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Objective: With the aging of populations and the high prevalence of stroke,
postoperative stroke has become a growing concern. This study aimed to establish
a prediction model and assess the risk factors for stroke in elderly patients during the
postoperative period.

Methods: ML (Machine learning) prediction models were applied to elderly patients from
the MIMIC (Medical Information Mart for Intensive Care)-III and MIMIC-VI databases. The
SMOTENC (synthetic minority oversampling technique for nominal and continuous data)
balancing technique and iterative SVD (Singular Value Decomposition) data imputation
method were used to address the problem of category imbalance and missing values,
respectively. We analyzed the possible predictive factors of stroke in elderly patients
using seven modeling approaches to train the model. The diagnostic value of the model
derived from machine learning was evaluated by the ROC curve (receiver operating
characteristic curve).

Results: We analyzed 7,128 and 661 patients from MIMIC-VI and MIMIC-III,
respectively. The XGB (extreme gradient boosting) model got the highest AUC (area
under the curve) of 0.78 (0.75–0.81), making it better than the other six models,
Besides, we found that XGB model with databalancing was better than that without
data balancing. Based on this prediction model, we found hypertension, cancer,
congestive heart failure, chronic pulmonary disease and peripheral vascular disease
were the top five predictors. Furthermore, we demonstrated that hypertension predicted
postoperative stroke is much more valuable.

Conclusion: Stroke in elderly patients during the postoperative period can be reliably
predicted. We proved XGB model is a reliable predictive model, and the history of
hypertension should be weighted more heavily than the results of laboratory tests to
prevent postoperative stroke in elderly patients regardless of gender.
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INTRODUCTION

Stroke, also called cerebrovascular accident, includes the
neurological pathology of the brain arteries that can result
from ischemia or hemorrhage (Boursin et al., 2018). Stoke
ranks as the second-leading cause of mortality and disability
worldwide behind ischemic heart disease and thereby become
a major health-related challenge (Merino, 2014; Sirsat et al.,
2020). Stroke also gives approximately 16,000,000 individuals
worldwide various motor and cognitive impairments, which are
often unavoidable sequelae in stroke patients. These sequelae
greatly aggravate the social and family burden (Di Carlo, 2009).
People with advanced age, surgery patients and ICU patients
are at high risk of stroke (Mantz et al., 2010; Biteker et al.,
2014; Dong et al., 2017). Consequently, it’s urgent to establish
an advanced model that can help to predict and diagnose stroke.
The early correct detection of stroke will lay a solid foundation
to efficiently prevent and treat stroke and will greatly improve
the prognosis of surgery. A prediction model is a practicable way
to achieve the above goals and several attempts have been made
(Maravic-Stojkovic et al., 2014; Khattar et al., 2016; Dunham
et al., 2017; Sporns et al., 2017; Zhou et al., 2020). However, there
is still a demand for models that can predict stroke in elderly
patients after surgery.

Machine Learning (ML), as a mature and scientific modeling
method, is attracting more attention than traditional modeling
approaches such as the Cox proportional hazard model. ML
is a pivotal part of artificial intelligence (AI), it can achieve
self-optimization by learning complex structure with numerous
variables and data (Bi et al., 2019). So far, ML has wide
application in several fields, including search engines, sales and
marketing, and autonomous driving (Deo, 2015; Jiang et al.,
2017; Handelman et al., 2018; Connor, 2019), as well as medical
diagnostics and clinical research (Heo et al., 2019; Saber et al.,
2019; Sirsat et al., 2020). During the past few decades, several

studies were conducted on the improvement of stroke diagnosis
using ML, most of them obtained satisfying results, which
would be of great value in early prognosis of stroke (Asadi
et al., 2016; Cox et al., 2016; Bacchi et al., 2020; Wu and
Fang, 2020). For example, the electromyography (EMG) based
muscular activity monitoring system, electroencephalography
(EEG) based neuronal firing activity monitoring system and
electrocardiogram (ECG) based monitoring system have been
applied into the early identification and prognosis of stroke,
which are also beneficial to post-stroke rehabilitation (Robinson
et al., 2003; Hussain and Park, 2020, 2021a,b).

We obtained our data from two public clinical databases,
which contains rich and complete clinical data. In the practice of
machine learning modeling, we utilized not only subjects from
MIMIC-VI for internal validation but also samples from the
MIMIC-III database for further external testing. The goal of the
present study is to introduce a prediction model for postoperative
stroke in elderly patients. We applied seven machine learning
method in this research combined with iterative SVD data
imputation and SMOTENC method, which would deliver an
accurate and quick prediction outcome. Based on our results, the
perioperative patients with high risk of stroke could be found and
treated as early as possible, which would shed new light on the
prevention of stroke.

MATERIALS AND METHODS

Database and Study Design
We obtained our data from two publicly available retrospective
multigranular clinical databases, MIMIC-III and MIMIC-VI,
which are high-quality database of admitted patients from 2000
to 2014 and from 2014 to 2018, respectively. They have large
samples with comprehensive clinical information. The 80%
percent of the samples from MIMIC-VI, chosen randomly, were

FIGURE 1 | Flow diagram of the selection process of patients in MIMIC III (A) and MIMIC VI (B).

Frontiers in Aging Neuroscience | www.frontiersin.org 2 July 2022 | Volume 14 | Article 897611

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-897611 July 18, 2022 Time: 14:10 # 3

Zhang et al. Stroke Prediction Model

regarded as the development set, and the remaining 20% were
regarded as the validation set. Besides, the samples from MIMIC-
III were applied as an independent testing set to further evaluate
the applicability of the established models and predictors.

Subjects and Outcomes
In this study, subjects who were admitted to the SICU (surgery
intensive care unit) with age > 55 years were selected. All these
patients should include vital signs, complications and laboratory
results. As shown in Figure 1, subjects younger than 55 years
were excluded. Missing values of enrolled individuals in MIMIC-
VI were filled with the iterative SVD data imputation method.
Only patients with complete data in MIMIC-III were kept. We
finally screened 661 patients from MIMIC-III and 7,128 patients
from MIMIC-VI into the study. Incidence of stroke was used
as the outcome measure. Then we separated patients into the
stroke group and non-stroke group based on their diagnosis
in the hospital.

We select predictors according to what features chosen in
the previous research (Heo et al., 2019; Sirsat et al., 2020; Wu
and Fang, 2020), as well as our clinical experience. Predictors
with missing data more than 30% in MIMIC-III and MIMIC-
VI, such as bicarbonate, were excluded. The predictors included

(a) demographic information: age, sex, ethnicity and BMI index;
(b) comorbidities: peripheral vascular disease, hypertension,
chronic pulmonary disease, diabetes, renal disease, liver disease,
peptic ulcer disease, sepsis, congestive heart failure, cancer, and
rheumatic disease; (c) the first-day laboratory results in the ICU:
the mean level of glucose; the lowest and mean levels of Spo2,
the lowest and highest levels of anion gap, albumin, bilirubin
total, creatinine, hematocrit, hemoglobin, WBC (white blood
cells), lactate, platelets, potassium, PTT (partial thromboplastin
time), PT (prothrombin time), INR (international normalized
ratio), and BUN (blood urea nitrogen); and (e) the first-day vital
signs in the ICU: the highest and mean levels of heart rate, SBP
(systolic blood pressure), DBP (diastolic blood pressure), and
MBP (mean blood pressure) (Dunham et al., 2017; Wu and Fang,
2020; Bolourani et al., 2021).

We extracted the target subjects with all of the above
information and outcome measures via navicat premium12
software. Data cleaning was completed by Stata software
after the data extraction. Firstly, individuals who met the
exclusion criteria were excluded. Secondly, the extreme values
and outliers were deleted. For data in MIMIC- VI, we
excluded subjects with missing values accounting for more
than 5% of the predictive features. Imputation method

FIGURE 2 | Schematic illustration to the performance of the stroke prediction model. The SMOTENC balancing technique was applied to training dataset before
establishing the model due to the imbalanced ratio of non-stroke to stroke patients in this work. After the normalization of data was completed, we applied seven
machine learning methods to train and test models with the training dataset, test dataset and the independent test dataset. Finally, we can get model-based
importance of features.
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TABLE 1 | Characteristics of stroke and non-stroke patients in the training and validation sets of the MIMIC-IV database.

Variables Total (n = 7,128) Non-stroke (n = 6,397) Stroke (n = 731) P

Demographic characteristics

Age, mean ± SD 72.3 ± 10.4 72.1 ± 10.4 74.0 ± 10.5 <0.001

Gender, female n (%) 3,426 (48.1) 3,082 (48.2) 344 (47.1) 0.584

Race, n (%) 0.039

Asian, n (%) 222 (3.1) 193 (3) 29 (4) 0.198

Black, n (%) 592 (8.3) 538 (8.4) 54 (7.4) 0.38

White, n (%) 5,083 (71.3) 4,584 (71.7) 499 (68.3) 0.06

Other, n (%) 1,231 (17.3) 1,082 (16.9) 149 (20.4) 0.022

BMI, mean ± SD 1300.8 ± 85503.1 1404.9 ± 90219.6 389.4 ± 7628.6 0.761

Comorbidities

CHF, n (%) 1,483 (20.8) 1,399 (21.9) 84 (11.5) <0.001

PVD, n (%) 927 (13.0) 858 (13.4) 69 (9.4) 0.003

Hypertension, n (%) 2,794 (39.2) 2,278 (35.6) 516 (70.6) <0.001

CPD, n (%) 1,712 (24.0) 1,595 (24.9) 117 (16) <0.001

Diabetes, n (%) 2,070 (29.0) 1,879 (29.4) 191 (26.1) 0.074

Renal_disease, n (%) 1,349 (18.9) 1,267 (19.8) 82 (11.2) <0.001

Liver_disease, n (%) 844 (11.8) 817 (12.8) 27 (3.7) <0.001

PUD, n (%) 204 (2.9) 201 (3.1) 3 (0.4) <0.001

Cancer, n (%) 1,405 (19.7) 1,322 (20.7) 83 (11.4) <0.001

Rheumatic_disease, n (%) 259 (3.6) 245 (3.8) 14 (1.9) 0.012

Sepsis, n (%) 3,033 (42.6) 2,773 (43.3) 260 (35.6) <0.001

Laboratory results

Spo2_min, mean ± SD 91.8 ± 7.1 91.8 ± 6.7 92.1 ± 9.6 0.383

Spo2_mean, mean ± SD 96.8 ± 2.6 96.8 ± 2.5 97.0 ± 3.2 0.14

Aniongap_min, mean ± SD 13.5 ± 3.3 13.4 ± 3.4 13.8 ± 2.6 0.004

Aniongap_max, mean ± SD 16.2 ± 4.3 16.3 ± 4.4 16.0 ± 3.1 0.182

Albumin_min, mean ± SD 3.3 ± 0.5 3.3 ± 0.5 3.6 ± 0.4 <0.001

Albumin_max, mean ± SD 3.4 ± 0.5 3.4 ± 0.5 3.7 ± 0.4 <0.001

Glucose_mean, mean ± SD 140.5 ± 49.0 140.6 ± 48.5 139.8 ± 53.5 0.679

Potassium_min, mean ± SD 3.8 ± 0.4 3.8 ± 0.4 3.7 ± 0.3 <0.001

Potassium_max, mean ± SD 4.1 ± 0.5 4.1 ± 0.5 3.9 ± 0.4 <0.001

Bilirubin_total_min, median (IQR) 0.8 (0.4, 1.6) 0.9 (0.4, 1.6) 0.8 (0.4, 1.2) <0.001

Bilirubin_total_max, median (IQR) 1.0 (0.4, 1.9) 1.0 (0.4, 2.0) 0.8 (0.4, 1.4) <0.001

Creatinine_min, median (IQR) 0.9 (0.7, 1.2) 0.9 (0.7, 1.2) 0.8 (0.7, 1.1) 0.002

Creatinine_max, median (IQR) 1.0 (0.8, 1.4) 1.0 (0.8, 1.5) 0.9 (0.8, 1.2) <0.001

Lactate_min, median (IQR) 1.5 (1.2, 1.9) 1.5 (1.2, 1.9) 1.4 (1.2, 1.7) <0.001

Lactate_max, median (IQR) 2.0 (1.4, 2.9) 2.1 (1.4, 2.9) 1.9 (1.4, 2.4) <0.001

Platelets_min, median (IQR) 193.0 (141.0, 253.0) 192.0 (139.0, 254.0) 196.0 (157.0, 246.5) 0.12

Platelets_max, median (IQR) 218.0 (165.0, 285.0) 218.0 (163.0, 287.0) 216.0 (171.0, 273.0) 0.816

Ptt_min, median (IQR) 28.3 (25.0, 32.6) 28.4 (25.2, 33.1) 26.8 (23.6, 30.0) <0.001

Ptt_max, median (IQR) 30.5 (26.5, 40.2) 30.8 (26.7, 42.0) 28.6 (24.9, 33.3) <0.001

Inr_min, median (IQR) 1.2 (1.1, 1.4) 1.2 (1.1, 1.4) 1.1 (1.0, 1.2) <0.001

Inr_max, median (IQR) 1.2 (1.1, 1.6) 1.2 (1.1, 1.7) 1.1 (1.1, 1.4) <0.001

Pt_min, median (IQR) 13.0 (11.7, 15.1) 13.1 (11.7, 15.3) 12.3 (11.4, 13.6) <0.001

Pt_max, median (IQR) 13.8 (12.1, 18.8) 13.9 (12.1, 19.3) 13.0 (11.8, 15.5) <0.001

Bun_min, median (IQR) 18.0 (12.0, 26.2) 18.0 (13.0, 27.0) 16.0 (12.0, 21.0) <0.001

Bun_max, median (IQR) 20.0 (15.0, 31.0) 21.0 (15.0, 32.0) 19.0 (15.0, 24.0) <0.001

Wbc_min, median (IQR) 9.3 (6.8, 12.6) 9.3 (6.8, 12.7) 9.2 (7.1, 11.9) 0.951

Wbc_max, median (IQR) 11.7 (8.6, 15.9) 11.8 (8.6, 16.1) 11.1 (8.7, 14.5) <0.001

Vital signs

TP_mean, mean ± SD 100.8 ± 20.3 101.3 ± 20.5 96.9 ± 18.4 <0.001

HR_max, mean ± SD 82.4 ± 15.0 82.8 ± 15.2 78.5 ± 12.8 <0.001

HR_mean, mean ± SD 153.9 ± 23.3 152.8 ± 23.3 164.2 ± 21.2 <0.001

(Continued)
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TABLE 1 | Continued

Variables Total (n = 7,128) Non-stroke (n = 6,397) Stroke (n = 731) P

Sbp_max, mean ± SD 123.5 ± 17.4 122.5 ± 17.4 132.3 ± 14.4 <0.001

Sbp_mean, mean ± SD 88.0 ± 20.2 87.7 ± 20.2 90.9 ± 19.4 <0.001

Dbp_max, mean ± SD 62.6 ± 10.7 62.3 ± 10.8 64.8 ± 10.1 <0.001

Dbp_mean, mean ± SD 106.6 ± 24.0 106.1 ± 24.1 110.6 ± 22.5 <0.001

Mbp_max, mean ± SD 79.5 ± 11.0 79.1 ± 11.1 83.0 ± 9.8 <0.001

Mbp_mean, mean ± SD 36.9 ± 0.6 36.8 ± 0.6 36.9 ± 0.6 <0.001

Continuous variables are presented as the median and interquartile range (IQR). Count data are presented as numbers and percentages. Severe respiratory failure, severe
coagulation failure, severe liver failure, severe cardiovascular failure, severe central nervous failure, and severe renal failure refer to the scores of the specific organ or
system that scored 4 in the SOFA scheme. The definition of the medical condition was based on the ICD-9 code. A mean, minimum, or maximum parameter refers
to the mean, the highest, or the lowest level of the parameter on the first day of ICU admission. CHF, congestive heart failure; PVD, peripheral vascular disease; CPD,
chronic pulmonary disease; PUD, chronic pulmonary disease; Spo2, finger pulse oxygen saturation; ptt, partial thromboplastin time; INR, international normalized ratio; pt,
prothrombin time; BUN, blood urea nitrogen; wbc, white blood cells; TP, temperature; HR, heart rate; sbp, systolic blood pressure; dbp, diastolic blood pressure; mbp,
mean blood pressure.

FIGURE 3 | Performance evaluation for seven machine learning algorithms with ROC curves. (A) ROC curves were drawn for the validation set based on MIMIC VI
performed by leaving 20% as a testing set and using the rest for the training set. (B) ROC curves were drawn for the independent testing set based on MIMIC III. The
mean ROC curve of XGB is shown in pink and its corresponding 95% confidence interval is shown in deep blue.

TABLE 2 | Performance of machine learning methods in different data sets.

Accuracy Sensitivity Specificity AUC

The validating set KNN 0 0.59 (0.47–0.65) 0.75 (0.65–0.9) 0.57 (0.43–0.64) 0.69 (0.66–0,73)

LR 0.68 (0.55–0.79) 0.71 (0.55–0.86) 0.67 (0.51–0.82) 0.75 (0.71–0.78)

RF 0.69 (0.56–0.79) 0.74 (0.6–0.88) 0.69 (0.53–0.81) 0.78 (0.74–0.81)

DT 0 0.79 (0.77–0.81) 0.34 (0.26–0.41) 0.84 (0.82–0.87) 0.59 (0.55–0.63)

SVM 0.69 (0.59–0.78) 0.75 (0.62–0.86) 0.68 (0.56–0.8) 0.76 (0.73–0.8)

MLP 0.64 (0.52–0.76) 0.75 (0.58–0.89) 0.63 (0.47–0.78) 0.74 (0.7–0.77)

XGB 0.68 (0.57–0.78) 0.77 (0.63–0.9) 0.67 (0.53–0.8) 0.78 (0.75–0.81)

The independenttesting set KNN 0.82 (0.72–0.87) 0.98 (0.97–0.99) 0.25 (0.16–0.31) 0.84 (0.81–0.88)

LR 0.81 (0.68–0.9) 0.95 (0.94–0.96) 0.13 (0.1–0.2) 0.67 (0.65–0.69)

RF 0.88 (0.79–0.93) 0.97 (0.96–0.98) 0.33 (0.2–0.49) 0.84 (0.8–0.87)

DT 0.87 (0.84–0.89) 0.94 (0.94–0.95) 0.15 (0.09–0.24) 0.57 (0.51–0.63)

SVM 0.87 (0.78–0.92) 0.96 (0.95–0.97) 0.26 (0.17–0.38) 0.77 (0.74–0.81)

MLP 0.84 (0.75–0.91) 0.97 (0.96–0.98) 0.24 (0.16–0.35) 0.8 (0.76–0.84)

XGB 0.87 (0.78–0.93) 0.97 (0.96–0.98) 0.3 (0.19–0.45) 0.83 (0.79–0.87)

was used to handle with the missing values. For data
in MIMIC- III, we merely keep variables with complete
values, which was treated as an independent validation set.

Therefore, the subsets were established for the final analyses.
The process of establishing models was well illustrated in
Figure 2.
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Statistical Analysis
We compared the characteristics above between the stroke group
and the non-stroke group, also between the development cohort
and validation cohort. Differences in normally distributed data
are described as mean ± SD (standard deviation) and were
compared by the Students’ t-test, while differences in non-normal
data are described as median and IQR (interquartile range) and
were compared by a non-parametric test. Differences in rate and
constituent ratio data are presented as numbers and percentages,
and they were compared with the chi-squared test or a non-
parametric test.

The missing values of the training set and the verification
set in the MIMIC-VI database were reasonably filled in with
the iterative SVD data imputation method (Troyanskaya et al.,
2001; Di Lena et al., 2019). The results of previous literature
suggested that machine learning methods with data balancing
methods had better performance in stroke prediction compared
with imbalanced data (Wu and Fang, 2020). And in this research,
a variant of SMOTE called SMOTE-NC is applied in this research
to solve the problem of category imbalance because of the
categorical features. All classifiers are trained with an equal
number of training samples per class through oversampling
(Pears et al., 2014; Bolourani et al., 2021).

In this article, several kinds of classifiers are used in machine
learning methods to classify strokes. We used a Python library
called Scikit-learn to build our classifier. This Python package
provides several classification algorithms and is a powerful and
useful open-source machine learning toolkit. The details of
performing the stroke prediction model are shown in Figure 2.
We employed 7 machine learning algorithms including KNN
(k-nearest neighbor), SVM (support vector machine), MLP
(multilayer perceptron), LR (logistic regression), DT (decision
tree), RF (random forest) and XGBoost (extreme gradient
boosting) to establish a stroke prediction model with the training
set. The hyperparameters which we used in 7 machine learning
algorithms came from default setting in scikit-learn package.
Eg: The hyperparameter of KNN is k and the default setting
in scikit-learn is “k = 3,” which was used in this study. The
performance of the models was weighed by the AUROC (area
under the receiver operating characteristic curves) (Zhou et al.,
2020). For the best-performing model, the importance of the
predictors was evaluated and computed with the information
gain. SAS 9.4, R software 3.6.1, and MATLAB 9.9 were used for
statistical analyses.

RESULTS

Patient Characteristics
With the data obtained from the common database, we finally
identified 7,128 and 661 patients from MIMIC-VI and MIMIC-
III, respectively. The screening process is shown in Figure 1.
Predictors with too much missing data, such as bicarbonate,
were excluded. In the current research, we ultimately included
51 predictors. The age, vital signs and partial laboratory results
are shown as mean and SD; other laboratory results are shown
as median and IQR. Sex, race, and comorbidities are shown

as number and percentage. Patients in the MIMIC-VI database
were divided into stroke group (n = 731) and non-stroke group
(n = 6,397). Their baseline characteristics are shown in Table 1.
The stroke group subjects were older (74.0 ± 10.5 vs. 72.1 ± 10.4)
and had a higher incidence of hypertension. Additionally, both
the stroke group and the non-stroke group were similar in BMI
and sex distribution. Patients in the MIMIC-VI database were
randomly separated into training and validation sets at a ratio
of 8:2, while the MIMIC-III database made up the independent
testing set. Patients with stroke in the training set, validation
set and independent testing set accounted for 10.3, 10.2, and
6.51%, respectively. The training cohort included 5,117 non-
stroke subjects and 585 stroke subjects. The validation cohort
had 1,280 non-stroke subjects and 146 stroke subjects. The
independent testing cohort had 618 non-stroke subjects and 43
stroke subjects. Patients in the training and validation cohorts
were similar in demographic characteristics, the incidence
of various comorbidities, laboratory results and vital signs,
as shown in Supplementary Table 1. For the independent
testing set, constituted by data from MIMIC-VI database, the
population included was quite different, and only patients with
complete values were included, which is a requirement of an
independent testing cohort. The characteristics of patients in
the independent testing set were shown in Supplementary
Table 2.

Prediction Models
The process of performing the stroke prediction model was
illustrated in Figure 2. Due to the imbalanced ratio of non-
stroke to stroke patients in this work, the SMOTENC balancing
technique was applied to training dataset before establishing the
model. After normalization of data was completed, we applied
KNN, SVM, MLP, LR, DT, RF, and XGBoost machine learning
algorithms to train with the training dataset, and to test models
with testing dataset and the independent testing dataset. The
ROC curves of all seven models applied to the testing dataset
and the independent testing dataset are given in Figure 3. The
mean AUC values of 7 models in the validation cohort were
0.69, 0.76, 0.74, 0.75, 0.59, 0.78, and 0.78, respectively. Take
the ROC curves into consideration, the XGB model performed
best, with higher accuracy, sensitivity, specificity, and AUC
values, they are 0.68 (0.57–0.78), 0.77 (0.63–0.9), 0.67 (0.53–0.8),
0.78 (0.75–0.81), respectively (Table 2). Due to the differences
between the populations included in the database, the proportion
of stroke patients and data characteristics of the independent
testing cohort were distinct from those of the training set
and validation set. Not surprisingly, we found the XGB model
performed best in the independent testing set (Table 2). The
accuracy, sensitivity, specificity, and AUC values of XGB model
are 0.87 (0.78–0.93), 0.97 (0.96–0.98), 0.3 (0.19–0.45), 0.83 (0.79–
0.87) respectively.

Finally, we can get model-based importance of features,
we present the importance of the predictors in the XGB
model in Figure 4. The top five predictors were hypertension,
cancer, congestive heart failure, chronic pulmonary disease and
peripheral vascular disease (with importance values of 0.275,
0.104, 0.080, 0.063, and 0.054, respectively). The confusion matrix
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FIGURE 4 | Significance of the predictors in the XGB model. The 20 variables with the highest relative importance are measured by the amount the variable reduced
the information gain. CHF, congestive heart failure; CPD, chronic pulmonary disease; PVD, peripheral vascular disease; inr, international normalized ratio; spo2,
Finger pulse oxygen saturation; sbp, systolic blood pressure; PUD, chronic pulmonary disease; bun, blood urea nitrogen.

of the XGB model is presented in Table 3, which represents
the predicted values vs. actual values for the validating and
independent testing cohorts.

DISCUSSION

In this study, we aimed to establish suitable model to recognize
the possible stroke in elderly patients undergoing surgery and
characterize the critical predictors of post-operative stroke.
Nowadays, machine learning has been widely used in establishing
disease prediction model.

With the help of ML methods, we found that the incidence
of stroke in elderly patients undergoing surgery was associated
with various clinical features. The XGB model performed best
among the KNN, SVM, MLP, LR, DT, RF, and XGB models
in our study. We identified hypertension, cancer, congestive
heart failure, chronic pulmonary disease and peripheral vascular
disease as predictors that were most associated with stroke.

Similar to our study, a study conducted using data from the
Chinese Longitudinal Healthy Longevity Study built a stroke

TABLE 3 | Confusion matrix of the XGBoost model.

Predicted:
non-stroke

Predicted:
stroke

The validating set Actual: non-stroke 988 292

Actual: stroke 52 94

The independent testing set Actual: non-stroke 572 46

Actual: stroke 19 24

prediction model in elderly patients aged more than 60 years
(Wu and Fang, 2020). It used SMOTH to deal with imbalanced
data and selected important predictors as inputs in three machine
learning methods. However, due to the different sources of
patients and models, they found that sex, LDLC (low-density
lipoprotein cholesterol), GLU (blood glucose), hypertension, and
UA (uric acid) were the top five predictors in their RF model.

Compared with other studies, ours have certain strengths.
This is the first study to establish stroke prediction models
focused on elderly patients undergoing surgery by using an
advanced machine learning method. We used several different
methods to impute data (KNN, SoftImpute, IterativeImputer,
IterativeSVD) and deal with imbalanced data (SMOTENC,
ADASYN, BorderlineSMOTE, KMeansSMOTE, SVMSMOTE).
Finally, we chose IterativeSVD and SMOTENC according to
the AUC values. We utilized not only subjects from MIMIC-
III for internal validation but also samples from the MIMIC-
VI database for further external testing of the seven machine
learning models.

Our study also has some limitations. First, relying on the
results, we can only prevent stoke as much as possible, but cannot
identify the stroke. The physiological signals like EMG, EEG,
and ECG based monitoring system may have a chance to early
identify stroke, which is also helpful to post-stroke treatment
(Robinson et al., 2003; Hussain and Park, 2020, 2021a,b). Second,
there were a certain number of missing values. We abandoned
some potential confounding variables for having too many
missing data, which is unavoidable in retrospective studies. Third,
there were many variables involved, and the excessive variables
increased the difficulty of model construction and the accuracy of
the established models. Therefore further study about the effect
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of the strongest stroke predictors that we screened out should be
carried out in the future.

CONCLUSION

Our results showed that hypertension, cancer, congestive heart
failure, chronic pulmonary disease and peripheral vascular
disease might be closely associated with stroke in SICU elderly
patients. The XGBoost model performs better than the KNN,
SVM, MLP, LR, DT, and RF models in our study. In order
to prevent stroke of elderly patients in SICU, we need to pay
attention to their comorbidities more than other laboratory
features, especially maintaining stable blood pressure. However,
further additional verifications are necessary to examine the
generalization of our models and predictors.
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