
fnagi-14-911635 June 22, 2022 Time: 11:49 # 1

REVIEW
published: 23 June 2022

doi: 10.3389/fnagi.2022.911635

Edited by:
Alessandro Martorana,

University of Rome Tor Vergata, Italy

Reviewed by:
Andrea Fuso,

Sapienza University of Rome, Italy
Caterina Visconte,

IRCCS Ca ‘Granda Foundation
Maggiore Policlinico Hospital, Italy

*Correspondence:
Zheng Liu

1442551325@qq.com
Yan Zhou

396955431@qq.com
Zhenyou Zou

sokuren@163.com

Specialty section:
This article was submitted to

Neurocognitive Aging and Behavior,
a section of the journal

Frontiers in Aging Neuroscience

Received: 02 April 2022
Accepted: 24 May 2022

Published: 23 June 2022

Citation:
Gao X, Chen Q, Yao H, Tan J,

Liu Z, Zhou Y and Zou Z (2022)
Epigenetics in Alzheimer’s Disease.
Front. Aging Neurosci. 14:911635.

doi: 10.3389/fnagi.2022.911635

Epigenetics in Alzheimer’s Disease
Xiaodie Gao1,2, Qiang Chen2, Hua Yao1, Jie Tan1, Zheng Liu1* , Yan Zhou1* and
Zhenyou Zou1,2*

1 Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China, 2 Department of Scientific
Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China

Alzheimer’s disease (AD) is a neurodegenerative disease with unknown pathogenesis
and complex pathological manifestations. At present, a large number of studies on
targeted drugs for the typical pathological phenomenon of AD (Aβ) have ended in
failure. Although there are some drugs on the market that indirectly act on AD, their
efficacy is very low and the side effects are substantial, so there is an urgent need to
develop a new strategy for the treatment of AD. An increasing number of studies have
confirmed epigenetic changes in AD. Although it is not clear whether these epigenetic
changes are the cause or result of AD, they provide a new avenue of treatment for
medical researchers worldwide. This article summarizes various epigenetic changes in
AD, including DNA methylation, histone modification and miRNA, and concludes that
epigenetics has great potential as a new target for the treatment of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disease with an incidence of 10% in
people over 65 years old and 40% in people over 85 years old, and the number of confirmed cases
is expected to increase to over 91 million worldwide by 2050 (WHO, 2017); it comprises more than
2/3 of confirmed cases of dementia (Robinson et al., 2018). A loss of short-term memory, reduced
sense of direction, decreased expression ability and progressive changes in personality are typical
clinical manifestations of AD (Panza et al., 2019). AD can be classified into two main types: early-
onset AD (EOAD) and late-onset AD (LOAD). EOAD develops cognitive impairment before the
age of 65 and accounts for approximately 5% of all cases; LOAD develops cognitive impairment
after the age of 65 and accounts for more than 90% of diagnosed AD patients (Diniz et al., 2017).

As confirmed by a large number of studies, the main pathological manifestations of AD are
extraneuronal amyloid plaque (Aβ) deposition and intracellular neurofibrillary tangles (NFTs)

Abbreviations: AD, Alzheimer’s disease; ANK1, ankyrin gene; APP, amyloid precursor protein; BACE1, β-site amyloid
precursor protein cleaving enzyme; bace-1, β-site amyloid precursor protein lyase 1; BDNF, brain-derived neurotrophic
factor; beta4 GalT 7, beta-4-galactosyltransferase 7; CBP/CREBBP, CREB binding protein; CKD-504, HDAC6 inhibitor;
CREB, cAMP-response element binding protein; DNAM, DNA methylation-based; DNMT, DNA methyltransferase; Egr1,
early growth response protein 1; elF-2α, eukaryotic initiation factor-2α; GluR1, glutamate ionotropic receptor AMPA type
subunit 1; H1, histone 1; H2A, histone 2 A; H2B, histone 2 B; H3, histone 3; H4, histone 4; HATs, histone acetyltransferases;
HDAC, histone deacetylase; KAT6–8, lysine acetyltransferase 68; KDAC2, lysine deacetylase 2; KMT2B, histone-lysine
N-ethyltransferase 2B; LSD1, lysine specific demethylase 1; NFTs, neuronal fiber tangles; ORM, object recognition
memory; P300, adenoviral E1A binding protein of 300 kDa; PCAF, P300/CBP-associated factor; pgnat5, polypeptide
N-acetylgalactosaminyltransferase 5; PRC2, polycomb repressive complex 2; PSEN1, presenilin-1; PTM, posttranslational
modification; Tip60, tat interactive protein 60 ku; UTR, untranslated region; ZIF268, zinc finger-containing transcription
factor 268.
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(Krance Saffire et al., 2019; No authors listed, 2021).
Hyperphosphorylated tau protein, which has over 40
phosphorylation sites, is the main component of the tangles
(No authors listed, 2021). A recent autopsy study indicated
that p-tau at threonine 217 (p-tau217) was the most important
phosphorylation site in the differentiation between Alzheimer’s
disease and control brain tissue (Wesseling et al., 2020), and
plasma p-tau217 has been considered a biomarker of AD
(Thijssen et al., 2021). Aβ and tau protein deposition can affect
signal and substance transmission between neurons, leading to
neuronal degeneration and death (Bottero et al., 2021).

During the preclinical stage, subjects are cognitively
unimpaired but show evidence of cortical Aβ deposition, which
is considered the most upstream process in the pathological
cascade of Alzheimer’s disease (Jack et al., 2013). There
are reports that in AD familial mutation carriers, Aβ starts
accumulating over two decades before any symptoms appear,
followed by brain metabolism decline 6 years prior to and brain
atrophy approximately 5 years prior to any symptoms (Gordon
et al., 2018). In view of the hypothesis that Aβ accumulation
is the underlying etiology, researchers have conducted a large
number of in-depth and extensive studies aimed at revealing
the pathogenesis of AD to find ways to treat AD. Unfortunately,
these studies all ended in failure. In the face of the global surge
in the diagnosed population of AD, it is urgent to find a new
direction of treatment for AD, shown in Figure 1.

In the middle of the twentieth century, Waddington first
linked developmental biology with genetics and put forward the
concept of “epigenetics” (Holliday, 2006). With the continuous
progress of research, the concept of epigenetics is constantly
improving. At present, epigenetics is generally defined as
“to make structural and biochemical changes in chromatin
without changing the DNA sequence, and then regulate the
expression of related genes, thus affecting various physiological
and pathological processes” (Wang et al., 2019; Li, 2021). These
changes include DNA methylation and hydroxymethylation,
histone modifications (histone methylation, acetylation,
glycosylation, ubiquitination, phosphorylation), and non-coding
RNA changes. Epigenetics has been shown to control the
transcription of genes related to cell differentiation (Cantone
and Fisher, 2013), learning and memory (Kosik et al., 2012)
and has emerged as an important regulator of development and
aging (Brunet and Berger, 2014; Orozco-Solis and Sassone-Corsi,
2014; Booth and Brunet, 2016; Pal and Tyler, 2016; Roberts et al.,
2021), which is the biggest risk factor for AD.

Some studies have proposed that AD is not simply an
advanced or exacerbated state of normal aging, but is instead
a dysregulation of normal aging and normal aging might
provide protection against AD-epigenetics may be involved
(Fyfe, 2018). The occurrence and development of AD follow a
non-Mendelian etiology, with both genetic and environmental
modification factors (Zhang et al., 2019). Individuals carrying
autosomal dominant Alzheimer’s disease mutations with near
100% penetrance develop dementia when aged approximately
30–60 years (Ryman et al., 2014; Fagan et al., 2021). However,
not all ε4 carriers who survive to an advanced age develop AD,
and an epigenomic factor associated with a reduced proportion

of activated microglia (microglial epigenomic factor 1) appears
to attenuate the risk of ε4 for AD (Ma et al., 2020).

In the AD brain, at the sub/cellular level, the dysregulation
of several molecular pathways and intracellular signaling
occurs, including Aβ and tau proteostasis, synaptic plasticity
and homeostasis, inflammatory-immune responses, lipid and
bioenergetic metabolism, and oxidative stress (Hampel et al.,
2021), and their dysregulation results from a multilayer
interaction among genetic, biological, and environmental factors
(Castrillo and Oliver, 2016). In addition, increasing evidence
has shown that an imbalance in epigenetic mechanisms may
be the basis of abnormal expression of synaptic plasticity- and
memory-related genes in AD (Mehler and Mattick, 2007; Vecsey
et al., 2007; Guan et al., 2009; Michán et al., 2010). Here, we
provide a brief review of the epigenetic changes in AD and further
corroborate that epigenetic factors may be useful biomarkers to
diagnose AD and therapeutic targets to treat AD.

DNA METHYLATION AND
HYDROXYMETHYLATION IN
ALZHEIMER’S DISEASE

DNA methylation refers to the process of forming 5-
methylcytosine (5mC) by a covalent bond with the cytosine
5′ carbon site of the CpG dinucleotide in the genome under
the action of DNA methyltransferases (DNMTs) (Figure 1).
5mC can interfere with the binding of transcription factors
to recognition sites on promoters or recruit transcription
suppressor methyl-CpG-binding proteins to alter the chromatin
structure and inhibit transcription (Klose and Bird, 2006; Kemme
et al., 2017), thereby affecting gene expression (Jones and Laird,
1999; Cacabelos and Torrellas, 2014). 5mC can be oxidized into
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-
carboxylcytosine (5caC) by ten-eleven translocation (TET) family
enzymes (Kudo et al., 2012; Fetahu et al., 2019). 5hmC is the
intermediate product of DNA methylation and demethylation,
which adds a layer of complexity to the epigenetic regulation
of both. 5hmC has been found in various mammals (Tahiliani
et al., 2009; Ito et al., 2010), especially in pluripotent stem cells
and nerve cells with the ability to self-renew (Szwagierczak et al.,
2010; Guo et al., 2011).

In contrast to 5mC, 5hmC is related to gene expression
activation in the brain (Chen et al., 2012; Mellén et al., 2012;
Colquitt et al., 2013). For example, the content of 5hmC in
the brain of AD is positively correlated with the level of
triggering receptor expressed on myeloid cells 2 (TREM2) gene
(Celarain et al., 2016), which is supposed to promote the
phagocytosis of Aβ42 peptide, preventing Aβ aggregation and
downstream neurotoxic effects (Jiang et al., 2014; Zhao et al.,
2014), especially in the hippocampus. In addition, 5hmC is also
involved in physiological processes, such as cell differentiation,
neural development and aging (Szulwach et al., 2011; Chouliaras
et al., 2012; Wang et al., 2012). Some studies have found that
5hmC is selectively lost in hippocampal neurons and neocortical
neurons in patients with AD and model mice, and this loss is
significantly related to age and is aggravated after Aβ treatment.
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FIGURE 1 | Epigenetic factor roles in Alzheimer’s disease. Methylation and Acetylation: DNA methylation results in reduced silencing of neurodegenerative genes
and affects neural development. Histone methylation may condense chromosomes, thus preventing the expression of binding genes. Histone acetylation leads to
chromatin becoming more open, which promotes gene expression. Phosphorylation: Histone H2AXS139 and H3 and H4S473 phosphorylation can lead to
neurodegeneration. Ets1 phosphorylation reverse the pathological AD changes. Ubiquitation: High ubiquitination of H2BK120 and low ubiquitination of H2A119 and
Trk1 can be related to the pathology of AD and aggravate the AD process. MicroRNA: microRNAs can inhibit gene expression. The downregulation of miRNA-188-5p
and upregulation of HAS-miRNA-219 can lead to cognitive impairment, but an increase in miRNA-15a can inhibit neuronal apoptosis and alleviate AD.

However, this change is not obvious in cerebellar neurons (Zhang
et al., 2020). In addition, the loss of TET enzymes is consistent
with that of 5hmC in the prefrontal cortex and hippocampus,
and TET can inhibit the neuropathophenotype (Aβ aggregation,
tau hyperphosphorylation) and prevent synaptic dysfunction in
mice (Zhang et al., 2020). Moreover, the decrease in 5hmC
and TET levels in the hippocampus of AD mice coincides
with abundant Aβ plaque accumulation. In the early disease
stage, the decline in TET levels in the hippocampus leads to
a decrease in 5hmC content, which causes the appearance of
pathological features, and these changes are alleviated after
the restoration of TET expression (Li L. et al., 2020). Taken
together, these results suggest that the loss of 5hmC, which
is the result of the downregulation of TET, is closely related
to the degree of AD neurodegeneration. However, the current
research on 5hmC is not mature, and conflicting results have
been reported in several studies (Chouliaras et al., 2013; Condliffe
et al., 2014; Coppieters et al., 2014). The specific role of
dynamic changes in 5hmC contributing to AD remains to be
further explored.

5mC is the most well-studied epigenetic modification and it
plays a critical role in brain development (Price et al., 2019;
Monti et al., 2020; Meth et al., 2021). Studies have shown that the

levels of 5mC in the middle temporal gyrus and middle frontal
gyrus of AD patients increase significantly and are positively
correlated with Aβ, NFTs and ubiquitin load (Coppieters et al.,
2014). The entorhinal cortex is a critical brain region affected
by Alzheimer’s disease (Howett et al., 2019). Researchers have
found hypermethylation of the ANK1 gene in the entorhinal
cortex and similar methylation in the superior temporal gyrus
and prefrontal cortex (De Jager et al., 2014; Wood, 2014). In
addition, methylation changes have also been found in ABCA7,
BIN1 and other genes associated with the development of AD (De
Jager et al., 2014; Wood, 2014). The hypermethylation of these
genes is often accompanied by the deposition of large amounts
of amyloid protein, suggesting that these changes are related to
the pathology of AD, but these changes have also been found
in the brains of some patients without cognitive impairment. In
these patients, only low amounts of amyloid protein deposition
were found, indicating that DNA methylation may be involved
in the very early pathological changes of AD (De Jager et al.,
2014). At present, only a small number of genetic variations
described as risk factors for AD, such as genome-wide loci (IQCK,
ACE, ADAM10, ADAMTS1, and WWOX), which include ANK1,
ABCA7, BIN1, and others, are associated with LOAD (Kunkle
et al., 2019; Sims et al., 2020).
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In the 1990s, the pathogenic relationship between amyloid
precursor protein (APP), presenilin1 (PSEN1) and AD was
proven by genetic methodology, in which PSEN1, as the active site
of the secretase, can influence the function of neuron γ secretase
in AD patients, increase the level of plasma Aβ42 and accelerate
the development of AD (Borchelt et al., 1996). The MAPT
gene is a risk factor for a variety of neurodegenerative diseases,
including AD. Studies have shown that overexpression of PSEN1
can reduce the activity of the MAPT promoter, leading to an
increase in methylation of the endogenous MAPT promoter,
thus causing AD (Coupland et al., 2015). Vitamin B12 (vitB12)
and S-adenosylmethionine (SAM), the principal methyl donors,
decrease with age in patients with AD (Miner et al., 1997; Beyer
et al., 2004). Homocysteine (HCY) is remethylated to methionine,
which is, in turn, transformed to SAM. SAM can give the
methyl group to DNA (among other substrates) through the
action of DNA methyltransferase (DNMT) enzymes family with
formation of S-adenosylhomocysteine (SAH). SAH, an inhibitor
of DNMTs, is then transformed to HCY. Essential cofactors of
HCY metabolism are folate, vitB12 and vitB6. And high HCY and
low vitB (folate, vitB12 and vitB6) levels are positively associated
with LOAD (GilletteGuyonnet et al., 2007; Luchsinger et al.,
2007). Studies have shown that in human neuroblastoma cells
and the specific brain regions of AD mouse model, such as the
frontal cortex and hippocampus, showing about 3.5- and 1.3-
fold increase, respectively, in PSEN1 expression in vitB deficient
conditions, whereas SAM is able to restore PSEN1 normal
expression (Fuso et al., 2007). PSEN1 5′-flanking region has a site-
specific (only few CpG moieties) methylation pattern that could
change in response to metabolic stimuli, vitB deficiency (resulting
in hyperhomocysteinemia in mice) causes PSEN1 overexpression
through DNA demethylation which can be prevented by SAM
(Fuso et al., 2011). Further study found that in the above-
mentioned cells and mouse brain, the level of overall cytosine
methylation is very low in control and almost unaltered in vitB
deficiency conditions. However, it is worthwhile to underline
that overall CpG methylation is high and significantly decrease
when vitB deficiency (Fuso et al., 2011). It means that vitB
deficiency mainly affects CpG methylation, through site-specific
regulation of cytosine methylation regulating PSEN1 expression
(Dong et al., 2000; Lucarelli et al., 2001). Interestingly, after
SAM treatment, not only CpG methylation but also non-CpG
methylation increased significantly (Fuso et al., 2011). It is not
clearly, at present, whether an increase in non-CpG methylation
would affect the expression and function of PSEN1 (Grandjean
et al., 2007; Luchsinger et al., 2007). Significance and functions
of non-CpG methylation in mammals is still a new and not well-
known research field (Grandjean et al., 2007). In addition, during
the early stage of AD, the formation of Aβ and tau tangles can
demethylate beta-site amyloid precursor protein cleaving enzyme
1 (bace-1) DNA in the brain, while administration of SAM can
eliminate this hypomethylation and restore cognitive function
(Do Carmo et al., 2016). Other studies have shown that DNA
methylation often interacts with multicomb-inhibitory complex
2 (PRC2), resulting in reduced silencing of neurodegenerative
genes involved in PRC2 and thus affecting neural development
(Zhang et al., 2021).

Mild cognitive impairment (MCI) is a heterogeneous disease,
and the prevalence varies greatly according to the environment,
follow-up years, medical clinic and other factors (Mitchell and
Shiri-Feshki, 2008; Arevalo-Rodriguez et al., 2021). Patients do
not show clinically significant memory impairment and may
be classified as amnestic or non-amnestic (Petersen, 2004).
However, with the passage of time, some patients with MCI
may gradually develop progressive cognitive decline and changes
in personality and behavior, eventually evolving into dementia,
particularly AD (Mitchell and Shiri-Feshki, 2008; Brayne et al.,
2011). At the present time, no “cure” for AD is known, but
early treatments can slow the cognitive and functional decline
and reduce the associated behavioral and psychiatric symptoms
of AD (Clare et al., 2003; Birks, 2006). In addition, accurate
early identification of AD (MCI) may increase opportunities
for the use of newly developed interventions designed to
delay or prevent progression to more debilitating stages of
the disease. Studies have shown that in patients with MCI,
DNA methylation levels of CpG_ 19 of NUDT15 and CpG_11
of TXNRD1, which are redox-related genes, had significantly
negative correlations with folate and positive correlations with
Hcy, and the interactions of folate and Hcy with DNA
methylation could influence cognitive performance (An et al.,
2019). Peptidase M20-domain-containing protein 1 (PM20D1), a
biosynthetic enzyme for a class of N-lipidated amino acids in vivo,
is associated with the development of AD. Researchers have
shown that the initial promoter hypomethylation of PM20D1
during MCI and early-stage AD is reversed to eventual promoter
hypermethylation in late-stage AD, which helps to complete a
fuller picture of methylation dynamics (Wang et al., 2020).

In recent years, many biomarkers of aging based on DNA
methylation have been developed, such as the multitissue
DNA methylation-based (DNAM) age estimator, also known as
Horvath’s clock, phenotypes of age estimator, and single-tissue
age estimator (Hannum’s clock) (Horvath and Raj, 2018; Levine
et al., 2018; Lu et al., 2019). It has been reported that the
DNAM epigenetic clock in the AD cortex is associated with AD
neuropathological phenomena such as diffuse plaques, neuritic
plaques and amyloid accumulation and is related to the decline
in the overall cognitive and memory function of AD individuals
(Levine et al., 2015); the higher the cortical DNAM age is, the
lower the proportion of neuronal cells (Shireby et al., 2020).
Although it is not clear what functional aspects of aging can be
detected by these markers, examining the relationship between
these DNA methylation-based biomarkers of aging and age-
related performance indicators may be an approach to assessing
healthy aging, of which behavioral and cognitive functions are
important components (Lara et al., 2015; Beard et al., 2016).

At present, research on DNA methylation in AD has been
relatively mature, involving blood, cerebrospinal fluid and
different regions of the brain (Sanchez-Mut et al., 2013; Dabin
et al., 2020; Yang et al., 2021). For example, an increase in
DNA methylation at 208 CpG sites in the homeobox gene (Hox)
cluster is significantly associated with AD neuropathology in the
prefrontal cortex and superior temporal gyrus (Smith et al., 2018).
In the hippocampus, entorhinal cortex, dorsolateral prefrontal
cortex and cerebellum, 130 differentially expressed genes were
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screened, and their expression was related to DNA methylation
(Semick et al., 2019). Methylation of genes, including ABCA7,
BIN1, SORL1, and SLC24A4, was found to be significantly
associated with Aβ load and tau entanglement in the dorsolateral
prefrontal cortex (Yu et al., 2015). Although no treatment based
on DNA methylation has been developed, there is no doubt that
DNA methylation is a potential therapeutic target for AD.

HISTONE MODIFICATION

The nuclear duplexed DNA of eukaryotic cells wrapped
around histones and organized into chromatin (Margueron and
Reinberg, 2010) (Figure 1). Both histones and DNA can affect
chromosome structure through covalent modification and then
regulate gene expression. There is sufficient evidence about the
cytotoxicity of histones (Xu et al., 2009; De Meyer et al., 2012;
Guo and Cui, 2018; Cheng et al., 2019), and some studies have
shown that extracellular histones can mediate apoptosis, tissue
injury and death in mouse models by triggering the TLR2/TLR4
signaling pathway (Xu et al., 2011). In addition, it has been
reported that nuclear-like proteins similar to eukaryotic histones
can prevent promoters from binding to transcription factors and
inhibit gene expression at the genomic level (Dorman, 2004).
These results may suggest the side effects of histones on gene
expression to some extent.

Histone posttranslational modification (PTM), also known
as epigenetic markers, mainly includes methylation, acetylation,
phosphorylation, ubiquitination, glycosylation, and ADP
ribosylation, which can affect gene expression by changing
chromatin structure (Ramazi et al., 2020). Studies have
shown that histone markers are significantly correlated
with the pathological features of AD, such as abnormal tau
phosphorylation and Aβ protein plaques (Narayan et al., 2015).

Histone Methylation in Alzheimer’s
Disease
Histone methylation (the addition of methyl groups to
the N-terminal of lysine or arginine under the action
of histone methyltransferase) can change the structure of
chromatin (Figure 1), resulting in the requisite involvement
of chromatin in DNA-based processes including transcription,
replication and DNA repair (Kouzarides, 2007). Lysine can be
monomethylated, dimethylated and trimethylated, and arginine
can be monomethylated and dimethylated (Shi et al., 2006).
Lysine methylation at the fourth position of histone H3 (H3K4)
is one of the most studied histone methylations and is related
to gene expression activation. In addition, H3K4 methylation is
associated with synaptic transmission, shaft bursts, and nerve
development, all of which affect the development of AD (Cheung
et al., 2010). Histone H3K4 trimethylation (H3K4me3) may
promote the expression of memory-related genes and proteins
such as ZIF268 and brain-derived neurotrophic factor (BDNF)
(Gupta et al., 2010). Among them, ZIF268 plays an important
role in the maintenance of long-term potentiation (LTP) in the
hippocampus, and knocking out ZIF268 in the hippocampus
during object recognition memory (ORM) reintegration deletes

active recognition memory traces (Gonzalez et al., 2019). The
deletion of the H3K4 methyltransferase KMT2B can significantly
reduce the levels of H3K4me2 and H3K4me3, leading to the
differential expression of some genes, such as Egr1, c-Fos, and
GluR1, in the hippocampus. Among them, downregulation
of the learning-dependent synaptic plasticity genes Egr1,
CREB and GluR1 resulted in impaired memory function in
mice (Kerimoglu et al., 2013). Experiments have shown that
APP-mediated reduction of histone H4 acetylation can also
downregulate the transcription of Egr1, c-Fos, and BDNF
(Hendrickx et al., 2014), thereby affecting synaptic formation
and memory function. RAN, a key nuclear and cytoplasmic
transport molecule that is significantly decreased in neurons
of patients with AD, was only weakly expressed in the nucleus.
Some studies have confirmed that a defect of RAN may cause
H3K4me3 to accumulate abnormally in the cytoplasm due to
its inability to enter the nucleus and then it co-distributes with
early tau markers PG5 and MC1. However, it appears earlier
than these markers, suggesting that H3K4me3 cytoplasmic
accumulation is one of the earliest manifestations of AD cell
pathology (Mastroeni et al., 2013, 2015).

Injection of rn-1 into AD model mice to inhibit the
demethylation of histone K4 and K9 mediated by the LSD1
enzyme (Jarome and Lubin, 2013) can prevent the memory
recognition of new objects in mice (Neelamegam et al., 2012),
and LSD1 can combine with deacetylase (KDAC2) to form an
inhibitory complex, which seriously affects the normal gene
expression and cognitive function of AD mice (Gräff et al., 2012).
In addition, the level of SAM is significantly decreased in the AD
brain (Morrison et al., 1996), suggesting there may be a decrease
in histone methylation in the AD brain.

A number of experimental results have confirmed that
histone methylation interferes with AD mainly by affecting the
expression of genes and proteins related to learning and memory,
synaptic transmission and neuronal growth.

Histone Acetylation in Alzheimer’s
Disease
Histone acetylation is the addition of an acetyl group
to the N-terminal lysine residues of histones by histone
acetyltransferases (HATs), which leads to a more open chromatin
structure (Figure 1). Compared with methylation, histone
acetylation has a tendency to promote gene expression (Strahl
and Allis, 2000; Peixoto and Abel, 2013; Schneider et al., 2013).
In particular, histone acetylation in the central nervous system
plays a key role in regulating the expression of genes related to
learning and memory (Kosik et al., 2012).

Histone acetylation is catalyzed by five histone lysine
acetyltransferase families [KAT2A/GCN5, KAT2B/P300/CBP-
associated factor (PCAF), KAT6–8, and CREBBP/cAMP reaction
element binding protein (CBP), EP300] (Huynh and Casaccia,
2013). Among them, CBP and P300 play a neuroprotective role
in the development of AD, and their abnormal expression leads
to neuronal apoptosis and neurodegenerative disease through
activation of caspase-6 (Rouaux et al., 2003, 2004; Valor et al.,
2013). P300 inhibitors can inhibit the expression of PSEN1 and
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bace1 by reducing H3 acetylation in the promoter region (Lu
et al., 2014; Kizuka et al., 2015). Some studies have shown
that the acetylation of H2B and H4 in the hippocampus of
rats can enhance the expression of memory-related genes,
thereby enhancing their spatial memory ability (Li Y. et al.,
2021). Moreover, the acetyltransferase Tip60 induces gene
transcription by forming a polymer in the cytoplasm with a
ligand of APP and an intracellular subdomain of APP, which
increases the acetylation of Tip60-dependent histone H3K14
and H4K5 (Smith et al., 2021). This acetylation leads to a
decrease in the expression of cytoskeleton-associated proteins
and damages the stability of microtubules, thus affecting the
NFTs of AD (Barbato et al., 2005; Müller et al., 2013; Sun
et al., 2015). Experiments have shown that increasing the
Tip60 level in Drosophila melanogaster can effectively prevent
cognitive deterioration and amyloid accumulation (Xu et al.,
2014), suggesting that Tip is neuroprotective. In contrast, it
was found that the levels of histone deacetylases (HDACs),
such as HDAC1, HDAC3, HDAC4, and HDAC6, in patients
with MCI and AD were significantly higher than those in the
control group (Mahady et al., 2018). The removal of histone
acetyl from nucleosomes by neuron-specific overexpression of
HDAC2 can promote chromatin densification and reduce the
transcription of corresponding genes, thus reducing synaptic
sensitivity, synaptic number, synaptic plasticity and memory
function (Guan et al., 2009; Lillico et al., 2016). For example,
in wild-type mice and rats, synaptic plasticity and memory
formation are promoted after treatment with HDAC inhibitors
(Fischer et al., 2007; Vecsey et al., 2007). It was found that
the acetylation level of histone H4 is significantly decreased
in the frontal cortex and hippocampus of AD transgenic
mice and primary neurons cultured from AD transgenic
mice, while the HDAC inhibitor 4-PBA can increase the
gene transcription of many genes and reverse the spatial
learning and memory impairment of AD mouse models
(Ricobaraza et al., 2009).

The above studies have shown that HAT and HDAC
inhibitors can increase the level of histone acetylation, enhance
the expression of memory-related genes, prevent cognitive
degeneration and Aβ protein deposition, affect abnormal tau
phosphorylation, and reduce NFT formation, thus delaying the
progression of AD, while deacetylase has the opposite effect.

Histone Phosphorylation in Alzheimer’s
Disease
Phosphorylation refers to the process of adding phosphate groups
to intermediate metabolites or proteins under the action of
phosphotransferase (Figure 1). Protein phosphorylation usually
occurs on serine or threonine residues (Smith, 1998).

H2AX is a member of the H2A histone family and a
component of the nucleosome structure. It has been found
that when DNA damage occurs in astrocytes, the serine at
position 139 (S139) of H2AX is rapidly phosphorylated to
produce γH2AX, while the level of γH2AX in astrocytes in AD
susceptible regions (hippocampus and cerebral cortex) increases
significantly, suggesting that there is a close relationship between
H2AX phosphorylation in astrocytes and AD (Myung et al.,

2008). In addition, in neuroblastoma with overexpression of
APP, it was found that the S47 phosphorylation level of H4
was 1.89 times higher than that of the control group, and
significant phosphorylation of H4 was also found in the brains
of patients with mild cognitive impairment, suggesting that
this histone phosphorylation may play a role in promoting
the pathological development of AD (Chaput et al., 2016). H3
is mainly distributed in the hippocampal CA-1 region and
hypothalamus. Studies have shown that phosphorylated H3 is
increased in hippocampal neurons in patients with AD, and the
activated phosphorylated H3 is mainly confined to the cytoplasm
of neurons, which can lead to neuronal mitotic disorders,
neurodegeneration and apraxia (Ogawa et al., 2003).

Histone Ubiquitination in Alzheimer’s
Disease
Ubiquitin is a small protein that is highly conserved in
eukaryotes, and ubiquitination means adding one or more
ubiquitin molecules to the substrate protein for reversible PTM.
These modifications cause proteins to undergo proteasome-
dependent degradation or change their location or activity
in various cellular processes (Martín-Villanueva et al., 2021).
Ubiquitination plays a decisive role in clearing toxic metabolites
accumulated in the brain through the ubiquitin proteasome
system (Kumar et al., 2020). It has been confirmed that
E3 ubiquitin ligase is related to the production of Aβ

(Benvegnù et al., 2017) and that ubiquitin factor E4B can
regulate the ubiquitination of APP, which in turn affects AD
(Monica et al., 2020).

Some studies have shown that the ubiquitination of H2B
K120 in the brains of patients with AD is 91% higher
than that of the control group (Anderson and Turko, 2015)
(Figure 1). Bmi1 is one of the components of PRC1, and the
Bmi1/Ring1 protein complex can activate E3-momo-ubiquitin
ligase on H2A K119 and ubiquitin H2A K119 to maintain
transcriptional inhibition of developmental genes (Buchwald
et al., 2006; Li et al., 2006) (Figure 1). In the AD brain, Bmi1
is silenced, and H2A ubiquitination is significantly decreased,
resulting in Aβ protein deposition, p-tau accumulation and
neurodegeneration (Anthony et al., 2018). In addition, learning-
induced monoubiquitination of histone H2B (H2Bubi) is
required for increases in the transcriptionally active H3K4me3
mark at learning-related genes in the hippocampus, and the loss
of H2Bubi prevents learning-induced increases in H3K4me3,
gene transcription, synaptic plasticity, and memory formation
(Jarome et al., 2021).

The study of histone ubiquitination in the brain and learning
is still in the exploratory stage, but the limited results suggest that
there are relationships between histone ubiquitination and AD.

NON-CODING RNA IN ALZHEIMER’S
DISEASE

Non-coding RNAs (ncRNAs) are a vast and diverse family of
non-protein-coding transcripts that modulate cell function by
controlling gene expression programs through many different
mechanisms, including microRNAs (miRNAs), long non-coding
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RNAs (lncRNAs), and circular RNAs (circRNAs) (Morris and
Mattick, 2014). Among these, lncRNAs are defined as RNAs
that have a transcript length exceeding 200 nucleotides and will
not be translated into proteins (Dahariya et al., 2019), and a
large repertoire of these have been certified to regulate cellular
processes, such as chromosome and genome modification,
transcription activation, and interference, and nuclear transport,
thus driving more researchers to explore how lncRNAs influence
human biology (Chen et al., 2021). The mechanisms by which
lncRNAs regulate gene expression are rather complicated, studies
have found that they can bind to DNA directly or transcription
factors, target mRNAs, miRNAs, or proteins and modulate their
activities and stability, and can also interfere with chromatin
complexes to repress or activate gene expression in an epigenetic
fashion (Marchese et al., 2017; Salviano-Silva et al., 2018;
Fernandes et al., 2019).

More recently, a growing body of evidence has begun to
emphasize lncRNAs modulation in other diverse physiological
and pathological processes. Among these, neurological is an area
of particular interest, especially in AD. Several lncRNAs, such
as BACE1-AS, 51A, BC200, and NDM29, have been found to
be aberrantly expressed in AD compared with healthy controls
and were involved in AD pathogenesis by the low-throughput
experiments (Faghihi et al., 2008; Lin et al., 2008; Massone et al.,
2012; Ciarlo et al., 2013). In addition, it has been reported
that there is a region-specific and age-dependent expression
of lncRNAs in AD and control groups, such as a significant
increase in brain precentral gyrus and superior frontal gyrus,
and becomes more significant with age (Zhou et al., 2019).
These findings demonstrated that the regulation of lncRNAs
networks exerts unneglectable influence on the pathology of
AD and that lncRNAs may shed new light on the unclear
etiology of AD and the current unsatisfactory drug therapy.
microRNAs, as the most studied lncRNAS in AD, are also the
focus of our attention.

microRNAs (miRNAs) are posttranscriptional gene silencing
factors that are a class of 22 nt long non-coding regulatory
RNA molecules. By binding to the 3′ untranslated region
(UTR) of specific gene mRNAs, miRNAs can induce mRNA
degradation or inhibit translation, leading to gene silencing.
miRNAs have been predicted to regulate up to 90% of human
genes (Miranda et al., 2006) and may control every cellular
process in all cells and tissues of the human body. Among all
known miRNAs, approximately 70% are expressed in the brain
(Provost, 2010).

Studies have shown that differentially expressed miRNAs and
differentially expressed target genes are found in the parietal and
frontal lobes of the brain, where AD is most likely to occur.
Then, through further functional analysis and data mining, it was
found that the downregulation of miR-26b-5p, miR-26a-5p, miR-
107, and miR-103a-3p in the parietal lobe and the upregulation
of HA-miR-7, HA-miR-128, HA-miR-29c, HA-miR-136 in the
frontal lobe are closely related to AD (Li J. et al., 2021) (Table 1).
It has been reported that miRNA-7, miRNA-9-1, miRNA-
23a/miRNA-34a, miRNA-125b-1, miRNA-146a, and miRNA-155
are significantly increased in the AD-affected superior temporal
lobe neocortex (Pogue and Lukiw, 2018) (Table 1).

TABLE 1 | Localization and changes of partial miRNA expression in patients with
AD and related models.

miRNAs Locations Changes
in AD

References

miR-26b-5p Parietal lobe ↓ Li J. et al., 2021

miR-26a-5p

miR-107

miR-103a-3p

miRNA-188-5p Hippocampus ↓ Lee et al., 2016

miRNA-485 Hippocampus ↑

miRNA-4723 Zolochevska and
Taglialatela, 2020

miRNA-149

HA-miR-7 Parietal lobe ↑ Li J. et al., 2021

HA-miR-128

HA-miR-29c

HA-miR-136

miRNA-7 Superior temporal
lobe neocortex

↑

miRNA-9-1

miRNA-23a/miRNA-34a

miRNA-125b-1 Pogue and Lukiw, 2018

miRNA-146a

miRNA-155

miRNA-146b-5p Blood ↓ Wu et al., 2020

miRNA-15b-5p

miRNA-483-5p Plasma ↑ Sabry et al., 2020

The miRNA-485, miRNA-4723, miRNA-149, and miRNA-200
families have also been found to be differentially expressed in
AD and control groups, and their dynamic balance is important
for the interaction between Aβ and synaptic terminals and
may drive synaptic resistance to Aβ toxicity, thus contributing
to the maintenance of cognitive ability (Higaki et al., 2018;
Zolochevska and Taglialatela, 2020) (Table 1). Moreover,
downregulation of miRNA-188-5p leads to synaptic and
cognitive dysfunction, which is eliminated by its overexpression
(Lee et al., 2016). HSA-miR-219 has been found to promote
neurodegeneration through posttranscriptional regulation of
the tau protein. Increased expression of miR-15a can inhibit
extracellular signal-regulated kinase (ERK) 1/2 and tau protein
phosphorylation, thereby improving cognitive dysfunction in
mice, alleviating pathological damage in the hippocampus
of AD mice, and inhibiting hippocampal neuronal apoptosis
(Li X. et al., 2020; Yang et al., 2020) (Shown in Figure 1
and Table 1).

In addition, some types of miRNAs have been shown to
be associated with AD susceptibility and are potential blood
biomarkers of AD (Yılmaz et al., 2016). For example, the
expression levels of miRNA-146b-5p and miRNA-15b-5p, which
are related to innate immunity and apoptosis, are downregulated
in the blood of AD patients and are significantly positively
correlated with brain amyloid, while they are not brain- or
AD-specific miRNAs (Wu et al., 2020). The content of miRNA-
483-5p is positively correlated with age and the Dementia
Rating (DR) scale, and plasma miRNA-483-5p, as a non-invasive
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biomarker for the early diagnosis of mild cognitive impairment,
is significantly increased in patients with AD (Sabry et al., 2020)
(Figure 1 and Table 1).

In addition, microglia, the resident immune effector cells of
the central nervous system, are indispensable regulators that
initiate the inflammatory response, Aβ aggregation, neuronal loss
and memory impairment in AD (Hanisch and Kettenmann, 2007;
Clayton et al., 2017). Moreover, the formation of inflammatory
bodies and the activation of the protease caspase-1 can cause
the release of IL-1β and IL-18 (Man et al., 2017). The increase
in these inflammatory mediators is significantly related to the
severity of AD (Forlenza et al., 2009; King et al., 2018). Many
studies have shown that innate immune signals and activation
of inflammatory bodies are a defense mechanism in patients
with AD, but overactivation can lead to neuroinflammation and
brain damage. Balancing the host’s innate immune response has
always been considered a potential means for the treatment of AD
(Heneka et al., 2014; Venegas et al., 2017).

CONCLUSION AND PROSPECTS

The pathogenesis of AD is complex and still unknown, and
the prevention and treatment of AD is a global problem. As
mentioned above, a growing body of evidence suggests that
epigenetic factors are involved in the course of AD and that
various epigenetic changes closely influence the development
of AD. However, additional studies are necessary to determine
whether these epigenetic changes are the cause of AD or the
result of AD development and the exact role they play in the
pathogenesis of AD.

In this review, we summarized the results of many
experimental studies and found that in AD. As Figure 1 shown:
DNA methylation regulates the expression of AD-related genes
under the action of related enzymes, accelerates the pathological
process and aggravates the development of AD; (2) decreased
histone methylation leads to synaptic transmission, neuronal
growth and memory dysfunction; and (3) changes in related
enzymes leads to a decrease in the level of histone acetylation,
which leads to the inactivation of memory-related genes
and abnormal phosphorylation of tau, resulting in cognitive
degeneration. HATs and HDACs inhibitors can reverse these
changes and prevent AD; (4) the increased phosphorylation of
histones can be related to the pathological phenomenon of AD,
resulting in memory impairment; (5) ubiquitination changes can
cause Aβ deposition and lead to neurodegeneration; and (6) some
miRNAs can lead to synaptic and cognitive dysfunction, and
others can inhibit neuronal apoptosis and pathological damage
and improve the intelligence of AD mice. Moreover, due to the
differential expression of miRNAs in AD, a number of miRNAs
have been proposed as blood markers for the early diagnosis

of AD. Epigenetic mechanisms may regulate the expression of
related genes in the early stage of the disease, and thus, changing
the factors related to the development of the disease in patients
with AD could be used for the prevention and treatment of AD.

These changes suggest potential therapeutic research
directions for AD. Shown by Figure 1, DNA methylation
modulators (such as SAM) can reduce the hypomethylation
of the AD-related gene bace-1 and inhibit the pathological
aggregation of Aβ, improving cognitive function (Klose and
Bird, 2006). HDAC inhibitors have been shown to reduce the
amount of phosphorylated tau related to learning and memory in
the brain and downregulate the aggregation of tau associated
with neuronal apoptosis to improve cognitive dysfunction
in mice (Fan et al., 2018). Recent studies have found that a
synthetic bs-5-YHEDA peptide (Zou et al., 2019) decreased the
methylation of H3 histone levels in the brains of senile mice
but enhanced acetylation. Furthermore, by phosphorylating the
transcription factor p-ETS1, the bs-5-YHEDA peptide reversed
the transcription of SLC40A1 and upregulated ferriportin in
the brains of senile mice, thus enhancing the excretion of iron
accumulated in the aging brain and consequently protecting
neurons and alleviating symptoms such as AD (Figure 1). That
is, intervening in epigenetics may block the progression of AD or
improve the condition of the patients. Epigenetic interference is
a potential therapeutic for AD, and developing relevant drugs is
promising for the treatment of AD. In addition, the results have
shown that most of the epigenetic phenomena in AD are related
to the pathology of AD, and some epigenetic changes may appear
before the pathological changes, suggesting that these epigenetic
changes may provide a diagnostic tool for AD and that targeting
these changes could be a way to prevent and treat AD.
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