AUTHOR=Sugimoto Hikaru , Otake-Matsuura Mihoko TITLE=Tract-Based Spatial Statistics Analysis of Diffusion Tensor Imaging in Older Adults After the PICMOR Intervention Program: A Pilot Study JOURNAL=Frontiers in Aging Neuroscience VOLUME=14 YEAR=2022 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.867417 DOI=10.3389/fnagi.2022.867417 ISSN=1663-4365 ABSTRACT=

Diffusion tensor imaging (DTI) enables the investigation of white matter properties in vivo by applying a tensor model to the diffusion of water molecules in the brain. Using DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), an attempt has been made to detect age-related alterations in the white matter microstructure in aging research. However, the use of comprehensive DTI measures to examine the effects of cognitive intervention/training on white matter fiber health in older adults remains limited. Recently, we developed a cognitive intervention program called Photo-Integrated Conversation Moderated by Robots (PICMOR), which utilizes one of the most intellectual activities of daily life, conversations. To examine the effects of PICMOR on cognitive function in older adults, we conducted a randomized controlled trial and found that verbal fluency task scores were improved by this intervention. Based on these behavioral findings, we collected in this pilot study diffusion-weighted images from the participants to identify candidate structures for white matter microstructural changes induced by this intervention. The results from tract-based spatial statistics analyses showed that the intervention group, who participated in PICMOR-based conversations, had significantly higher FA values or lower MD, AD, or RD values across various fiber tracts, including the left anterior corona radiata, external capsule, and anterior limb of the internal capsule, compared to the control group, who participated in unstructured free conversations. Furthermore, a larger improvement in verbal fluency task scores throughout the intervention was associated with smaller AD values in clusters, including the left side of these frontal regions. The present findings suggest that left frontal white matter structures are candidates for the neural underpinnings responsible for the enhancement of verbal fluency. Although our findings are limited by the lack of comparable data at baseline, we successfully confirmed the hypothesized pattern of group differences in DTI indices after the intervention, which fits well with the results of other cognitive intervention studies. To confirm whether this pattern reflects intervention-induced white matter alterations, longitudinal data acquisition is needed in future research.