AUTHOR=Huang Li-Kai , Chao Shu-Ping , Hu Chaur-Jong , Chien Li-Nien , Chiou Hung-Yi , Lo Yu-Chun , Hsieh Yi-Chen TITLE=Plasma Phosphorylated-tau181 Is a Predictor of Post-stroke Cognitive Impairment: A Longitudinal Study JOURNAL=Frontiers in Aging Neuroscience VOLUME=14 YEAR=2022 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.889101 DOI=10.3389/fnagi.2022.889101 ISSN=1663-4365 ABSTRACT=Introduction

Post-stroke cognitive impairment (PSCI) cannot be neglected because it drastically influences the daily life of patients and their families. However, there are no studies exploring the association between preclinical blood biomarkers of neurodegeneration including plasma amyloid-β (Aβ), tau, and brain-derived neurotrophic factor (BDNF) together with the risk of PSCI. This longitudinal study was to investigate whether these blood biomarkers with imaging markers of cerebral small vessel disease can improve the prediction for PSCI. In addition, we also explored the association between blood biomarkers with the trajectories of PSCI.

Methods

Adult patients with first-ever acute ischemic stroke were recruited, and the cognitive and functional abilities of these patients were evaluated. Furthermore, blood biomarkers of neurodegeneration including plasma Aβ-40, Aβ-42, total tau, phosphorylated tau 181 (p-tau181), and BDNF levels and image markers of cerebral small vessel disease were measured. Each patient was followed up at 3 and 12 months at the outpatient department.

Results

Of 136 patients, 40 and 50 patients developed PSCI at 3 and 12 months after stroke, respectively. In functional trajectories, 27 patients did not have PSCI at 3 months but did at 12 months. By contrast, the PSCI status of 17 patients at 3 months was reversed at 12 months. Patients with high-acute plasma p-tau181 had a significantly lower PSCI risk at 3 months (odds ratio [OR] = 0.62, 95% CI = 0.40–0.94, p = 0.0243) and 12 months (OR = 0.69, 95% CI = 0.47–0.99, p = 0.0443) after adjustment for covariates and image biomarkers. Discrimination and reclassification statistics indicated that the p-tau181 level can improve discrimination ability for PSCI at 3 and 12 months, respectively. In addition, the plasma p-tau181 level was the highest in subjects without PSCI followed by those with delayed-onset PSCI and early-onset PSCI with reversal, whereas the lowest plasma p-tau181 level was found among those with persistent PSCI, showing a significant trend test (p = 0.0081).

Conclusion

Plasma p-tau181 is a potential biomarker for predicting early- and delayed-onset PSCI. Future studies should incorporate plasma p-tau181 as an indicator for timely cognitive intervention in the follow-up of patients with stroke.