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Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disease.

To distinguish the stage of the disease, AD classification technology challenge has been

proposed in Pattern Recognition and Computer Vision 2021 (PRCV 2021) which provides

the gray volume and average cortical thickness data extracted in multiple atlases from

magnetic resonance imaging (MRI). Traditional methods either train with convolutional

neural network (CNN) by MRI data to adapt the spatial features of images or train with

recurrent neural network (RNN) by temporal features to predict the next stage. However,

the morphological features from the challenge have been extracted into discrete values.

We present a multi-atlases multi-layer perceptron (MAMLP) approach to deal with the

relationship between morphological features and the stage of the disease. The model

consists of multiple multi-layer perceptron (MLP) modules, and morphological features

extracted from different atlases will be classified by different MLP modules. The final vote

of all classification results obtains the predicted disease stage. Firstly, to preserve the

diversity of brain features, the most representative atlases are chosen from groups of

similar atlases, and one atlas is selected in each group. Secondly, each atlas is fed into

one MLP to fetch the score of the classification. Thirdly, to obtain more stable results,

scores from different atlases are combined to vote the result of the classification. Based

on this approach, we rank 10th among 373 teams in the challenge. The results of

the experiment indicate as follows: (1) Group selection of atlas reduces the number of

features required without reducing the accuracy of the model; (2) The MLP architecture

achieves better performance than CNN and RNN networks in morphological features;

and (3) Compared with other networks, the combination of multiple MLP networks has

faster convergence of about 40% and makes the classification more stable.
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INTRODUCTION

Alzheimer’s disease (AD) is a common neural degenerative
disease, from which 60 to 70% of senile patients with dementia
suffer (Jagust, 2013). A feature of AD is the damage induced
by the irreversible and progressive cognitive function of human
brains. It is continuously progressing when a normal-control
(NC) gradually becomes a patient with AD. Mild cognitive
impairment (MCI) is the early disease-developing stage (Reiman
et al., 2010). Therefore, being able to correctly represent the
disease-developing stage a patient is in helps in diagnosing and
slowing the process of the disease. Over time, the condition
of AD is often accompanied by brain atrophy. Recently, in
Pattern Recognition and Computer Vision 2021 (PRCV 2021),
the AD classification technology challenge1 provided a dataset
frommultiple atlas partitions and extracted volume features. This
dataset is used for three classification tasks of NC/MCI/AD. The
data of each sample in the dataset consists of brain gray matter
volume and average cortical thickness that are extracted from
multiple atlases.

The AD classification frameworks directly analyze the
patterns in neuroimaging data of AD/MCI/NC subjects. In
addition, the classification framework is comprised of multi-
components: feature extraction, feature selection, dimensionality
downsampling, and feature-based classification. According to
the PRCV 2021, the task of the challenge is to do the three
classifications of patients. Over the past decade, the cortical
thickness, voxel-wise, and hippocampal morphological features
of sMRI were used to diagnose AD (Jagust, 2013). After jointly
aligning whole-brain image data to associate each brain voxel,
voxel features have extracted a vector with multiple scalar
measurements. Gray matter voxels are used for input features
and trained in the support vector machine (SVM) classifier to
classify AD and NC categories (Klöppel et al., 2008). To improve
the performance of the model, the researchers used a 3D CNN
to make predictions about the stage of the disease that the AD
patient was in based on MRI (Bron et al., 2015). In some work,
researchers have also improved the accuracy of classification
by pre-training or providing model complexity (Payan and
Montana, 2015; Korolev et al., 2017). In the competition, most
of the better-performing teams have optimized their methods
based on the multi-layer perceptron (MLP) architecture. The
adjustments on the network are, broadly, as follows: combining
MLP with attention mechanisms, adjusting the depth of the MLP
network, combining multiple networks for data processing, etc.
For the processing of datasets, some teams filtered data based
on the characteristics of the atlas or supplemented the data
with interpolation.

Since comparative evaluations of these feature extraction
techniques reveal several limitations for classifying AD, we
present a multi-atlas multi-layer perceptron (MAMLP) approach
to a one-dimensional long vector data extracted from multiple
atlases. Compared to the CNN and rerrent neural network
(RNN) methods, our method converges faster and has higher

1Pattern Recognition and Computer Vision 2021 Alzheimer’s disease classification

technology challenge: https://competition.huaweicloud.com/information/

1000041489/circumstance.

accuracy during the training process. A network composed of
multiple MLP modules achieves higher accuracy in this task than
a single MLP network. In addition, our method ranks the 10th in
the competition.

RELATED WORK

Reliable diagnosis of AD ought to adapt to different datasets,
such as MRI scans collected by several patient groups, to reduce
differences in data distribution and bias against specific groups.
The existing machine learning model has been applied to the
detection of AD. According to existing studies, the cortical
thickness, somatotopic and hippocampal morphological features
extracted by sMRI can be used to diagnose AD (Jagust, 2013).
After aligning whole brain image-feature data to associate each
brain voxel in common, voxel features are extracted a vector
with multi-scalar measurements. The coefficients of the series are
calculated and normalized to eliminate the rotation translation
effect and the features used to train the SVM-based classifier.
Researchers applied the gray matter voxels as input features and
trained the SVM classifier to classify AD and NC categories
(Klöppel et al., 2008). In practical problems, there is often more
than one factor affecting a thing, that is the dependent variable
corresponds to more than one independent variable. For MRI
data, we should also consider more image features. However, due
to the limitations of extraction methods, the data inevitably have
some biases and errors that need to be corrected by humans.
And traditional machine learning methods are more demanding
for data processing, and different processing methods may bring
large differences in results.

The existing deep learning model has been applied to the
classification of AD. 2D CNN was used to extract slice features
from MRI scans. Deep learning aims to reduce the use of
domain expert knowledge in designing and extracting the most
appropriate discriminant features (Plis et al., 2014). In the AD
classification task, the researchers used a model of 3D CNN
to perform feature extraction of the complete MRI, which was
then used for AD/NC classification (Bron et al., 2015), and some
researchers have also used unsupervised auto-encoders to pre-
train convolutional layers or a more complex network to improve
the accuracy of classification (Payan andMontana, 2015; Korolev
et al., 2017). In some studies, part of the CNN architecture was
inspired by Hosseini-Asl et al. (2018), they provide a pre-trained
3DCNN network that learns to capture generic features of AD
biomarkers and adapts to datasets from different domains. There
are also studies using RNN to train an AD classifier (Velazquez
et al., 2019). Cheng and Liu (2017) uses extracted inter-slice
features to perform the final classification. Both CNN and RNN
need a large number of training data and optimized structures to
achieve reliable performance. These researches used CNN-based
or RNN-based to extract essential features of MRI or acquired
the dense representation of MRI to build a regression model
for AD score prediction or to train a different classifier. Due to
CNN’s or RNN’s excellent performance on image classification,
more researches used several data modalities on different planes
and clinical scores to build multi-channel CNN and increase the
model prediction ability. Although these methods perform well
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in image or text data, they may not be suitable for some discrete
feature data, such as PRCV 2021 AD classification technology
challenge dataset.

This paper uses AD classification methods based on deep
learning for the PRCV 2021 AD classification technology
challenge dataset, namely, SVM, RNN, CNN, region
convolutional neural network (RCNN), and MLP. In order
to solve the problem of the characteristics of the dataset itself
and the small number of data samples, we used different MLPs
to analyze the data from different atlases after screening. The
advantage of this method is that it simplifies the structure of the
network and prevents overfitting. At the same time, after atlas
screening, some similar atlases are removed, which can reduce
the negative impact of redundant data on the results. It is similar
to the top-ranked methods, such as the use of multiple networks
and atlas screening. In contrast to all these solutions, our method
is carried out on the dataset. According to our model design
and training method, the optimal model is obtained. Using the
official scoring index of the competition, our model is better than
other algorithms. However, due to the small number of samples
in the data set, the results were somewhat unstable, and there
was a gap between some optimization techniques that our team
failed to surpass.

MATERIALS

Datasets
The dataset was provided by the PRCV 2021 AD classification
technical challenge and contains 2,600 samples. Table 1 shows
the distribution and composition of the data. The age range of
the samples was 32–91, with 1,982 samples concentrated between
the age range of 60 and 80. The dataset contains the sample’s
brain gray matter volume and mean cortical thickness, which
were extracted by the Computational Anatomy Tool12 (CAT12)
based on multiple atlases.

The CAT12 software first aligns the MRI images and segments
out the brain. Then, according to the different atlases, CAT12
segments the MRI and calculates the volume and cortical
posteriority of the different regions. Finally, features of multiple
atlases were combined to form a sequence of 28,169 one-
dimensional features. These 28,169 eigenvalues are used as the
feature data of this sample. Table 2 shows the information on
the templates. There are 13 types and 30 versions of templates
used. The name in the table indicates the name of the template,
while the version indicates the version used. Each template has a

TABLE 1 | The distribution and composition of the data.

Class Distribution Subject total

Label AD 671

MCI 1,148

NC 781

Age Above 80 385

60 – 80 1,983

Under 60 232

different region of interest (ROI), and based on ROI, the number
and value of features extracted are different.

DATA PREPROCESSING

This section introduces several novel contributions in data
preprocessing. First, the atlases were filtered to reduce the
dimensions when the dataset contains a small number of samples
with high-dimensional morphological features. Second, the
invalid value caused by the atlas mapping error was replaced by
the average value or 0 when extracting the morphological feature
from the brain atlas. Third, standardization was applied to adjust
the data magnitude that is different between multiple atlases.

Based on the characteristics of the dataset, the data
preprocessing methods, including atlas filtering, invalid
value replacement, and data normalization, were established
(Figure 1).

Atlas Filtering
The data in the PRCV 2021 AD classification technology
challenge dataset combined 28,169 features extracted by 30
atlases. Among these atlases, some were similar to each other.
For example, AAL1 to AAL2 to AAL3 was a process of
gradual evolution and subdivision, which also had a similar
relationship between Schaefer2018_1000 and Schaefer2018_100.
Since a small sample with high-dimensional features caused over-
fitting of the model, to reduce the feature redundancy of the
template, we filtered out templates with similar functions and
division basis and selected a template with the most detailed

TABLE 2 | The data summary of the atlases.

Name Version ROI number

AAL (Rolls et al., 2020) AAL(1/2/3v1) 90/116/170

AICHA (Joliot et al., 2015) AICHA_reordered 384

Brainnetome (Fan et al.,

2016)

rBN_Atlas_246_1mm 246

Brodmann (Zilles and

Amunts, 2010)

Brodmann 41

Gordon (Gordon et al.,

2016)

Gordon 333

Hammersmith (Hammers

et al., 2003)

Hammers-mith (83/95) 83/95

Harvard-Oxford (Desikan

et al., 2006)

HarvardOxford 113

Jülich (Eickhoff et al., 2005) Juelich-thr25 103

Melbourne Tian_Subcortex

(S1/S2/S3/S4_7T)

62/54/34/16

MIST (Urchs et al., 2019) MIST (7/12/20/36/64/

122/197/325/444)

7/12/20/36/64/

122/197/325/444

Scheafer (Schaefer et al.,

2018)

Schaefer

2018(100/200/400/

600/800/1000)

100/200/400/

600/800/1000

SUIT Cerebellum-MNIflirt 28

Yeo (Thomas Yeo et al.,

2011)

Yeo2011 (7/17) 7/17

“Version” represents the name of each version, where the different versions are indicated

in “()” and “ROI Number” represents the number of ROIs for the different versions.
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FIGURE 1 | Data preprocessing. Each row represents different partitions. Atlas is represented by A, and N in each column represents the extracted data number. (A)

Atlas filtering. (B) Invalid value replacement. (C) Data standardization.

division among them (Figure 1A). For example, in the case
of AAL templates, we kept the most detailed division of the
AAL3v1 version as representative of this class of template.
Meanwhile, we kept Schaefer2018_1000 as representative for the
Schaefer2018 template.

Invalid Value Replacement
The morphological features are extracted from the MRI image
by selecting a specific brain template with the CAT12 tool.
During the extraction process, part of the data was lost due to
the registration error of the template, which resulted in empty
and infinite values. These invalid values directly led to the

disappearance of the gradient in the model during the training
process. As shown in Figure 1B, we dealt with these invalid values
by replacing them. Empty and infinite values were replaced with
0 and the average value, respectively.

Data Standardization
The feature extracted from the different atlas had a magnitude
difference. As shown in Figure 1C, the maximum data was
>10,000, while the minimum data was <10. We standardized
the data to adjust the values to the same magnitude. The mean
and standard deviation of the whole dataset was calculated, and
each data was divided into standard deviation from the mean.
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The calculation of standardized data is as follows:

x̂ij =
xi̇j −mean

std
(1)

where i is the number of data and j is the number of the
eigenvalues of the data i. Mean represents the average of the
dataset, and std represents the standard deviation of the dataset.
Equation (2) and Equation (3) show the calculation of mean and
std, respectively.

mean =
1

i̇j

N
∑

i=1

M
∑

j=1

xij (2)

std =

√

√

√

√

∑N
i=1

∑M
j=1 xij

ij
(3)

where the N and M are respectively, the size of the dataset and
the length of each data.

After the data preprocessing, the length of data was reduced
from 28,169 to 8,377. Invalid values in the data were removed by
replacement. Finally, the data was standardized to reduce the gap
in value.

METHODS

In this section, we present theMAMLPmodel using the challenge
of dataset for AD prediction, specifically the one-dimensional
long vector data extracted from multiple atlases. Then, we
discussed the MAMLP architecture, which interlinks multiple
MLP blocks with state connections, for modeling the differential
information in the AD.

Further, this paper selects the data extracted from different
atlases, constructs different small MLP networks according
to different atlas for processing, and finally obtains the final
prediction outputs combined with the results. Considering that
constructing a huge MLP network often leads to overfitting
due to insufficient samples of the dataset, this method not only
avoided the overfitting caused by too small a sample size but
also simplified the network to a certain extent and improves
the efficiency of the algorithm. The structure of MAMLP is
shown in Figure 2. We first separated the pre-processed data
according to different atlases. The data from different atlases were
input to different MLP network modules for analysis. Finally,
the classification outputs of all MLP networks were combined to
obtain the final result.

Mixed Layers MLP Modular
After the separation operation, the data of different atlases were
input to different MLP networks for analysis. However, we
observed that the number of ROIs between the various atlases
was not consistent, and the number of different feature values
was extracted based on different atlases. Therefore, a fixed MLP
structure Was apparently more difficult to applied to all atlases.

To solve this problem, we designed a mixed-layer MLP
network to facilitate the classification, and employed a two-layer
or three-layer linear layer network to process the data according

to the number of each atlas. As shown in Figure 2, a fully
connected network containing three linear layers was used to
process the data when the number of ROIs of the atlas was >100.
Unlike the three linear layers network, if the number of atlases
is <100, the number of linear layers is reduced to two. In the
end, different network output classification results were based
on original dataset from different atlases and were combined in
the subsequent operation. The final classification result of the
network can be expressed by the following equation:

O = max





N
∑

j=1

SoftMax(Mj)



 (4)

where the M represents the output of the MAMLP subnetwork,
j represents the jth subnetwork, and N represents the number
of subnetworks.

Ativation Function and Loss Function
In the MLP network, superscript l is set to represent the data
related to layer l, which consists of L layers. The input layer is
marked as 0, the output layer is marked as l, and the subscript
represents the matrix or a vector index. The deactivation value
of layer L is equal to the activation value of the previous
layer multiplied by the network weight matrix and adds the
network deviation.

Equation (5) shows the calculation method for inactive
value, where zl represents the inactive value of Layer l, W l

represents the layer l network weight matrix, and bl represents
the layer l network bias. In addition, al represents the value
of the l layer after the activation function, and the method of
calculation is shown in Equation (6), where h (z) denotes the
activation function.

zl = al−1W l + bl (5)

al = h
(

zl
)

= max
(

0, zl + N (0, 1)
)

(6)

Equation (5) facilitates the convergence of an end-to-end
model training.

According to Equation (5) and Equation (6), zl and al are
calculated in order, and the output layer zL is obtained. Loss
function C

(

aL, y
)

is then calculated according to Equation (6),
where y represents the label, and nL represents the number of
neurons in the output layer.

C
(

aL, y
)

= −

nL
∑

i=1

yi log a
L
i (7)

The output ŷ of the final network is the subscript with the highest
probability in aL. Equation (8) is the calculation method of ŷ.

ŷ = argmaxi∈{1,···nL}a
L (8)

Therefore, standard MLPs are not equipped to deal with
unreliable input data. We show in this section that the gain
of MAMLP over those models increases in two important step
with unreliable inputs: multi-step prediction and dealing with
original data.
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FIGURE 2 | Multi-atlas multi-layer perceptron (MAMLP) Classification structure implements a two-steps scheme: three linear layers with regions of interest (ROIs)

>100 and two linear layers with ROIs <100.

Implementation
Our approach has two key components: the first is the
filtering of atlases in data preprocessing, and the second is the
analysis of the network structure using different fully connected
networks for different atlases. In atlas filtering, we keep the
most detailed atlases among similar atlases for division. The
original dataset was processed using 30 atlases for MRI and
28,169 feature values were extracted. After processing, 13 atlases
containing 8,377 feature values were finally retained. In the
network structure, the data were processed using a hybrid
network structure.

First, we separated the data from different atlases into 13
groups and fed them into different fully connected networks
for analysis. Based on the number of ROIs of the atlases, data
with a number >100 features are fed into a fully connected
network with three linear layers for processing. Data with a
number <100 features are fed into a fully connected network
with two linear layers for processing. The structure of the fully
connected network with three linear layers. The first linear layer

was followed by a linear rectification function (ReLU) layer as
the activation function. The second linear layer is followed by a
dropout layer to prevent overfitting, while the last linear layer is
followed by only a Softmax layer to obtain the final classification
results. The fully connected network containing two linear layers
removes the first linear layer and the ReLU layer compared to the
network containing three linear layers. Finally, the results of each
network are combined to obtain the final classification results.

Model Evaluation
In addition to using accuracy as the evaluation standard, we
also introduce the F1 function as the evaluation index when
evaluating the model. In statistics, the F1 function is used
to simultaneously calculate the accuracy of unbalanced data
classification problem under the consideration of the accuracy
and recall of the model. The calculation formula is as follows:

F1 = 2
Recall× Precision

Recall+ Precision
(9)
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In the multi-classification problem, the F1 score of each category
is usually calculated first and averaged to obtain the macro
F1 score. The macro F1 score is then used to evaluate the
performance of the model in our experiment. The calculation
formula is as follows:

macro F1score =
F1score1 + F1score2 + F1score3

3
(10)

The Area Under Curve (AUC), as the evaluation index of
binary classification standards, measures the ratio of true positive
(recall) and false-positive classification. In multi-classification
experiments, the macro F1 score is added as the evaluation
index. Toward binary classification, AUC is also added to
comprehensively evaluate the performance of models. The
calculation formula is as follows:

AUC =

∑

predpos > predneg

positiveNum ∗ negativeNum
(11)

The denominator is the total number of combinations of
positive and negative samples, while the numerator is the
number of combinations where positive samples are greater than
negative samples.

EXPERIMENTS AND DISCUSSION

To comprehensively evaluate the performance of the model, we
set up several groups of experiments to compare and study the
effects of the data dimension, network structure, and the number
of atlases on the experimental results. Meanwhile, we further
discuss the results of the competition and the advantages and
disadvantages of our approach compared to other teams.

Parameter Setting of Experiment
The experimental environment of this paper was the PyTorch
framework and NVIDIA–TITAN-XP GPU. During the training
process, we adopted the following strategies: Cross-Entropy as
the loss function; Stochastic Gradient Descent (SGD) as the
optimizer; the learning rate is set to 0.001; the dropout layer
in the network is set to 0.5. We divided the number of the
training-set and test-set into 2,300:300, and 100 cases of each label
were selected in the test-set. In the AD/NC/MCI experiment,
four indicators were used for evaluation, including Accuracy,
Precision, Recall, and F1score. AUC was used as an evaluation
indicator in the binary classification experiment. The higher all
the indicators, the better the effect of classification.

Comparative Experiments of Data
Pre-processing
In the data pre-processing section, the following pre-processing
operations are performed on the data: (1) Atlas Filtering for
feature dimension reduction; (2) replacement of invalid values
in the data; and (3) standardization of the data values. To
demonstrate the effectiveness of these treatments, we conducted
comparative experiments on data pre-processing.

Table 3 shows the impact of data pre-processing on
the experiment. Compared with the unfiltered data and

TABLE 3 | Effect of data preprocessing on the experiment.

Preprocessing Accuracy Precision Recall F1 score

Without preprocessing 0.25 0.15 0.11 0.13

Filtering atlas 0.51 0.47 0.43 0.45

Data standardization 0.64 0.63 0.64 0.64

Data standardization and filtering atlas 0.67 0.68 0.67 0.68

All experiments assume that the invalid values have been removed. Otherwise,

the experiments cannot be performed. Bold values mean the best value in the

comparative experiment.

unstandardized data, the accuracy of the pre-processed data
is improved greatly. These experiments were performed by
default after the second pre-processing operation (invalid
value replacement) because the model would have experienced
gradient disappearance without this preprocessing. The results
of the experiments show that (1) “Filtering Atlas” had an
impact on the accuracy of the model, improving it by
about five percent; and (2) “Numerical standardization” is
significant. Without standardization, differences in extraction
criteria between templates will make it difficult for the model to
learn valuable information.

Considering that a huge number of atlases are used in the data
extraction process and that some atlases have high similarities, we
filtered the models in the data preprocessing stage and selected
one in the similar atlases. To further explore the accuracy of the
model with the different number of atlases, we tried to keep more
atlases or further removed them.

Figure 3 shows the experimental results with different
numbers of atlases. The number of atlases after data
preprocessing is 13. These results suggest that the classification
accuracy was improved by removing similar atlases, but the
classification accuracy showed a decreasing trend when atlases
are further removed. These findings are understandable because
using too many similar atlases causes the number of features
per sample to exceed the sample size of the PRCV 2021 AD
classification technology challenge dataset. A situation that
over-fits the model while using too few atlases does not provide
sufficient feature data. Therefore, choosing the appropriate
number of atlases can further improve the classification accuracy
of the model.

Different Methods Based on Different Data
Dimensions
By splicing the data, the original one-dimensional data can
be spliced into two- or three-dimensional data. Then, the
convolution under the corresponding dimension can be used
for data processing and analysis. We follow that these extracted
data do not have image characteristics, such as color and form.
Therefore, the method of using convolutional analysis after
up dimensioning is considered to have poor performance for
PRCV 2021 AD classification technology challenge dataset. We
processed the data as two-dimensional and three-dimensional
fake-image data and used classical CNN to process them.
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FIGURE 3 | Classification accuracy of the model under different amounts of atlases. The number of atlases after data preprocessing is 13.

In the experiment of different dimensions, the data are
spliced as 168×168 two-dimensional data and 31×31×30 three-
dimensional data. The data is then processed by invalid value
replacement and standardization before training. On the two-
dimensional data, visual geometry group (VGG) (Simonyan and
Zisserman, 2014) and ResNet50 (He et al., 2016) are used to
analyze the data, while the full-size diagnosis network (FDN)
is used on the three-dimensional data (Li et al., 2019). For the
comparison experiments, we use the same learning rate and batch
size. The network structure is also the same as in the original
paper, except that the FDN model uses a non-iterative version.
The setup of these methods follows the original design of their
papers. Meanwhile, we use an MLP network with 4 linear layers
to compare with our method and evaluate the effectiveness of the
method in four metrics, which are Accuracy, Precision, Recall,
and F1score.

As shown in Table 4, our method obtained the best results
in all four metrics. In addition, the method of raising the
dimensionality does not effectively improve the classification
accuracy. These results suggest that the method of using CNN
for feature extraction on two-dimensional or three-dimensional
data is not as effective as the method of using MLP on one-
dimensional data. These findings are understandable because
although the data has been improved on the dimension, it still
does not have image features, such as color-feature or shape-
feature. In addition, the CNN still cannot extract those disease-
related features well. Compared with a single MLP network, since
the data extracted from different atlas are not correlated, our

TABLE 4 | Data summary of different methods based on different data

dimensions.

Data dimension Models Accuracy Precision Recall F1 score

One-dimensional MLP 0.66 0.66 0.65 0.66

MAMLP (ours) 0.67 0.68 0.67 0.68

Two-dimensional VGG 0.56 0.58 0.55 0.56

ResNet50 0.64 0.66 0.61 0.62

Three-dimensional FDN 0.55 0.53 0.54 0.55

The bold part represents the best result.

method separates them and uses different networks for analysis,
which can better prevent model overfitting and prevent mutual
interference between different atlas data.

Different Methods Based on
One-Dimensional Data
One-dimensional feature data in the PRCV 2021 AD
classification technology challenge dataset comes from gray
matter volume and mean cortical thickness components
extracted from different atlases. Unlike MRI, the data in the
dataset loses original image characteristics, such as color or
shape. The methods which are used to process MRI on two-
dimensional or three-dimensional had poor performance for this
dataset. However, some methods for natural language processing
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TABLE 5 | Data summary of in Alzheimer’s disease (AD)/mild cognitive impairment

(MCI)/normal control (NC) classification.

Methods Accuracy Precision Recall F1 score

CNN-1d (Kim, 2014) 0.55 0.52 0.52 0.52

RNN (Liu et al., 2015) 0.65 0.64 0.63 0.64

RCNN (Zhou et al., 2016) 0.62 0.62 0.62 0.63

MAMLP (ours) 0.67 0.68 0.67 0.68

The bold part represents the best result.

are often used to process one-dimensional feature data. Hence,
we compared these methods with ours.

The procedure we followed can be briefly described as data
pre-processing using different methods to analyze the data and
four indicators to evaluate the model. We use three methods to
compare with our method, including CNN-1d, RNN, and RCNN
(Kim, 2014; Liu et al., 2016; Zhou et al., 2016).

As shown in Table 5, our method obtained the best results
in all four metrics. The research we have done suggests that
these natural language processing-related methods are not very
good at extracting the relationship between features and disease
stages compared to our methods. The CNN has advantages
in performing two-dimensional image feature extraction, but
does not work well for processing one-dimensional long vector
data. Recurrent neural networks are mainly concerned with the
temporal relationship between features and perform poorly in
identifying the relationship between features and classification
results. For PRCV 2021 AD classification technology challenge
dataset, it has lost its original imaging features after atlas
extraction, and the correlation between each feature is not
obvious. As a result, CNN and RNN-related methods do not
apply to this dataset compared to MLP.

To further measure the performance of the model, we take
AUC as the evaluation standard and experiment on binary
classification problems. Among them, the number of samples in
each category in the classification problems of NC/MCI, NC/AD,
andMCI/AD are 781/1,148, 781/671, and 1,148/671, respectively.
We divide the train set and test set according to a ratio of 4:1.
For the rest of the setup, it was kept consistent with the triple
classification experiment.

Table 6 shows that the performance of the four methods in the
three binary classification tasks. In the classification of NC/MCI
and NC/AD, our model obtained the highest score. RNN
model performs better in the classification of MCI/AD. In the
experiments with dichotomous classification, the performance
of the individual models was largely consistent with that of
trichotomous classification, but in MCI/AD, the RNN performed
much better. This phenomenon illustrates that our method is
more sensitive to the differences between NC and AD/MCI and
is more accurate in determining whether the disease is present.

Meanwhile, we compared the differences between the fixed
MLP network and the hybrid MLP network, which is to verify
whether this approach can improve the classification accuracy.
As shown in Table 7, the mixed network structure exhibits a
greater advantage in all metrics compared to the fixed one. This

TABLE 6 | Data summary of different models in binary classification.

Methods Accuracy F1 score AUC

(a) Data summary of NC/MCI classification

CNN-1d (Kim, 2014) 0.65 0.75 0.60

RNN (Liu et al., 2015) 0.73 0.79 0.71

RCNN (Zhou et al., 2016) 0.73 0.80 0.69

MAMLP (ours) 0.75 0.81 0.74

(b) Data summary of NC/AD classification

CNN-1d (Kim, 2014) 0.84 0.83 0.84

RNN (Liu et al., 2015) 0.86 0.84 0.85

RCNN (Zhou et al., 2016) 0.85 0.83 0.84

MAMLP (ours) 0.89 0.89 0.90

(c) Data summary of MCI/AD classification

CNN-1d (Kim, 2014) 0.68 0.69 0.64

RNN (Liu et al., 2015) 0.78 0.71 0.77

RCNN (Zhou et al., 2016) 0.77 0.68 0.75

MAMLP (ours) 0.77 0.66 0.74

The bold part represents the best result.

TABLE 7 | Different numbers of linear layers on multi-layer perceptron (MLP)

modules.

Number of linear layers Accuracy Precision Recall F1 score

Two 0.56 0.51 0.52 0.52

Three 0.59 0.58 0.57 0.58

Two and three mixed 0.67 0.68 0.67 0.68

Four 0.58 0.59 0.58 0.59

The bold part represents the best result.

phenomenon is also easily explained by the fact that a small
network is not suitable for large inputs when approaches use a
fixed network structure and vice versa. If a fixed structure is used
in all MLP sub-networks, the number of features per template
should be fixed, which is difficult to achieve. Therefore, a mixed
network structure is a more suitable method.

In addition, we believe that there is no correlation between
data from different atlases. Different from the original MLP
network, referring to the Ortiz’s method (Ortiz et al., 2016),
the data is segmented according to different atlases and then
sent into different MLP models for classification before the
results are combined. In this way, we effectively reduce the
complexity of the model and prevent the overfitting of the
algorithm. Figure 4 shows the change process of loss, accuracy,
and f1score in the training process of different models. With
the continuous improvement of training times, the value of
loss continues to decline while the classification results of some
models gradually deteriorate. It can be inferred that due to
the small sample size and excessive training, the model has
the phenomenon of overfitting, which is more obvious in
the complex model. Compared with other models, our model

Frontiers in Aging Neuroscience | www.frontiersin.org 9 June 2022 | Volume 14 | Article 891433

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Hong et al. Classification of Alzheimer’s Disease Stages

FIGURE 4 | Training details of different models. (A) Loss in training. (B) Accuracy in training. (C) F1score in training.
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FIGURE 5 | Results of the competition. The horizontal axis represents the ranking of the competition and the vertical axis represents the score of the competition. The

competition uses F1score as the final evaluation metric. The figure shows the 17 winning teams among 373 teams, among which our team gained the rank of 10th.

performs better in both the convergence speed of loss and the
ability to prevent overfitting.

Discussion of PRCV2021
PRCV 2021 AD Classification Technical Challenge provides
a dataset containing gray matter volumes and mean cortical
thickness extracted from multiple atlases. Based on this dataset,
PRCV 2021 proposes a triple classification task for AD.
Figure 5 shows the rankings and scores of all winning teams
in the competition, among which our team ranks 10th. Most
of the better performing teams in the competition have
optimized their methods based on the MLP architecture. The
adjustments on the network are as follows: combining MLP with
attention mechanism, adjusting the depth of MLP network, and
combining multiple networks for data processing, etc. For the
processing of the dataset, some teams filtered the data based
on the characteristics of the atlas or supplemented the data
by interpolation.

In the competition, most of the teams used the MLP-based
network and did various optimized operations. Among them,
the best-performing method used a combination of MLP and
attention and got the highest score of 0.7033. They added
multiple attention modules to the network and connected
outputs of different depths as input to the module. Compared
with their method, we all used multiple different MLPs for
training. The advantage of this is that it can effectively avoid
the uncertainty of classification accuracy under a single model.

However, their method adds an attention mechanism before
obtaining the classification results so that the model can more
accurately identify the characteristics related to the disease type
and reduce the interference of other redundant data to solve the
problem of overfitting.

There were also teams in the competition that used traditional
machine learning algorithms, mainly random forests and SVM,
and achieved good results. We think that traditional machine
learning algorithms are also very applicable to this type of
data. However, through post-competition experience sharing,
we found that most of the machine learning teams focused
their work on data processing and that most of the teams that
won awards had a good approach to processing the dataset.
Hence, in that task, the machine learning algorithms had higher
requirements for data processing compared to deep learning
related methods.

Similar to our method was that of the team that won
fifth place. They also used different MLP networks to train
data from different atlases. However, the difference is that our
method removes some similar atlases before training, while
their method selects the atlas based on the training results
after training. After an analysis, we believe that their method is
more appropriate because the correlation between the extracted
results of the atlas and the disease should be judged by
the model.

Compared to teams with similar scores to ours, our method
still has a certain advantage. For example, the seventh-place
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team uses a clever way to optimize. They train a large number
of networks, and select the four with the best results to
combine. Due to the small number of samples and larger
number of feature values in the PRCV 2021 AD classification
technology challenge dataset, most of the teams’ methods suffer
from overfitting problems. This is also evident in the training
process, where the same model and parameters end up with
a significant difference in classification accuracy. They take
advantage of this feature to train a model that better fits the
test set. Although this method has obtained good scores in
the competition, its performance may not be good if the test
set is re-divided. Compared with their method, our method is
more versatile.

CONCLUSION

Against the dataset provided by the PRCV 2021 AD classification
technology challenge, we propose a MAMLP model for
Alzheimer’s classification based on brain region data extracted
by multi-atlas segmentation. The results of the experiment
indicate that our model has better classification accuracy and
generalization ability when targeting such datasets. Of course,
our method is not optimal, as there are similarities in the ideas
of the method compared to the teams ranked before us. For
example, redundant data are removed by atlas selection and
multiple networks are used for combination. The disadvantage
is the lack of skill in training or the randomness caused by
the small sample. An obvious limitation of this study is that
the overfitting of the model due to the small sample has not
been fully resolved. The next step is to use some small sample
training methods to further improve the accuracy of the model.
At the same time, compared with other teams’ data processing
methods, our method still has some gaps. In the face of high-
dimensional data, dimensionality reduction is an important step,
and if we can effectively remove some redundant data and

duplicate data, we believe the classification effect of themodel can
become better.
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