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Background: Early identification of people at risk for cognitive decline is

an important step in delaying the occurrence of cognitive impairment.

This study investigated whether multimodal signals assessed using

electroencephalogram (EEG) and gait kinematic parameters could be

used to identify individuals at risk of cognitive impairment.

Methods: The survey was conducted at the Veterans Medical Research

Institute in the Veterans Health Service Medical Center. A total of 220

individuals volunteered for this study and provided informed consent at

enrollment. A cap-type wireless EEG device was used for EEG recording,

with a linked-ear references based on a standard international 10/20 system.

Three-dimensional motion capture equipment was used to collect kinematic

gait parameters. Mild cognitive impairment (MCI) was evaluated by Seoul

Neuropsychological Screening Battery-Core (SNSB-C).

Results: The mean age of the study participants was 73.5 years, and 54.7%

were male. We found that specific EEG and gait parameters were significantly

associated with cognitive status. Individuals with decreases in high-frequency

EEG activity in high beta (25–30 Hz) and gamma (30–40 Hz) bands increased

the odds ratio of MCI. There was an association between the pelvic obliquity

angle and cognitive status, assessed by MCI or SNSB-C scores. Results from

the ROC analysis revealed that multimodal signals combining high beta

or gamma and pelvic obliquity improved the ability to discriminate MCI

individuals from normal controls.
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Conclusion: These findings support prior work on the association between

cognitive status and EEG or gait, and offer new insights into the applicability

of multimodal signals to distinguish cognitive impairment.
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Introduction

With the growing proportion of the elderly population
worldwide, the prevalence of dementia is rapidly increasing and
is projected to reach 75 million by 2030 and 132 million by 2050
(Dua et al., 2017). Dementia is a clinical syndrome characterized
by the loss of cognitive function, behavioral deterioration, and
an impaired ability to perform everyday activities (McKhann
et al., 2011). As the most common form of dementia, Alzheimer’s
disease (AD) is thought to begin at least 10–20 years before
the appearance of AD symptoms; however, there is a lack of
modification therapy to delay the onset or alter its progressive
course (Holtzman et al., 2011).

Early detection of cognitive decline is an important step in
delaying the occurrence of mild cognitive impairment (MCI)
and AD and maximizing illness control and improving the
quality of life (Solomon et al., 2014). MCI is an intermediate
stage between healthy aging and AD and is characterized
by an objective cognitive decline in one or more cognitive
domains without any significant impairment in activities daily
living (Petersen et al., 2014). If MCI and AD are suspected,
the clinical diagnosis mainly relies on neuropsychological
tests, laboratory assessments, and brain imaging. However,
their use has several limitations related to the low accuracy
of cognitive tests, the limited validation and invasiveness of
laboratory tests, and the high cost and low availability of the
equipment. Recent advances in measuring biomedical signals
have offered promising solutions to these limitations (Chen
et al., 2020). Physiological signals (i.e., electrophysiological,
biophysical, and biochemical signals) have been employed
to assist in the clinical diagnosis or detection of impaired
cognitive function (Chen et al., 2020). The present study focused
on whether multimodal physiological signals can be used to
assess the odds of cognitive impairment. To narrow the scope
of multimodal physiological signals, we chose the specific
signals of an electroencephalogram (EEG) and motor activity,
with reference to a review of existing literature (Jeong, 2004;
Bahureksa et al., 2017).

Electroencephalogram is a recording of electrical activity
taken from the scalp, and reveals synaptic activity that is
correlated with the brain state (Dauwels and Kannan, 2012).
EEG is one of the most commonly used methods for monitoring
and diagnosing abnormal brain function during a normal aging

process (Cassani et al., 2018). Studies have shown that MCI
and AD are associated with increased delta and theta activities,
decreased alpha and beta activities, and a lesser mean peak
frequency, although EEG dynamics are somewhat disputable
(Huang et al., 2000; Jelic et al., 2000; Jeong, 2004). Further
studies have proposed novel EEG-based methodologies for the
diagnosis of patients with MCI or AD and normal individuals
(Ahmadlou et al., 2011; Sankari et al., 2012; Amezquita-Sanchez
et al., 2019). A high accuracy ranging from 83 to 99.3%
distinguishing patients with AD from normal participants was
reported using novel methodologies, such as the Katz fractal
dimension, epoch-based entropy, and the integrated multiple
signal classification and empirical wavelet transform (Ahmadlou
et al., 2011; Houmani et al., 2015; Amezquita-Sanchez et al.,
2019). Thus, these findings suggest that a specific pattern in EEG
signals may be helpful in detecting individuals with cognitive
impairment.

In addition, body movements are associated with several
brain regions. A conventional measure is gait, which is an
automatic motor activity regulated by subcortical and spinal
regions. Although MCI criteria require relatively preserved
daily activity functioning, individuals with MCI can experience
gait dysfunction (Morris et al., 2016; Bahureksa et al., 2017).
Under single-task conditions, several gait parameters (i.e.,
velocity, stride length, and stride time) were significantly
discriminated for patients with MCI or AD in comparison
with cognitively healthy individuals (Morris et al., 2016;
Bahureksa et al., 2017). Furthermore, dual-task assessment
(i.e., the concurrent performance of motor-cognitive tasks)
revealed significant increases in stride time, step length, and step
width variabilities in MCI vs. healthy controls (Boripuntakul
et al., 2014; Bahureksa et al., 2017). Although these gait
differences do not reflect a drastic decline in every function,
gait assessment may be relevant for predicting cognitive decline
and worsening of dementia (Allali et al., 2016; Lin et al., 2016;
Bahureksa et al., 2017).

In this study, we investigated whether multimodal signals
assessed using EEG and gait kinematic parameters could be
used to identify individuals at risk of cognitive impairment.
The rationale for the combined use of EEG and gait parameters
is based on different approaches but consistent information
that can help detect cognitive impairment. The EEG is an
important physiological signal that reflects the activity of the
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cerebral cortex by collecting changes in the scalp electrode
measurement (Jeong, 2004). Gait is a measure of motor
abilities that reflects progressive brain dysfunction in aging and
neurodegenerative diseases (Bahureksa et al., 2017). Both EEG
and gait abnormalities are associated with the risk of cognitive
decline (Huang et al., 2000; Jelic et al., 2000; Jeong, 2004; Morris
et al., 2016; Bahureksa et al., 2017) and are considered useful
for early identification of the presence of cognitive impairment
(Ahmadlou et al., 2011; Sankari et al., 2012; Allali et al., 2016;
Lin et al., 2016; Bahureksa et al., 2017; Amezquita-Sanchez et al.,
2019). Modeling both EEG and gait parameters together might
strongly predict cognitive impairment. To achieve this aim,
we: (1) measured the EEG and gait among study participants;
(2) compared the differences in the two measured signal types
according to cognitive status (normal cognition vs. MCI); and
(3) evaluated the ability of these multimodal signals (combined
EEG and gait kinematic parameters) to distinguish individuals
with MCI from those with normal cognition.

Methods

Study population

Individuals aged ≥60 years who visited the Department of
Neurology at Veterans Health Service Medical Center (Seoul,
South Korea) between March and December 2021 were the
target population for the current study. The inclusion criteria
were as follows: (1) those who complained of cognitive decline,
(2) those who could independently complete clinical tests and
questionnaires, and (3) those who agreed to participate in this
study. The exclusion criteria were as follows: (1) a diagnosis
of dementia (ICD-10: F00-F09, G30), (2) diagnosed with brain
infarction, cerebral hemorrhage, or Parkinson’s disease, and (3)
suffering from another serious disease (e.g., cancer or mental
illness). The inclusion and exclusion criteria were evaluated
by experienced neurological clinicians. The study protocols
were approved by the Institutional Ethical Review Board of
the Veterans Health Service Medical Center (IRB No. BOHUN
2021-02-024).

The participants underwent a health survey consisting
of EEG and gait measurements, cognitive examinations, and
questionnaires. The survey was conducted at the Veterans
Medical Research Institute in the Veterans Health Service
Medical Center. A total of 235 individuals volunteered for
this study and provided informed consent at enrollment.
Participants were requested to take part in the follow-up study.
Of these, 15 participants subsequently dropped out of the study
due to incomplete answers on disease history (n = 1), refusal
to undergo EEG (n = 10), and abnormal gait (n = 4). After
these exclusions, 220 individuals (93.6%) remained eligible for
the current study.

Electroencephalogram recording and
processing

A cap-type wireless EEG device (MINDD SCAN, Ybrain
Inc., South Korea) was used for EEG recording. The EEGs were
recorded from 19 electrode sites (Fp1, Fp2, F7, F3, Fz, F4, F8, T7,
C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2) with a linked-
ear references based on a standard international 10/20 system.
Participants underwent EEG recording at resting-state with eyes
closed to measure endogenous pattern of brain activity of the
target population. The sampling frequency and resolutions were
500 Hz and 24 bits, respectively.

For EEG signal processing, a 1 Hz high-pass filter and a
60 Hz notch filter were applied to remove eye and power noises.
Independent component analysis was also used to eliminate
eye-blink and muscle artifacts. For the analysis, over 3 min of
artifact-free EEGs were selected from total 5 min of recorded
resting-state EEG data. The relative power of six frequency
bands, namely delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
beta (12–25 Hz), high beta (25–30 Hz), and gamma (30–40 Hz)
bands, was defined for further analysis of the target population.

Gait analysis using three-dimensional
motion capture equipment

Three-dimensional motion capture equipment was used
to collect kinematic gait parameters using the NORAXON
myoMOTION sensor (Scottsdale, AZ, United States), which
is a wireless inertial measurement unit (IMC) system. The
IMU sensor transmits human motion capture directly to the
myoMOTION receiver to compute the angular changes
of selected body segments. Using “Fusion algorithms,”
the information from the accelerometer, gyroscope, and
magnetometer was used to measure the three-dimensional
rotation angles of each sensor in absolute space. The algorithm
utilizes gyroscope and acceleration data from the foot-
mounted IMU to identify the period when the foot is in the
stance and swing phases via an on/off signal. The IMU was
recorded at sampling rates of 100–200 Hz. The IMU data are
mathematically combined, filtered, and processed using the
myoMOTION software to quantify angular changes for joints,
and the output is exported in Excel files (Alothmany et al.,
2014).

For this study, the seven IMUl sensors were placed on the
participants’ shoes (on the top of the upper foot), shins (frontal,
on the tibia bone), thighs (frontal attachment to the lower
quadrant of the quadriceps), and bony area of the sacrum, on
both the left and right. Calibration was performed using the
upright position to determine the value of the 0◦ angle in the
studied joints. Participants were instructed to walk at their usual
pace for 6 and 10 m. The kinematic parameters included the
averaged signals for each stance phase and swing phase. The
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parameters of the stance and swing phases were the angles of
hip abduction, hip flexion, hip external rotation, knee flexion,
ankle abduction, ankle dorsiflexion, ankle inversion, pelvic tilt,
pelvic obliquity, and pelvic rotation.

Neuropsychological evaluation

Participants completed the brief version of the Seoul
Neuropsychological Screening Battery (SNSB), named the
SNSB-Core (SNSB-C; Kang et al., 2015). The SNSB-C is
a comprehensive test that evaluates the level of cognitive
function or impairment in the five following cognitive domains:
attention, language and related functions, visuospatial functions,
memory, and frontal/executive functions (Jahng et al., 2015).
The SNSB-C is composed of 14 sub-tests, including the Digit
Span Test, a shortened version of the Korean-Boston Naming
Test, Rey Complex Figure Test, Seoul Verbal Learning Test-
Elderly’s version, a shortened version of the Korean-Color Word
Stroop Test, Controlled Oral Word Association Test, Korean-
Trail Making Test-Elderly’s version, and Digit Symbol Coding
(Jahng et al., 2015).

The composite scores of the SNSB-C were expressed as
z-scores standardized for age, sex, and education. The score
provides an index of overall cognitive functioning, and is
an alternative to the Korean Mini-Mental State Examination
(which is a brief global instrument used to assess cognitive
abilities) for screening patients with cognitive impairment
(Jahng et al., 2015). Participants were divided into normal
cognition and MCI groups (Kang and Na, 2003). Individuals
with normal cognition were defined as those who had
a percentile >16th in all sub-tests of the SNSB-C, while
individuals with MCI were defined as those with a percentile
≤16th in one or more sub-tests of the SNSB-C.

Demographic and clinical variables

Demographic variables included age, sex (male or female),
and years of education. Medical conditions were assessed based
on the presence of hypertension and dyslipidemia. To measure
functional disability, a Korean version of the Instrumental
Activities of Daily Living (K-IADL) was administered to
all participants.

Statistical analysis

Continuous variables (i.e., age, education years, SNSB
scores, and EEG and gait parameters) were compared between
the normal cognition and MCI groups using t-tests. Between-
group comparisons in categorical variables (i.e., sex and the
presence of hypertension and/or dyslipidemia) were made

using the Chi-squared test. To determine the effect of EEG
and gait parameters on cognitive status, we applied logistic
regression analysis to estimate the odds ratio (OR) and its 95%
confidence interval (CI) for MCI. Linear regression analysis was
conducted to estimate beta coefficients and standard error (SE)
of the percentile of total SNSB-C scores associated with EEG
and gait parameters. These regression models were adjusted
for age, sex, education, and medical history of hypertension
and dyslipidemia.

To evaluate the diagnostic usefulness of multimodal signals
in discriminating between normal cognition and MCI groups,
we conducted receiver operating characteristic (ROC) curve
analysis. The ROC curve is a plot of sensitivity against 1-
specificity for a given diagnostic test. We calculated the area
under the ROC curve (AUC), which is a popular indicator of
the overall performance of a diagnostic test. The AUC varies
from 0.5 (no discrimination, that is, no ability to diagnose
individuals with normal and mildly impaired cognition) to 1
(perfect discrimination). We considered three different ROC
curves, as follows: (1) including the EEG parameter only, (2)
including the gait parameter only, and (3) including both EEG
and gait parameters, and provided the AUC value of each.

All analyses were performed using the Statistical Analysis
System version 9.2 (SAS Institute, Cary, NC, United States), and
statistical significance was set at p ≤ 0.05.

Results

Of the 220 study population, 151 (68.7%) had MCI and 69
had normal cognition at the time of enrollment (Table 1). The
mean age of the study participants was 74.2 years, and 54.5%
were male. The proportion of individuals with dyslipidemia
was the highest at 57.3%, followed by those with hypertension
(54.1%) and diabetes mellitus (36.4%). We compared the
characteristics between individuals without MCI and those with
MCI. There were no significant differences in all characteristics:
age (73.1 vs. 74.7 years); period of education (10.3 vs. 10.3 years);
proportion of men (52.2 vs. 55.6%); proportion with a history of
hypertension (47.8 vs. 56.9%), dyslipidemia (63.8 vs. 54.3%), and
diabetes mellitus (44.9 vs. 32.5%); and the K-IADL score (0.1
vs. 0.1). To evaluate the association of EEG and gait parameters
with cognitive status, logistic regression (in which MCI was an
event) and linear regression (in which the z-score percentile
of the total SNSB-C score was a continuous variable) analyses
were conducted. The regression models were adjusted for age,
sex, years of education, and history of hypertension and/or
dyslipidemia. The results are presented in Tables 2–4.

For the relative power of EEG parameters (Table 2), ORs
(95% CI) for MCI were significantly associated with decreases
in high beta (adjusted OR = 0.10; 95% CI = 0.03–0.35,
p = 0.0003) and gamma (adjusted OR = 0.15; 95% CI = 0.05–
0.48, p = 0.0012). In the linear regression, beta coefficients (SE)
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TABLE 1 Characteristics of study population according to cognitive impairment status.

Variables All population Individuals with normal
cognition (N = 69)

Individuals with
MCI (N = 151)

P-value

Age (year), mean ± SD 74.2 ± 5.8 73.1 ± 5.1 74.7 ± 6.1 0.0527

Education (year), mean ± SD 10.3 ± 4.5 10.3 ± 4.4 10.3 ± 4.6 0.9172

Male sex, no. (%) 120 (54.5) 36 (52.2) 84 (55.6) 0.6330

Hypertension, no. (%) 119 (54.1) 33 (47.8) 86 (56.9) 0.2075

Dyslipidemia, no. (%) 126 (57.3) 44 (63.8) 82 (54.3) 0.1880

Diabetes mellitus (%) 80 (36.4) 31 (38.8) 49 (61.3) 0.0743

K-IADL, mean ± SD 0.1 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.4011

MCI, mild cognitive impairment; K-IADL, Korean version of the Instrumental Activities of Daily Living.

TABLE 2 Results from the logistic and linear regression models: OR (95% CI) for MCI and beta coefficients (SE) for SNSB-C score percentile,
associated with EEG parameters in relative power.

EEG parameters Logistic regression model Linear regression model

OR* (95% CI) P-value Beta coefficient* (SE) P-value

Relative power band

Alpha (8–12 Hz) 0.68 (0.24–1.97) 0.4823 11.46 (6.96) 0.1012

Beta (12–25 Hz) 0.27 (0.07–1.00) 0.0507 9.16 (8.97) 0.3082

High beta (25–30 Hz) 0.10 (0.03–0.35) 0.0003 21.97 (7.45) 0.0036

Delta (1–4 Hz) 2.56 (0.39–16.62) 0.3240 −4.80 (12.73) 0.7068

Gamma (30–40 Hz) 0.15 (0.05–0.48) 0.0012 18.29 (6.84) 0.0081

Theta (4–8 Hz) 2.53 (0.74–8.71) 0.1399 −10.78 (7.52) 0.1531

MCI, mild cognitive impairment; SNSB-C, Seoul Neuropsychological Screening Battery-core. *Adjusted for age, sex, education year, and a history of hypertension, dyslipidemia, and
diabetes mellitus.

for the SNSB-C score were significantly associated with increases
in high beta (adjusted beta = 21.97; SE = 7.45, p = 0.0036) and
gamma bands (adjusted beta = 18.29; SE = 6.84, p = 0.0081) in
relative power.

For gait parameters (Table 3), a decrease in pelvic obliquity
angle (6-m walking: adjusted OR = 0.72; 95% CI = 0.57–0.90,
p = 0.0049; 10-m walking: adjusted OR = 0.72; 95% CI = 0.57–
0.91, p = 0.0055) during the stance phase and decreases in
ankle dorsiflexion angle (6-m walking: adjusted OR = 0.87; 95%
CI = 0.78–0.97, p = 0.0119; 10-m walking: adjusted OR = 0.88;
95% CI = 0.80–0.98, p = 0.0145) and pelvic obliquity angle (6-m
walking: adjusted OR = 0.51; 95% CI = 0.35–0.76, p = 0.0008; 10-
m walking: adjusted OR = 0.51; 95% CI = 0.34–0.77, p = 0.0016)
during the swing phase consistently and significantly increased
the likelihood for developing MCI in both the 6- and 10-m
walking tests.

The linear regression (Table 4) of kinematic gait parameters
revealed that beta coefficients (SE) for the SNSB-C score
consistently increased in terms of increases in ankle abduction
angle and pelvic obliquity angle during both the 6- and 10-m
walking tests. In the stance phase, adjusted beta coefficients (SE)
during the 6- and 10-m walking tests were 1.34 (0.49; p = 0.0066)
and 1.41 (0.57; p = 0.0136) for ankle abduction angle, and 4.59
(1.41; p = 0.0013) and 4.68 (1.41; p = 0.0010) for pelvic obliquity

angle. In the swing phase, adjusted beta coefficients (SE) during
the 6- and 10-m walking tests were 1.61 (0.54; p = 0.0033) and
1.52 (0.64; p = 0.0185) for ankle abduction angle, and 9.43 (2.29;
p< 0.0001) and 9.97 (2.53; p = 0.0001) for pelvic obliquity angle.

Based on the chosen significance level of α, high-frequency
EEG activity in high beta (25–30 Hz) and gamma (30–40 Hz)
bands was significantly associated with MCI and cognitive
performance. Among the gait parameters, the pelvic obliquity
angle in kinematics was significantly associated with MCI and
cognitive performance, and this association was consistent in
both the 6- and 10-m walking tests.

To assess the diagnostic utility of multimodal signals (i.e.,
the combination of EEG and gait parameters) for distinguishing
normal and mildly impaired cognition, ROC curves and AUC
values were used (Figures 1, 2). The three following ROC curves
were created and calculated: (A) model with EEG parameters
(high beta or gamma), (B) model with gait parameters (pelvic
obliquity angle), and (C) model with EEG and gait parameters
(high beta with pelvic obliquity or gamma with pelvic obliquity).

As shown in Figure 1, the AUC value was 0.6752 for
high beta activity (A) and 0.6758 for pelvic obliquity angle
(B). Calculation of the AUC demonstrated better performance
(AUC = 0.7370) by the combination of the two parameters (D)
than by a single parameter (either high beta or pelvic obliquity).
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TABLE 3 Results from the logistic regression models: OR (95% CI)* for MCI, associated with gait parameters.

Gait parameters 6 m-walking test 10 m-walking test

OR* (95% CI) P-value OR* (95% CI) P-value

Stance phase

Hip abduction (degree) 0.93 (0.84–1.03) 0.1545 0.94 (0.83–1.06) 0.2893

Hip flexion (degree) 0.99 (0.94–1.04) 0.6914 0.98 (0.92–1.03) 0.4104

Hip rotation (degree) 0.95 (0.88–1.03) 0.2336 0.90 (0.81–1.00) 0.0475

Knee flexion (degree) 1.00 (0.96–1.05) 0.9536 1.00 (0.95–1.04) 0.8896

Ankle abduction (degree) 0.96 (0.89–1.03) 0.2200 0.92 (0.84–1.00) 0.0534

Ankle dorsiflexion (degree) 0.99 (0.90–1.09) 0.8386 0.98 (0.89–1.08) 0.6688

Ankle inversion (degree) 0.95 (0.88–1.01) 0.0936 0.95 (0.87–1.03) 0.2154

Pelvic tilt (degree) 0.95 (0.75–1.21) 0.6697 0.99 (0.78–1.24) 0.8965

Pelvic obliquity (degree) 0.72 (0.57–0.90) 0.0049 0.72 (0.57–0.91) 0.0055

Pelvic rotation (degree) 0.92 (0.83–1.02) 0.1070 0.96 (0.85–1.07) 0.4411

Swing phase

Hip abduction (degree) 0.92 (0.83–1.03) 0.1652 1.03 (0.88–1.21) 0.7205

Hip flexion (degree) 0.99 (0.93–1.04) 0.6174 0.96 (0.91–1.02) 0.1966

Hip rotation (degree) 0.97 (0.89–1.06) 0.4804 0.94 (0.85–1.04) 0.2352

Knee flexion (degree) 0.99 (0.95–1.03) 0.5107 0.99 (0.95–1.03) 0.6327

Ankle abduction (degree) 0.94 (0.86–1.02) 0.1429 0.93 (0.84–1.02) 0.1366

Ankle dorsiflexion (degree) 0.87 (0.78–0.97) 0.0119 0.88 (0.80–0.98) 0.0145

Ankle inversion (degree) 0.95 (0.89–1.01) 0.1038 0.92 (0.84–1.01) 0.0709

Pelvic tilt (degree) 0.86 (0.69–1.08) 0.2044 0.94 (0.70–1.25) 0.6654

Pelvic obliquity (degree) 0.51 (0.35–0.76) 0.0008 0.51 (0.34–0.77) 0.0016

Pelvic rotation (degree) 0.90 (0.82–1.00) 0.0503 0.95 (0.84–1.07) 0.3943

MCI, mild cognitive impairment; SNSB-C, Seoul Neuropsychological Screening Battery-core. *Adjusted for age, sex, education year, and a history of hypertension, dyslipidemia, and
diabetes mellitus.

As shown in Figure 2, the AUC value was 0.6711 for gamma
activity (A) and 0.6758 for pelvic obliquity angle (B). Calculation
of the AUC demonstrated better performance (AUC = 0.7267)
by the combination of the two parameters (D) than by a single
parameter (either gamma or pelvic obliquity).

Discussion

Our results confirmed that specific EEG and gait parameters
were significantly associated with cognitive status. Individuals
with decreases in high-frequency EEG activity in high beta
(25–30 Hz) and gamma (30–40 Hz) bands increased the
probability of MCI. We also found an association between
the pelvic obliquity angle and cognitive status, assessed by
MCI or SNSB-C scores. The main aim of this study was
to determine whether multimodal signals with EEG and
gait parameters are meaningful in distinguishing cognitive
impairment. Results from the ROC analysis revealed that
multimodal signals combining high beta or gamma and pelvic
obliquity improved the ability to discriminate MCI individuals
from normal controls. These findings support prior work on
the association between cognitive status and EEG or gait, and

offer new insights into the applicability of multimodal signals to
distinguish cognitive impairment.

Neural oscillations are rhythmic or repetitive electrical
discharges in the brain (Başar, 2013). EEG generates time-series
data on neural oscillations in the brain, even though voltage
oscillations detected on the scalp are small (Jeong, 2004). We
found significant decreases in high beta (25–30 Hz) and gamma
(30–40 Hz) band oscillations in the MCI group, as assessed
by the SNSB-C. Conversely, increased high beta and gamma
activities were significantly associated with better cognitive
performance.

Beta activity is typically observed in motor activity (Honaga
et al., 2010). Although voltage oscillations detected on the
scalp are small, EEG generates time-series data on neural
oscillations at different frequency bands (i.e., delta, theta,
alpha, beta, and gamma) in the brain (Jeong, 2004). Delta
oscillations are prominent in the early developmental stages
and during slow-wave sleep (Knyazev, 2012). Functionally,
delta oscillations are implicated in the synchronization
of brain activity with autonomic functions, motivational
processes associated with both reward and atavistic defensive
mechanisms, and in cognitive processes mostly related to
attention and the detection of motivationally salient stimuli
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TABLE 4 Results from the linear regression models: beta coefficients (SE)* for SNSB-C score percentile, associated with gait parameters.

Gait parameters 6 m-walking test 10 m-walking test

Beta coefficient* (SE) P-value Beta coefficient* (SE) P-value

Stance phase

Hip abduction (degree) 1.19 (0.67) 0.0772 0.84 (0.81) 0.3029

Hip flexion (degree) 0.04 (0.32) 0.8919 0.19 (0.36) 0.6012

Hip rotation (degree) 0.73 (0.54) 0.1795 0.42 (0.65) 0.517

Knee flexion (degree) 0.29 (0.29) 0.3232 0.11 (0.30) 0.7134

Ankle abduction (degree) 1.34 (0.49) 0.0066 1.41 (0.57) 0.0136

Ankle dorsiflexion (degree) −0.45 (0.65) 0.4829 −0.41 (0.61) 0.5054

Ankle inversion (degree) 0.96 (0.43) 0.0278 0.47 (0.55) 0.3984

Pelvic tilt (degree) 1.71 (1.58) 0.2817 2.13 (1.49) 0.1565

Pelvic obliquity (degree) 4.59 (1.41) 0.0013 4.68 (1.41) 0.0010

Pelvic rotation (degree) 1.34 (0.66) 0.0446 0.79 (0.74) 0.2887

Swing phase

Hip abduction (degree) 1.46 (0.74) 0.0482 0.59 (1.06) 0.5751

Hip flexion (degree) 0.21 (0.37) 0.5737 0.55 (0.38) 0.1495

Hip rotation (degree) 0.71 (0.55) 0.1980 0.08 (0.65) 0.8976

Knee flexion (degree) 0.53 (0.27) 0.0548 0.56 (0.28) 0.0464

Ankle abduction (degree) 1.61 (0.54) 0.0033 1.52 (0.64) 0.0185

Ankle dorsiflexion (degree) 1.10 (0.69) 0.1123 0.78 (0.65) 0.2325

Ankle inversion (degree) 1.00 (0.44) 0.0249 0.61 (0.59) 0.3012

Pelvic tilt (degree) 0.77 (1.50) 0.6097 2.88 (1.91) 0.1329

Pelvic obliquity (degree) 9.43 (2.29) <0.0001 9.97 (2.53) 0.0001

Pelvic rotation (degree) 1.54 (0.68) 0.0239 1.09 (0.80) 0.1727

*Adjusted for age, sex, education year, and a history of hypertension, dyslipidemia, and diabetes mellitus.

in the environment (Knyazev, 2012). Theta oscillations are
low-frequency oscillations in the local field potential within
the hippocampus, amygdala, and neocortex (Hutchison and
Rathore, 2015). Theta activity is dominant feature synchronized
across brain regions during both wake and rapid-eye movement
sleep (Hutchison and Rathore, 2015). Alpha oscillations are
the most prominent EEG features during wakefulness; the
more an individual is stable and relaxed, the greater the
amplitude (Halgren et al., 2019). Beta oscillations are typically
observed during motor activity (Honaga et al., 2010). The
modulation of beta band oscillations plays a key role in action
planning and execution, wherein the beta power decreases
during action planning and decreases further during action
execution. Gamma oscillations are the fastest and subtlest brain
waves. Gamma power modulates perception and consciousness
(Missonnier et al., 2010). Delta, theta, and alpha oscillations
are global processing modes that cover relatively large cortical
regions and serve integration across diverse cortical sites by
synchronizing coherent activity and phase coupling across
widely spatially distributed neural assemblies. Oscillations of
beta and gamma ranges or local EEG modes are distributed
in higher frequencies, lower amplitudes, and a more limited
topographic area (Knyazev, 2012). Although the direction

of increase or decrease in each oscillation is not consistent
owing to different experimental protocols and participant’
characteristics, a substantial evidence suggests that oscillations
in all frequency bands are linked to cognitive processes such
as attention, perception, and memory (Missonnier et al.,
2007, 2010; Ray and Maunsell, 2015; Spitzer and Haegens,
2017). Our data displayed the association of high beta/gamma
oscillations with cognitive performance. Using the SNSB-C,
we found significant decreases in high beta (25–30 Hz) and
gamma (30–40 Hz) band oscillations in the MCI group. Many
studies have shown that a decrease in beta or gamma power is
a characteristic of AD progression (Başar and Düzgün, 2016;
Wang et al., 2017; Smailovic and Jelic, 2019). There is scarce
evidence of any such spectral changes in patients with MCI.
Güntekin et al. (2013) found that patients with MCI tended to
have a lower beta response than healthy controls during the
visual oddball paradigm. Michels et al. (2017) investigated the
association between amyloid deposition and ApoE and EEG
measurements in 17 healthy controls and 17 patients with MCI.
The authors revealed that beta power was lower in patients with
MCI relative to healthy controls, and was negatively associated
with ApoE4-status and global amyloid deposition (r = 0.51,
p = 0.02) (Michels et al., 2017). In a recent case-control study,
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FIGURE 1

Area under the ROC curve of EEG and gait parameters for classifying MCI and normal cognition: (A) Model with high beta power, (B) model with
pelvic oblique, (C) combined model with high beta power and pelvic oblique, and (D) comparison of AUC curves.

Murty et al. (2021) measured patterns of brain activity in elderly
people classified as healthy, with MCI, and with AD. They found
significantly reduced stimulus-induced gamma rhythms in the
patients with MCI and AD compared to age- and sex-matched
controls (Murty et al., 2021). Taken together, these studies
indicate that high beta and gamma levels are associated with
cognitive impairment. While our results can be interpreted in
a similar way, the current data does not provide information
about the mechanism underlying the association of higher
frequency bands, especially high beta and gamma bands, with
cognitive performance.

Gait and cognition share anatomical structures and brain
control processes (Cohen et al., 2016). Close associations
between gait abnormalities and cognitive deficits have been
reported in the elderly (Pieruccini-Faria et al., 2021). Consistent
with prior work, we also observed a significant difference
in certain kinematic gait variables between individuals with
normal cognition and those with MCI. There was a strong
and consistent association between lower pelvic obliquity
angle and cognitive status (assessed by MCI or SNSB-C
scores) in both 6- and 10-m walking tests. This indicates
that kinematic gait disturbance and cognitive decline may be
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FIGURE 2

Area under the ROC curve of EEG and gait parameters for classifying MCI and normal cognition: (A) Model with gamma power, (B) model with
pelvic oblique, (C) combined model with gamma power and pelvic oblique, and (D) comparison of AUC curves.

correlated. Most studies have stressed the importance of spatio-
temporal gait features (i.e., slow gait velocity and shorter stride
length and time) that can distinguish cognitive impairment
(Toots et al., 2019; Xie et al., 2019; Sebastiani et al., 2020).
There has been little interest in gait kinematics according to
cognitive status; two recent studies have provided evidence of
an association between gait kinematics and cognitive status
(Rucco et al., 2017; Zhong et al., 2021). Rucco et al. (2017)
examined gait patterns in patients with AD and those with
behavioral variants of frontotemporal dementia. A significant
increase in dorsiflexion and a decrease in plantar flexion
under cognitive dual-task conditions were observed in patients
with AD relative to the normal controls (Rucco et al., 2017).
More recently, Zhong et al. (2021) found that older adults
with MCI had larger knee peak extension angles and smaller

knee heel strike angles than those with normal cognition.
These previous studies suggest that cognitive impairment
may affect gait kinematic parameters, along with spatio-
temporal parameters. Regarding the relationship between pelvic
obliquity and cognitive impairment, the results of Martín-
Gonzalo et al. (2019) seem to support our own, showing the
discrimination of pelvic movement according to the status of
cognitive impairment. The authors compared gait kinematic
metrics (complexity and irreversibility) in patients with MCI
and mild AD relative to healthy controls. The amount of
irreversibility of the pelvic tilt kinematic signal was decreased
in patients with MCI and mild AD, whereas complexity in
the hip flexion and pelvic obliquity kinematic signals was
decreased in patients with mild AD. These results suggest
that kinematic disorganization is present at an early stage of
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cognitive impairment. Further studies are needed to understand
how individuals with cognitive decline adapt to the progressive
deterioration of motor functions, specifically gait kinematics.

The primary aim of this study was to examine whether
combined EEG and gait parameters are useful in distinguishing
between cognitive impairment and normal cognition. Previous
studies have analyzed the usefulness of multimodal techniques,
such as using machine learning methods and combining
neuroimaging data, biological tests, or clinical records, in
the early diagnosis of cognitive decline and AD. To the
best of our knowledge, the present study is the first to use
multimodal signals that incorporate EEG and gait to classify
MCI risk. As shown in Figures 1, 2, the combination of EEG
and gait kinematic parameters (high beta power with pelvic
obliquity AUC = 0.7370 and gamma power with pelvic obliquity
AUC = 0.7267) had additional value compared to high beta
power (AUC = 0.6752), gamma power (AUC = 0.6300), and
pelvic obliquity (AUC = 0.6758) alone. This is encouraging,
as it indicates that multimodal signals significantly improved
MCI prediction compared with predictions made by the models
using EEG or gait data only. Given the benefits of EEG
and gait as being non-invasive, relatively inexpensive, and
easily available measures, our multimodal approach may be
effective for screening of cognitive decline and monitoring
AD risk. However, this study has several limitations, such as
its cross-sectional design, unmeasured confounders, and the
possibility of misclassified MCI. Thus, as with any diagnostic
test, its clinical utility should be confirmed in follow-up
studies.

In conclusion, we found that high-frequency EEG activity
and pelvic obliquity angle were significantly associated with
cognitive status. This finding supports the proposal that
multimodal signals could be used to identify individuals at
risk of cognitive impairment. However, further studies to verify
the reliability of the combined use of EEG and kinetic gait
measures for identifying MCI individuals are needed because
these measures need to be contrasted with other, more easily
obtained, and reliable predictors of MCI (e.g., gait speed).
Additional studies are also required to develop guidelines for
using EEG and kinetic gait measures for MCI prediction that
can be applied in clinical settings. If our follow-up study reveals
that multimodal signals combining EEG and gait are able to
reasonably predict MCI risk, this might be a good strategy to
improve the performance of MCI diagnostic tests.
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