AUTHOR=Homann Jan , Osburg Tim , Ohlei Olena , Dobricic Valerija , Deecke Laura , Bos Isabelle , Vandenberghe Rik , Gabel Silvy , Scheltens Philip , Teunissen Charlotte E. , Engelborghs Sebastiaan , Frisoni Giovanni , Blin Olivier , Richardson Jill C. , Bordet Regis , Lleó Alberto , Alcolea Daniel , Popp Julius , Clark Christopher , Peyratout Gwendoline , Martinez-Lage Pablo , Tainta Mikel , Dobson Richard J. B. , Legido-Quigley Cristina , Sleegers Kristel , Van Broeckhoven Christine , Wittig Michael , Franke Andre , Lill Christina M. , Blennow Kaj , Zetterberg Henrik , Lovestone Simon , Streffer Johannes , ten Kate Mara , Vos Stephanie J. B. , Barkhof Frederik , Visser Pieter Jelle , Bertram Lars TITLE=Genome-Wide Association Study of Alzheimer’s Disease Brain Imaging Biomarkers and Neuropsychological Phenotypes in the European Medical Information Framework for Alzheimer’s Disease Multimodal Biomarker Discovery Dataset JOURNAL=Frontiers in Aging Neuroscience VOLUME=14 YEAR=2022 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2022.840651 DOI=10.3389/fnagi.2022.840651 ISSN=1663-4365 ABSTRACT=
Alzheimer’s disease (AD) is the most frequent neurodegenerative disease with an increasing prevalence in industrialized, aging populations. AD susceptibility has an established genetic basis which has been the focus of a large number of genome-wide association studies (GWAS) published over the last decade. Most of these GWAS used dichotomized clinical diagnostic status, i.e., case vs. control classification, as outcome phenotypes, without the use of biomarkers. An alternative and potentially more powerful study design is afforded by using quantitative AD-related phenotypes as GWAS outcome traits, an analysis paradigm that we followed in this work. Specifically, we utilized genotype and phenotype data from