the differences in immune cell infiltration
under different PGRG expression patterns. Based on a machine
learning method, a diagnostic model of a high-risk PGRG
subtype was established, potential therapeutic drugs were
screened, and the core genes of the model were verified in
other datasets. These results provide a reference for protein
glycosylation as a therapeutic target for AD.

Materials and methods

Data source

The microarray datasets GSE5281, GSE33000, GSE185909,
GSE118553, GSE122063, GSE44768, and GSE44770 were
downloaded from the Gene Expression Omnibus (GEO)
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database.1 These datasets included brain samples from 1,029 AD
patients and 585 non-demented elderly individuals. GSE118553,
GSE44768, GSE44770, and GSE122063 were used as verification
datasets (Liang et al., 2007; Narayanan et al., 2014; McKay
et al., 2019). The original data were batch-corrected for further
analyses. Differentially expressed genes (DEGs) were screened
using the “limma” software package in R, and P < 0.05 and
| log2FC| > 1 were considered statistically significant (Ritchie
et al., 2015). PGRGs were extracted from the GlycoGene2 and
HUGO Gene Nomenclature Committee3 databases. In addition,
PGRGs with a correlation score higher than 15 were extracted
from the GeneCards database.4 The three gene lists were
combined and integrated into a protein glycosylation gene set.

Weighted gene co-expression network
analysis

The protein glycosylation gene enrichment score (GLY) of
all samples was calculated by gene set variation analysis (GSVA),
and weighted gene co-expression network analysis (WGCNA)
was carried out with the R package “WGCNA” according to
the GLY (Langfelder and Horvath, 2008; Langfelder et al.,
2012). The adjacency matrix of weighted correlation coefficients
was transformed into a topological overlap matrix (TOM)
and corresponding dissimilarity matrix (1-TOM). Hierarchical
clustering was performed, a system cluster diagram was
constructed, and genes with similar expression profiles were
divided into different modules. Finally, Pearson’s correlation
analysis was used to assess the correlation between various
phenotypes, including the GLY and the groupings, and each
module. Genes in the module with the highest correlation
coefficient were considered to be the most related to AD.
The transcriptional regulatory network of key modules was
predicted using the ChEA3 database,5 which includes a large
number of independently published CHIP-seq datasets and
integrates transcription factor co-expression data based on
RNA-seq data (Fu et al., 2021).

Classification and functional
enrichment analysis of protein
glycosylation-related genes-related
subtypes in Alzheimer’s disease

The intersection of the key module genes obtained by
the WGCNA analysis and differentially expressed PGRGs was

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://acgg.asia/ggdb2/index

3 https://www.genenames.org/data/genegroup/#!/group/424

4 https://www.genecards.org/

5 https://maayanlab.cloud/chea3/

obtained, and an unsupervised cluster analysis was performed
to identify different AD subtypes. In parallel, principal
component analysis (PCA) was applied to calculate the protein
glycosylation levels for each case in the subtypes to generate a
protein glycosylation score (Glyscore). A consensus clustering
algorithm was used to evaluate the cluster numbers and
robustness. The R package “ConsensusClusterPlus” implements
the above steps for 1,000 iterations to guarantee the robustness
of the classification (Wilkerson and Hayes, 2010). Gene set
enrichment analysis (GSEA) was performed on the gene
expression matrix using the “cluster profile” package, and
“c2.cp.kegg.v7.0.symbols.gmt” was selected as the reference gene
set. We used the “path view,” “ggplot2,” and “circlize” packages
to perform Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses on the DEGs
(Ginestet, 2011; Luo and Brouwer, 2013; Gu et al., 2014).

Identification of protein
glycosylation-related genes-related
small molecule therapeutic drugs

The Broad Institutes Connectivity Map (cMAP) database6

was used to identify small molecule drugs related to different
PGRG subtypes in AD (Lamb et al., 2006). To identify candidate
drugs, gene sets with log2FC > 0.585 were input into the cMAP
database for enrichment analysis. The accuracy of the results
was verified by molecular docking. The PubChem database7

was used to extract the characteristics of the small molecules
and obtain their 3D structures. Subsequently, molecular docking
was performed to retrieve the crystal structure information
(human origin) of the predicted target protein using the PDB
database,8 and the receptor protein was pretreated using the
AutoDockTool software for dehydrogenation, hydrogenation,
etc. Molecular docking of target proteins with small molecular
drugs was carried out using the Discovery Studio 4.5.0 software,
and then the binding ability of the two molecules was predicted.
The possibility of significant binding was considered when the
binding energy was negative and the absolute value was greater
than 5 kcal/mol.

Screening, expression regulation, and
immune cell infiltration analysis of
diagnostic markers among protein
glycosylation subtypes

Random forest is a widely used method for accurately
calculating the importance of each feature in a dataset. In this

6 https://pubchem.ncbi.nlm.nih.gov/

7 https://clue.io/command?q=/home

8 https://www.rcsb.org/
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study, the “randomForest” package in R was used to select the
key differential genes between the AD subtypes as diagnostic
markers, and the “rms” package was used to construct the
prognosis diagram of key differential genes (Liaw and Wiener,
2002). A calibration curve was then used to evaluate the
predictive ability of the line chart model. Finally, the clinical
value of the model was evaluated using decision curve analysis
(DCA) and clinical impact curve (Pan et al., 2021). The selected
key differential genes were verified in the verification dataset,
and genes with a higher diagnostic efficiency were identified
as diagnostic markers. The prediction of non-coding RNA
regulation of diagnostic markers was first analyzed using the
RNA22, miRWalk, miRDB, and RNAInter databases to select
intersecting microRNAs (miRNAs) (Li et al., 2014). We selected
miRNAs that have been reported to play a biological role
in AD for further analyses. The MiRNet2.09 and starBase10

databases were used to predict the target long non-coding RNAs
(lncRNAs) of the miRNAs. Lastly, the competing endogenous
RNA (ceRNA) network was established (Chang et al., 2020).
The degree of immune cell infiltration in brain tissue was
evaluated by the single sample GSEA (ssGSEA) algorithm, and
the difference in immune cell infiltration between groups was
visualized by the “ggplot2” package (Newman et al., 2015;
Deng et al., 2020). Finally, Spearman correlation analysis was
performed for all immune cells and diagnostic markers, and the
positive or negative correlation between them was determined
by the “ggstatsplot” package.

Results

Identification of core protein
glycosylation-related genes in
Alzheimer’s disease

In this study, 672 PGRGs were involved, and the GLY
of all samples was obtained using GSVA enrichment analysis.
A scale-free network was constructed by combining the group
information of the GLY and sample, and the soft threshold was
set to 4 (Figures 1A,B). WGCNA identified 14 modules and
assigned each a unique color (Figure 1C). By analyzing the
correlation between phenotypes (AD or control samples) and
GLY, the most associated module with AD and GLY was found
to be the MElightgreen (Figure 1C), with a total of 218 genes.
Genes in the same cluster often share common transcription
factors; therefore, we predicted and analyzed the transcription
factors of genes in the MElightgreen module and visualized the
mutual regulatory relationships among the top 10 transcription
factors in the Mean Rank (Figure 1D). The association of these

9 www.mirnet.ca/miRNet/home.xhtml

10 http://starbase.sysu.edu.cn/

transcription factors with asthma has been partially confirmed.
For example, the IRF7 rs6598008 polymorphism modulates the
immune response to herpes simplex virus type 1 by affecting
the IFN-λ pathway, which plays an important role in AD
(Costa et al., 2017). There were 588 differentially expressed
PGRGs in AD and control samples (Figure 1E), and eight
core PGRGs were obtained from the de-intersection of genes
in the MElightgreen module (Figure 1F). The co-expression
relationship was explored using 0.2 as the critical value of
the correlation coefficient, revealing that there was a close
correlation among seven genes: SLC7A11, S100A10, LGALS3,
CD55, CHST14, and GSTP1 were positively correlated, while
DYNC1H1 was negatively correlated with the aforementioned
genes (Figure 1G). These findings suggest that PGRGs may be
associated with the development of AD.

Core protein glycosylation-related
genes divide Alzheimer’s disease into
two subtypes

To study the role of PGRGs in AD, we conducted
an unsupervised consensus cluster analysis on AD samples
based on the expression of eight PGRGs. According to the
cumulative distribution function curve and the heatmap of
the matrix of co-occurrence proportions of AD samples,
k = 2 was identified as the optimal number of clusters. PCA
showed that there were significant differences in distribution
between subtypes A and B, which indicated that there were
two protein glycosylation-related molecular subtypes in AD
(Figures 2A–C). The differences in the expression of the eight
PGRGs between subtypes A and B are shown in Figure 2D.
The analysis of expression differences revealed 273 DEGs
between subtypes A and B (Figure 2E). To explore the
biological functional differences between the subtypes, we
performed GO and KEGG enrichment analyses of the DEGs
and found that biological processes and molecular functions,
such as axon development, vesicle-mediated transport in the
synapse, associative learning, cognition, GABAergic synapse,
GABA receptor complex, and inorganic anion transmembrane
transporter activity, occupy the core position (Figures 2F,G).
GSEA analysis showed that the signaling pathways of subtypes
A and B were different (Figures 3A,B), and were mainly
concentrated in the complement and coagulation cascades,
cytokine–cytokine receptor interaction, long-term potentiation
neuroactive ligand-receptor interaction, and others. After
scoring the protein glycosylation levels of the two molecular
subtypes, the Glyscore of subtype B was significantly higher
than that of subtype A (Figure 3C), and most of the samples
were identified as having a high Glyscore (Figure 3D). We
compared inflammatory signaling molecules reported in AD
between the subtypes to explore the association between protein
glycosylation and neuroinflammation (Asby et al., 2021). The
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FIGURE 1

Identification of core protein glycosylation-related genes (PGRGs) in Alzheimer’s disease (AD). (A) Weighted gene co-expression network
analysis (WGCNA) analysis was performed on the training set, resulting in a cluster dendrogram of co-expressed genes. (B) The soft threshold of
a scale-free network. (C) The module-character relationship was constructed, with each module containing the corresponding correlation and
P-value. (D) Transcription factors that regulate the expression of genes are represented by the MElightgreen module and their interactions.
(E) Differentially expressed PGRGs between the training set and control samples. (F) The intersection of genes represented by the differentially
expressed PGRGs and MElightgreen modules between the training set and control samples. (G) The co-expression relationship of 7 core PGRGs.
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expression of inflammatory mediators or receptors, such as
IL4, IL6, IL10, IL16, TLR2, TLR4, TLR6, and TLR9, was
significantly upregulated in subtype B compared with those
in subtype A (Figure 3E). These results suggest that high
protein glycosylation levels are associated with more severe
neuroinflammation and that core PGRGs are involved in the
progression of AD and have a good classification function.
To explore the differences in potential therapeutic drugs in
patients with different glycosylation levels, DEGs between
subtypes A and B were entered into the cMAP database, and
seven small molecule drugs targeting protein glycosylation
levels were screened. These drugs were mainly adrenergic
receptor antagonists, cyclooxygenase inhibitors, glutamate
inhibitors, and NF-κB pathway inhibitors that were significantly
correlated with VCAM1, PLA2G2A, CDH5, SLC7A11, and
other targets (Figure 3F). To confirm their binding ability,
the previously studied drugs riluzole and sulfasalazine were
selected for the analysis of molecular docking with SLC7A11.
The results showed that the affinity between them was less
than −5 kcal/mol. The molecular docking model is shown in
Figures 3G,H.

Diagnostic nomogram model
construction, assessment, and
diagnostic marker screening between
the two subtypes

Differentially expressed genes between subtypes A and
B were screened by constructing random forest trees,
and genes with importance scores greater than 2 were
sequenced (Figures 4A,B). A diagnostic line diagram model
was established based on the genes with importance scores
greater than 5 (MAL2, GFAP, TNFRSF1A, ZIC1, CCK, NRXN3,
SERPINA3, LAMB2, and SCG5) (Figure 4C). Calibration
curves showed that the error between the actual and predicted
risks was very small, confirming the high accuracy of the line
diagram model in predicting glycosylated protein molecular
subtypes (Figure 4D). DCA showed that the “GLY genes” curve
was higher than the gray curve, indicating that patients could
benefit clinically within the high-risk threshold range from 0
to 1 (Figure 4E). To evaluate the clinical effect of the rosette
model more directly, a clinical effect curve was constructed
based on the DCA curve. When the high-risk threshold ranges
from 0.4 to 1, the curve of “Number of High Risks” is close
to that of “Number of High Risks with Events,” indicating
that the line diagram model has a good prediction ability
(Figure 4F). To test the expression level and diagnostic value
of the genes contained in these line diagram models, external
validation of nine genes was carried out using the GSE122063
(Figures 4G–J), GSE118553 (Supplementary Figures 1A–D),
GSE44768 (Supplementary Figures 1E–H), and GSE44770
(Supplementary Figures 1I–L) datasets, and the results showed

that the difference trend of SERPINA3 and GFAP was relatively
stable, and their expression was upregulated in AD samples.
These results suggest that SERPINA3 and GFAP may play key
roles in the pathological progression of AD mediated by protein
glycosylation at different levels.

Immune cell infiltration between the
subtypes and its correlation with
protein glycosylation-related genes

We quantified the level of immune cell infiltration to assess
the immune landscapes of subtypes A and B. The results
showed significant differences in immune cells, except for
activated CD8+ T cells and macrophages. Interestingly, type
2 immunity, represented by eosinophils and type 2 T helper
cells, was significantly downregulated in subtype B, whereas
Th1, Th17, and B cells were significantly upregulated, indicating
abundant immunocyte heterogeneity in brain tissue under the
influence of protein glycosylation (Supplementary Figure 1M).
At the same time, there was a strong–generally positive–
correlation among immune cells (Supplementary Figure 1N).
In addition, among the eight core PGRGs, the expression
of S100A10 and LGALS3 were positively correlated with the
level of immune cell infiltration, whereas that of DYNC1H1
was negatively correlated (Figure 5A). Spearman correlation
analysis showed that SERPINA3, the diagnostic marker with
the highest area under the receiver operating characteristic
curve (AUC) and the most significant difference between the
subtypes, was significantly correlated with all immune cells,
except type 2 T helper cells, activated B cells, and activated CD8+

T cells (Figure 5B). Finally, to determine the gene expression
regulatory network of SERPINA3, we explored its ceRNA
mechanism and obtained 63 miRNAs that may regulate its
expression level, of which seven were identified after literature
screening. Finally, a ceRNA network, including eight lncRNAs
and seven miRNAs, was constructed (Figures 5C,D).

Discussion

Protein glycosylation has been widely studied in AD because
of its important role in regulating the biological functions of
the brain (Schedin-Weiss et al., 2014; Ansari and Emerald,
2019; Haukedal and Freude, 2020). Recent reports have shown
that glycosylation levels in the frontal cortex of patients with
AD are increased and that N-linked glycan dysregulation could
underpin AD pathologies (Hawkinson et al., 2021). This may be
related to complex immune cell regulation, such as abnormal
glycosylation of microglia, which can affect neuroinflammation
and mediate AD progression. Accordingly, some reports have
discussed the possibility of using glycans or glycoproteins as
biomarkers of AD (Palmigiano et al., 2016). In this study,
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FIGURE 2

The two distinct protein glycosylation-related subtypes in Alzheimer’s disease (AD) identified by unsupervised clustering of eight protein
glycosylation-related genes (PGRGs). (A) Consensus clustering cumulative distribution function (CDF) for k = 2–9. (B) Heatmap of the matrix of
co-occurrence proportions of AD samples. (C) Principal component analysis (PCA) is used to determine the discrimination of A and B subtypes.
(D) The difference in the expression of eight core PGRGs between the two subtypes. (E) Differentially expressed genes between the subtypes.
(F) GO analysis of differentially expressed genes between the subtypes reveals related biological processes, molecular functions, and cellular
components. (G) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed genes between the
subtypes.
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FIGURE 3

Differences in protein glycosylation levels, neuroinflammation, and drug prediction between the subtypes. (A,B) GSEA analysis of subtypes A and
B. (C) The difference in glycosylation level between the subtypes. (D) The distribution proportion of protein glycosylation level in each subtype.
(E) Differences in expression levels of cytokines and inflammatory signal transduction molecules between the subtypes. *P < 0.05, **P < 0.01,
and ***P < 0.001. (F) The correlation between potential therapeutic drugs and corresponding targets. (G) The binding conformation of SLC7A11
and riluzole (binding energy = –7.8 kcal/mol). (H) The binding conformation of SLC7A11 and sulfasalazine (binding energy = –94.0 kcal/mol).

we identified eight central genes that may be involved in
protein glycosylation-related pathological processes in AD,
and the relationship between most of these genes and AD
was studied.

CD55 is a regulatory factor for C3 and C5 invertases and
regulates the complement system by binding with C3b and
C4b to protect neurons from the influence of the complement
system (Wang et al., 2010; Helgadottir et al., 2019). CD55

is also involved in neuroinflammation in cooperation with
CD97 to promote B- and T-cell proliferation, both of which
play important roles in the pathogenesis of AD (Cao and
Zheng, 2018). Studies have reported that these two regulatory
mechanisms of CD55 are related to protein glycosylation,
and the abnormal glycosylation of the CD55 protein can
cause a severe loss of its regulatory activity, leading to the
upregulation of complement system activity, increased tissue
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FIGURE 4

Construction and verification of the diagnostic line diagram model (A) Random forest trees constructed by cross-validation. (B) Genes with an
importance score higher than 2. (C) A line chart was used to predict different protein glycosylation levels in patients with Alzheimer’s disease
(AD). (D) A calibration curve that evaluates the predictive ability of the line chart model. (E) The decision curve analysis (DCA) curve was used to
evaluate the clinical value of the line chart model. (F) The clinical impact curve of the line chart model constructed based on the DCA curve.
(G) The difference in the SERPINA3 gene expression between AD and control samples. (H) The difference in the GFAP gene expression between
AD and control samples. (I) Receiver operating characteristic curve of the SERPINA3 gene in the validation set. (J) Receiver operating
characteristic curve of the GFAP gene in the validation set.

damage, and abnormal T-cell activation (Flückiger et al.,
2018). S100A10 is a specific marker of A2 astrocytes, which
is a subtype of astrocytes with neuroprotective effects that
upregulates many neurotrophic factors (Liddelow et al., 2017;
King et al., 2020). The neurotoxicity of Aβ is an important
cause of synaptic damage and neuronal death in the brains of
patients with AD. LGALS3 mediates Aβ deposition by regulating
the activation of microglia and induces neuroinflammation
and cognitive impairment in AD, and therefore is a key
participant in AD pathophysiology (Sethi et al., 2021; Tan
et al., 2021). LGALS3 inhibitors have been widely developed
and synthesized. In addition, compared with normal brain
tissue, LGALS3 protein has significant N-glycosylation at amino

acids 192 and 398, but the biological significance of this
modification is not yet understood (Zhang et al., 2020). The
complex roles of these PGRGs in AD indicate the potential
value of protein glycosylation-related targets at the drug
development level.

Neuroinflammation is generally considered an important
part of the pathological changes in the AD brain (Serrano-Pozo
et al., 2021). Our results suggest that there are differences in the
interactions between cytokines and receptors among different
protein glycosylation level subtypes. Clinical studies have found
that serum IL-4, IL-6, IL-10, and IL-16 levels in patients with
AD are significantly higher than those in healthy individuals,
and some inflammatory factors are correlated with cognitive
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FIGURE 5

Immune cell infiltration profiles across the key diagnostic marker subtypes and expression regulatory networks. (A) The correlation between the
expression of eight core PGRGs and immune cell infiltration. (B) The correlation between the SERPINA3 gene and immune cells. (C) The
intersection of miRNAs by which the expression of SERPINA3 is regulated in four databases. (D) The regulatory ceRNA network of SERPINA3
expression.

function, language, and memory in patients with AD (Motta
et al., 2007; Lu et al., 2022). During inflammation, the expression
of the interleukin family proteins is upregulated in the central
nervous system, which contributes to the pathological processes
of AD. A mouse model of astrocyte-targeted IL-6 production
showed significant neuronal overexcitation and progressive
cognitive decline, and the pathological changes in the central
nervous system included neurodegeneration, demyelination,
and microglial proliferation (Campbell et al., 1993; Steffensen
et al., 1994; Heyser et al., 1997). Knocking out IL10 can promote
the phenotypic transformation of microglia and enhance their
phagocytosis of Aβ oligomers, which may be due to the
negative regulation of microglial phagocytosis through the IL-
10R/STAT3 pathway (Liu et al., 2021). The phagocytosis of Aβ

by microglia is also TLR2-dependent, and Aβ can be used as an
agonist of microglial TLR2 (Schütze et al., 2012). Another TLR
family member, TLR4, induces a pro-inflammatory response
to Aβ by stimulating the activation of microglia, uptake and

clearance of Aβ, and neuronal apoptosis (Adhikarla et al., 2021).
Interestingly, among the drugs predicted to have potential
clinical applications, riluzole was also shown to be strongly
associated with neuroinflammation and protein glycosylation.
Fluctuations in neuronal glucose levels can cause dramatic
changes in protein glycosylation levels, and a double-blind,
randomized, placebo-controlled study showed that riluzole
slowed the rate of decline in cognitive and cerebral glucose
metabolism in patients with AD. This effect may be related to
riluzole’s role in activating the Wnt/β-catenin pathway, inhibited
in AD, which is sensitive to changes in cellular glycosylation
status and mediates the occurrence of neuroinflammation
(Bukke et al., 2020; Vallée et al., 2020; Matthews et al., 2021).
More importantly, glutamate hyperactivation of the N-methyl-
D-aspartate (NMDA) receptor is positively associated with
neurodegenerative disease, and the basic pharmacological effect
of riluzole is to produce neuroprotective and antidepressant
effects by reducing glutamate release. This was consistent with
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the inclusion of glutamate inhibitor in the drug prediction
results (Reisberg et al., 2003). Another drug, sulfasalazine, also
attenuates neuroinflammation, possibly by inhibiting the NF-
κB signaling pathway (Dijkstra et al., 2002; Ma et al., 2018).
This class of NF-κB signaling pathway inhibitors function by
downregulating the activity of NF-κB, inhibiting the expression
of neurotoxic cytokines and chemokines, and attenuating Aβ

production to block the progression of AD (Sivandzade et al.,
2019). The other two drugs in the drug prediction results
were also associated with neuroinflammation. Among them,
selective COX-1 inhibitors changed the phenotype of microglia,
reduced neuroinflammation, and reduced the deposition of
amyloid and tau proteins (Choi et al., 2013). The mechanism of
adrenergic receptor antagonists are more complex. In addition
to coordinating with the above cyclooxygenase inhibitor
to block the release of inflammatory mediators, they also
improve cognitive function in AD patients by inhibiting
the matrix metalloproteinase and mitogen-activated protein
kinase pathways (Lu’o’ng and Nguyen, 2013). In addition
to cytokines and inflammatory signal transduction molecules,
plasma from patients with AD showed changes in specific
immunoglobulin glycosylation, providing more evidence for the
correlation between neuroinflammation and glycosylation in
AD (Lundström et al., 2014). However, the exact mechanism still
needs to be further analyzed with the support of extensive data
of the glycoprotein groups, single-cell transcriptome, and spatial
transcriptome.

As an immune cell type, the role of microglia in AD
has been recognized, but other cells that are involved in the
innate immune system are also affected by polysaccharide
modification. Although the delivery of immune cells from the
peripheral circulation to the central nervous system is tightly
regulated, the blood–brain barrier and meningeal lymphoid
function are impaired in AD, resulting in immune cell transport
changes. Studies have shown that there are a small number
of adaptive immune cells in the brain parenchyma, such as
CD4+ T and CD8+ T cells, and their infiltration increases
with age (Mrdjen et al., 2018; Pasciuto et al., 2020). In fact,
in AD, the infiltration of T cells into the central nervous
system results in a decrease in the ability of microglia to
clear Aβ (Ferretti et al., 2016). It is worth noting that there
are many kinds of differentiated and mature T cells in the
central nervous system (Browne et al., 2013). Activated Th17
cells can produce pathogenic IL-17A, which enhances the
inflammatory cascade response by recruiting neutrophils and
promoting neuroinflammation and neurodegeneration in AD.
Th17 cells can also interact with other immune cells, together
contributing to AD pathology. In this study, we found a positive
correlation between Th17 cells and macrophages, in line with
previous reports, indicating that microglia exposure to IL-17A
leads to the activation and production of pro-inflammatory
cytokines, resulting in more severe neuronal dysfunction (Sun
et al., 2015). These results suggest that immune cells are

important contributors to neuroinflammation in AD; however,
current studies have only confirmed the potential relationship
between microglia and glycosylation in the progression of
neuroinflammation in AD. The results of our study may have
implications on the relationship between other immune cells
and protein glycosylation in AD for further studies.

There are some limitations to our study. First, the clinical
information contained in the dataset is limited, and important
information such as the history of drug use and the severity
of symptoms cannot be obtained, which may bring potential
bias to the data analysis. Moreover, this study did not combine
protein glycosylation to analyze the clinical characteristics of
AD patients. Second, the line chart model may need to be
further tested before clinical application because there is no
prognostic information or survival time in the current version of
the model. Finally, the expression levels of the diagnostic marker
genes involved in the line diagram model need to be verified by
further experiments.

Conclusion

In this study, we identified eight central genes (SLC7A11,
S100A10, LGALS3, CD55, CHST14, GSTP1, DYNC1H1, and
ADAMTS8) closely related to protein glycosylation in AD,
which can classify AD patients into two subtypes. There was
strong heterogeneity in the level of immune cell infiltration
between the subtypes, and SERPINA3 was closely related to
immune cells as a diagnostic marker to discriminate between
the subtypes. Studies have found that riluzole and sulfasalazine
have potential value in treating patients with high protein
glycosylation and have preliminarily established the relationship
between protein glycosylation in AD and neuroinflammation.
However, further research is required to confirm the clinical
value of our findings.
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