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Objectives: The abnormal functional connectivity (FC) pattern of default 

mode network (DMN) may be key markers for early identification of various 

cognitive disorders. However, the whole-brain FC changes of DMN in delayed 

neurocognitive recovery (DNR) are still unclear. Our study was aimed at 

exploring the whole-brain FC patterns of all regions in DMN and the potential 

features as biomarkers for the prediction of DNR using machine-learning 

algorithms.

Methods: Resting-state functional magnetic resonance imaging (fMRI) was 

conducted before surgery on 74 patients undergoing non-cardiac surgery. 

Seed-based whole-brain FC with 18 core regions located in the DMN was 

performed, and FC features that were statistically different between the 

DNR and non-DNR patients after false discovery correction were extracted. 

Afterward, based on the extracted FC features, machine-learning algorithms 

such as support vector machine, logistic regression, decision tree, and random 

forest were established to recognize DNR. The machine learning experiment 

procedure mainly included three following steps: feature standardization, 

parameter adjustment, and performance comparison. Finally, independent 

testing was conducted to validate the established prediction model. The 

algorithm performance was evaluated by a permutation test.

Results: We found significantly decreased DMN connectivity with the brain 

regions involved in visual processing in DNR patients than in non-DNR 

patients. The best result was obtained from the random forest algorithm based 
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on the 20 decision trees (estimators). The random forest model achieved the 

accuracy, sensitivity, and specificity of 84.0, 63.1, and 89.5%, respectively. The 

area under the receiver operating characteristic curve of the classifier reached 

86.4%. The feature that contributed the most to the random forest model was 

the FC between the left retrosplenial cortex/posterior cingulate cortex and left 

precuneus.

Conclusion: The decreased FC of DMN with regions involved in visual 

processing might be effective markers for the prediction of DNR and could 

provide new insights into the neural mechanisms of DNR.

Clinical Trial Registration: Chinese Clinical Trial Registry, ChiCTR-DCD-15006096.

KEYWORDS

whole-brain functional connectivity, default mode network, delayed neurocognitive 
recovery, machine learning, visual processing

1. Introduction

Delayed neurocognitive recovery (DNR) is a common 
complication of the neurological system, whose incidence is about 
25.8% after non-cardiac surgery in elderly patients (Moller et al., 
1998; Evered et  al., 2018). With the development of an aging 
society, more and more geriatric surgical patients suffer from 
adverse outcomes caused by cognitive dysfunction after surgery, 
such as prolonged recovery time and increased incidence of 
complications (Evered et al., 2017; Chen and Qin, 2021). Hence, 
it is of crucial importance to understand the underlying 
pathological mechanisms of DNR and identify the potential 
biomarkers of DNR for its prevention.

In most brain function studies, resting-state functional 
magnetic resonance imaging (rs-fMRI) served as a useful 
approach to describe the connection characteristics of the brain 
networks associated with certain disease states (Rubinov and 
Sporns, 2010; Wu et  al., 2021). Of particular interest is the 
default mode network (DMN), which is the most representative, 
stable, and individual-identifiable network in the resting state, 
as well as the most studied one in Alzheimer’s disease (AD) and 
mild cognitive impairment (MCI; Li et al., 2022). The DMN is 
not only engaged in the integration of cognitive, but also in 
memory recollection and reconstruction of long-term memories 
during retrieval (Krajcovicova et  al., 2017). The medial 
prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) 
are the core hubs of DMN. Besides, the lateral parietal cortex, 
middle cingulate cortex (MCC), and hippocampal gyrus are also 
components of DMN. These specific regions exhibit highly 
organized resting functional activity. However, most of the 
existing studies exclusively focused on the FC of mPFC and 
PCC, thus overlooking a lot of information and details about the 
DMN whole connectivity patterns. Hence, in the present study, 
we proposed a feasible approach to evaluate changes in whole-
brain connectivity across all regions of DMN in patients with 
and without DNR by defining the ROI mask from the 
DMN atlas.

Machine learning can incorporate diversified rs-fMRI 
variables and identify potential biomarkers to build corresponding 
classification models (Solomon et al., 2020). As the information 
obtained from rs-fMRI data may provide objective evidence for 
the classification of DNR, combining it with machine learning 
algorithms may help improve the accuracy of early prediction of 
DNR. Rs-fMRI data mining has various stages, including rs-fMRI 
data preprocessing and analysis, extracted rs-fMRI features 
standardization (data preparation), model selection (machine-
learning algorithms), the training and evaluation of models, 
parameter adjustment, and finally prediction (Sayadi et al., 2022).

In the present study, we used all subregions of DMN as the 
ROIs to determine whether DNR patients show abnormal FC 
between DMN and other voxels of the whole brain before surgery. 
Second, we adopted the support vector machine (SVM), logistic 
regression, decision tree, and random forest algorithms to develop 
machine-learning classification models to identify DNR patients 
based on rs-fMRI data. We hypothesized that whole-brain FC 
changes of DMN could serve as effective biomarkers to predict 
patients with DNR, which might help us to better understand the 
neural mechanisms of DNR and provide support for future 
clinical early screening and intervention in DNR patients.

2. Materials and methods

2.1. Ethics approval and participants

This nested case–control study was approved by the Ethics 
Committee of Huadong Hospital Affiliated to Fudan University 
(approval number: 20170020). The trial was registered on the 
Chinese Clinical Trial Registry1 with the identification number of 
ChiCTR-DCD-15006096. The principal investigator was Weidong 
Gu, and the date of registration was 16 March 2015.

1 http://www.chictr.org.cn
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Subjects were recruited at the Huadong Hospital Affiliated to 
Fudan University between September 2017 and February 2019. 
Written informed consent was obtained from all subjects 
participating in the trial before enrollment. The inclusion and 
exclusion criteria of our study population have been previously 
described (Jiang et al., 2020, 2021). The inclusion criteria were as 
follows: (1) patients scheduled to undergo non-cardiac surgery; 
(2) age ≥60 years old; (3) American Society of Anesthesiologists 
(ASA) classification I-III; and (4) right-handedness. The exclusion 
criteria were as follows: (1) education duration <6 years; (2) 
baseline mini-mental state examination (MMSE) score <24 points; 
(3) preexisting mental or psychiatric disease, cardiac or central 
nervous system vascular disease, Parkinson’s disease, cardiac or 
cranial surgery history; (4) major surgery within the past 
12 months; (5) taking sedatives or antidepressants during the 
nearest year; (6) alcohol or drug abuse; and (7) vision and audition 
impairment or speech issues impeding communication.

2.2. Neurocognitive assessment

The Z-score method recommended by the International study 
of postoperative cognitive dysfunction (IPSOCD1) was used to 
identify the DNR (Moller et  al., 1998). The comprehensive 
neurocognitive tests were conducted before surgery and at 
7–14 days after the surgery for each subject. The neurocognitive 
tests consisted of MMSE, digit symbol substitution test (DSST), 
digit span forward and backward test (DSF/DSB), trail-making 
test-part A (TMT-A), and verbal fluency test (VFT). The Z score 
for each test and the composite Z score were calculated (Jiang 
et al., 2021). A patient was diagnosed with DNR when the Z scores 
of at least two of the neurocognitive tests or the composite Z score 
were ≥1.96.

2.3. Rs-fMRI data acquisition and 
preprocessing

Siemens Skyra 3.0 T MRI scanner was used to obtain all MRI 
data before surgery. The complete MRI acquisition protocol 
included three-dimensional (3D) anatomical T1-weighted imaging 
and fMRI echo-planar imaging. The 3D anatomical T1-weighted 
imaging parameters were as follows: 176 sagittal slices, repetition 
time = 1,900 ms, echo time = 3.57 ms, voxel size = 1 × 1 × 1 mm, and 
flip angle = 9°. The echo-planar imaging sequence parameters were 
as follows: 33 axial slices, slices thickness = 4 mm with a 0-mm gap, 
repetition time = 3,000 ms, echo time = 30 ms, voxel 
size = 3.4 × 3.4 × 4 mm, and flip angle = 90°. During the fMRI 
imaging, 120 volumes were obtained that lasted 8.5 min.

All rs-fMRI data were processed using Statistical Parametric 
Mapping version 12 and RESTplus version 1.24, based on 
MATLAB version R2013b. The preprocessing of rs-fMRI data 
consisted of eight following steps, where the first step included 
discarding the first five volumes to avoid the potential noise 

related to the participants’ adaptation to the scanner. Then, the 
remaining volumes were subjected to the slice-timing correction, 
head motion correction, spatial normalization, smoothing with a 
6 × 6 × 6 mm Gaussian kernel, low-frequency filtering (0.01–
0.08 Hz), linear trend of time course removal, and nuisance 
covariates regression (motion artifact, white matter signal, and 
cerebrospinal fluid signal; Jiang et al., 2021).

2.4. Functional connectivity analysis of 
DMN

A seed-based FC analysis was performed to explore the 
preoperative whole-brain voxel-wise FC alteration of the DMN in 
DNR patients. Nine regions in the dorsal DMN and nine regions 
in the ventral DMN were used as ROIs based on the DMN atlas 
from the Functional Imaging in Neuropsychiatric Disorders Lab 
at Stanford University (Shirer et al., 2012). Nine ROIs in the dorsal 
DMN included mPFC/anterior cingulate cortex, right superior 
frontal gyrus (SFG), PCC, MCC, left and right angular gyrus, left 
and right hippocampus, and thalamus. Nine ROIs in the ventral 
DMN included left and right retrosplenial cortex (RSC)/PCC, left 
and right middle frontal gyrus, left and right parahippocampal 
gyrus, left and right middle occipital gyrus, and precuneus.

The time series of each region were averaged and correlated 
with every other voxel within the gray-matter mask. The FC 
correlation maps were converted using Fisher’s r-to-z transform. A 
two-sample t-test was performed to explore the differences in seed-
based FC between the DNR patients and non-DNR patients. The 
statistical maps were thresholded at p < 0.001 at the voxel level and 
p < 0.05 at the cluster level by false discovery rate (FDR) corrected 
for age, sex, and education duration (Chumbley and Friston, 2009).

2.5. Machine learning modeling

The prediction models of DNR were established using the SVM, 
logistic regression, decision tree, and random forest algorithms 
based on the FC features. Considering that the eigenvalues of FC 
features differ greatly, Scikit-learn’s “Preprocessing.StandardScaler” 
function was used to convert FC features into standard normally 
distributed data with zero mean and unit variance (Cho et al., 2022). 
The dataset was randomly divided into a training and a testing set 
at a ratio of 7:3. To reduce selection bias or overfitting, a 10-fold 
cross-validation method was employed for internal validation in the 
training set. In addition, because of the minority of DNR patients 
in the data set, the “balanced” class weight mode in the machine-
learning algorithms was conducted to automatically adjust weights 
inversely proportional to class frequencies in the input data.

We further adopted the grid search method to identify the 
optimal parameters of the established prediction models. The main 
parameter to be adjusted in the LinearSVM algorithm was the 
penalty coefficient C (Wang L. et al., 2021). The logistic regression 
algorithm adopted the L2 penalty term, and adjusted the parameters 
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including the inverse of regularization strength C and the maximum 
number of iterations (max_iter). The maximum depth of the tree 
(max_depth), the minimum number of samples required to split an 
internal node (min_samples_split), and the minimum number of 
samples required to be at a leaf node (min_samples leaf) were the 
most important parameters of decision tree algorithm. The random 
forest algorithm was an extension of the bagging method that fits a 
number of decision tree classifiers on various sub-samples of the 
dataset and uses averaging to improve the predictive accuracy and 
control overfitting. In addition to the parameters of the decision 
tree algorithm, the number of trees in the forest (n_estimators) was 
also a parameter that needed to be adjusted in the random forest 
classifier. The machine-learning algorithms can provide the 
corresponding weight of each variable, thereby identifying the 
variables significantly influencing the classification model.

The mean and standard deviation (SD) of the classification 
accuracy, sensitivity, specificity, and area under the receiver 
operating characteristic curve (AUC) of each model were 
computed in 100 runs of repeated re-divided dataset randomly. For 
further model assessment, a permutation test was performed to 
assess the statistical significance of the classification accuracy. The 
permutation test was repeated 1,000 times (Tonga and Huangb, 
2022). During each time, the classifier reallocated labels of DNR 
patients and non-DNR patients to the training data randomly and 
repeated the whole classification process. The p value was acquired 
after the entire permutation was finished. Finally, Welch’s analysis 
of variance (ANOVA) and Post-hoc analysis (Games–Howell test 
with a Tukey correction) were conducted to compare the 
classification accuracies of different models. The statistical analyses 
of machine learning algorithms were performed in Python.

2.6. Statistical analysis

IBM SPSS 22.0 and GraphPad Prism were used to perform 
demographical statistical analyses. Continuous variables were 

assessed with a two-sample t-test or Mann–Whitney test and were 
presented as mean ± SD or median (interquartile range, IQR). 
Categorical variables were assessed with Chi-squared or Fisher 
exact test. For neurocognitive tests, analysis of covariance 
(ANCOVA) was used to compare follow-up scores between the 
two groups, with baseline scores as covariance. In addition, the 
paired-sample t-test analysis was used to compare the tests before 
and after surgery in the DNR patients and non-DNR patients. 
p < 0.05 indicated statistical significance.

3. Results

3.1. Subject characteristics

The flowchart of patient enrollment is provided in 
Supplementary Figure  1. In the present study, 74 patients 
completed the rs-fMRI scan and the neurocognitive tests. A total 
of 16 patients were diagnosed with DNR at 7–14 days 
postoperatively. Also, the duration of education was significantly 
shorter in the DNR patients [median (IQR), 6 (6, 9)] compared to 
the non-DNR patients [median (IQR), 9 (9, 12)] (p = 0.002). No 
significant differences were detected in the other baseline 
characteristics, including age, sex, height, weight, body mass 
index, surgical history, and comorbidities between the two groups. 
In addition, there were no significant differences in the surgical 
duration and nature of surgery between the groups (Table 1).

3.2. Neurocognitive assessments

We investigated group differences in follow-up scores of 
neurocognitive tests using ANCOVA, wherein we controlled for 
baseline scores. Our results showed that the DNR patients 
exhibited significantly lower MMSE, VFT, DSF/DSB, and DSST 
follow-up scores and higher TMT-A follow-up scores (seconds) 

TABLE 1 Baseline characteristics.

DNR (n = 16) Non-DNR (n = 58) p-Value

Age (years) 63.5 (62.0, 67.0) 64.0 (61.0, 68.3) 0.598

Sex (male/female) 12/4 29/29 0.075

Education (years) 6 (6, 9) 9 (9, 12) 0.002

Height (m) 1.68 ± 0.08 1.65 ± 0.08 0.185

Weight (kg) 59.0 (50.0, 70.5) 60.0 (54.8, 70.0) 0.324

BMI ≥ 24 (n, %) 3 (18.8) 19 (32.8) 0.437

Surgical history (n, %) 6 (37.5) 28 (48.3) 0.444

Hypertension (n, %) 7 (43.8) 24 (41.4) 0.865

Diabetes mellitus (n, %) 1 (6.3) 7 (12.1) 0.835

Surgical duration (min) 120 (114, 166) 95 (70, 135) 0.055

Minimally invasive/open surgery 12/4 54/4 0.107

BMI, body mass index; DNR, delayed neurocognitive recovery.
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compared to the non-DNR patients (all p < 0.05, Table 2). Paired-
samples t-test analysis revealed that the performance of 
postoperative DSST and TMT-A assessment was the opposite in 
the two groups. For DNR patients, the DSST score after surgery 
was significantly worse than before, and the TMT-A time after 
surgery was significantly longer than before surgery. However, 
non-DNR patients showed improved performance in DSST and 
TMT-A post-surgery compared with pre-surgery. These results 
indicated that the DNR patients had poor performance after 
non-cardiac surgery in many domains of cognitive function, 
especially in those assessed by DSST and TMT-A, such as 
attention, visual–spatial ability, visual scanning, visual search 
speed, executive function, and visual motor coordination.

3.3. Altered seed-based FC patterns of 
DMN

Seed-based FC analysis revealed that the preoperative whole-
brain resting-state connections of DMN core regions were 
significantly weakened in the DNR patients (Figure 1; Table 3). In 
the dorsal DMN, altered whole-brain FC was observed only in the 
right SFG. The DNR group exhibited decreased FC of the right 
SFG to the right calcarine and right middle frontal gyrus 
compared to the non-DNR group. Regarding the altered patterns 
of the ventral DMN, decreased connections were detected in the 
DNR group compared to the non-DNR group between the left 
parahippocampal gyrus and right cuneus. Also, the DNR group 
exhibited decreased FC of bilateral RSC/PCC to the right superior 
occipital gyrus/calcarine and left precuneus. In addition, 
decreased FC of the right RSC/PCC to the right precuneus was 
also found in the DNR patients. The results indicated that the key 
ROIs of DMN in DNR patients had altered resting-state functional 

connections with visual processing-related cortical areas, which 
mainly manifested as weakened connectivity. Age, sex, and 
education duration were included as covariates in the seed-based 
whole-brain FC analysis. The results were corrected using the 
cluster-based FDR (uncorrected voxel p < 0.001 and corrected 
cluster p < 0.05).

3.4. Machine learning prediction models

The resting-state FC data were standardized before training to 
ensure that machine learning estimators could correctly model all 
features. The mean and variance of each feature were converted to 
0.00 and 1.00 by standardization. The data distribution before and 
after preprocessing is shown in Supplementary Figure 2. In order 
to develop the prediction model, the dataset was randomly 
divided into a training set containing 70% of the samples and a 
testing set containing the remaining 30%, whereas the models 
were validated using the 10-fold cross-validation method.

By the grid search method, the optimal penalty coefficient C 
of the SVM classifier was identified as 8.88889. The inverse of 
regularization strength C of 2 and max_iter of 10 were the optimal 
parameters of the logistic regression classifier. The optimal 
parameters of the decision tree classifier were max_depth of 9, 
min_samples_split of 2, and min_samples leaf of 2. And the 
optimal parameters of the random forest classifier were max_
depth of 2, min_samples_split of 5, min_samples leaf of 2, and 
n_estimators of 20.

Applying the 100 runs of repeated re-divided dataset 
randomly, the SVM classifier with optimal parameters achieved a 
classification accuracy of 75.3 ± 9.4%. The logistic regression 
classifier with optimal parameters achieved a classification 
accuracy of 78.1 ± 7.8%. The decision tree classifier with optimal 

TABLE 2 Neurocognitive assessments.

DNR Non-DNR p-Value

MMSE—baseline 26.69 ± 2.09 27.12 ± 1.87 0.579

MMSE—follow-up 25.50 ± 2.90 27.09 ± 2.26 0.032*

VFT—baseline 14.94 ± 4.19 15.76 ± 3.01 0.472

VFT—follow-up 12.75 ± 4.96# 16.29 ± 3.81 0.002*

DSF—baseline 7.31 ± 1.74 7.67 ± 1.25 0.534

DSF—follow-up 6.75 ± 1.92# 7.74 ± 1.04 0.008*

DSB—baseline 4.13 ± 1.50 3.79 ± 0.97 0.563

DSB—follow-up 3.25 ± 0.86# 3.91 ± 0.90 <0.001*

DSST—baseline 23.44 ± 7.84 29.10 ± 10.90 0.038

DSST—follow-up 20.69 ± 7.44# 31.60 ± 10.83# <0.001*

TMT-A—baseline (s) 62.69 ± 39.65 49.91 ± 21.29 0.245

TMT-A—follow-up (s) 76.38 ± 27.70# 45.55 ± 13.32# <0.001*

Variables are presented as mean ± SD. ANCOVA, analysis of covariance; DNR, delayed neurocognitive recovery; DSB, digit span backward; DSF, digit span forward; DSST, digit symbol 
substitution test; MMSE, mini-mental state examination; SD, standard deviation; TMT-A, trail-making test-part A; VFT, verbal fluency test. *A statistically significant difference using 
the ANCOVA (baseline score as a covariate), p < 0.05.
#A statistically significant difference compared with baseline score using the paired-samples t-test, p < 0.05.
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A

B

FIGURE 1

Altered seed-based whole-brain FC of DMN. (A) Brain regions with decreased connectivity to DMN core ROIs in the DNR patients compared to 
the non-DNR patients after adjusting for age, sex, and education duration (cluster p < 0.05, FDR-corrected). (B) Visualized nodes with peak T value 
of such brain regions. CAL, calcarine; CUN, cuneus; DMN, default mode network; DNR, delayed neurocognitive recovery; FC, functional 
connectivity; FDR, false discovery rate; MFG, middle frontal gyrus; PCC, posterior cingulate cortex; PCUN, precuneus; PHG, parahippocampal 
gyrus; ROIs, regions of interest; RSC, retrosplenial cortex; SFG, superior frontal gyrus; SOG, superior occipital gyrus; A, anterior; P, posterior; L, left; 
R, right.

https://doi.org/10.3389/fnagi.2022.1109485
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Jiang et al. 10.3389/fnagi.2022.1109485

Frontiers in Aging Neuroscience 07 frontiersin.org

parameters achieved a classification accuracy of 77.2 ± 7.8%. The 
random forest classifier with optimal parameters achieved a 
classification accuracy of 84.0 ± 6.5%. The AUC of all classification 
models is shown in Figure  2. The mean values and standard 

deviation of AUC, accuracy, sensitivity, and specificity of all 
classification models are summarized in Figure 3.

The permutation test can be  seen that the SVM model 
(p  = 0.022), the logistic regression model (p  = 0.023), and the 

TABLE 3 Regions with decreased connectivity to DMN core ROIs in the DNR patients.

ROIs Brain regions MNI coordinates (x/y/z mm) Cluster size Peak T

A SFG.R CAL.R 9 −72 15 88 −4.089

B SFG.R MFG.R 24 21 54 62 −4.816

C RSC/PCC.L SOG/CAL.R 21 −81 21 131 −5.054

D RSC/PCC.L PCUN.L −15 −60 48 65 −4.264

E PHG.L CUN.R 0 −75 21 113 −4.111

F RSC/PCC.R SOG/CAL.R 21 −81 24 120 −4.397

G RSC/PCC.R PCUN.L −15 −57 48 128 −4.519

H RSC/PCC.R PCUN.R 6 −54 54 58 −4.145

CAL, calcarine; CUN, cuneus; DMN, default mode network; DNR, delayed neurocognitive recovery; MFG, middle frontal gyrus; MNI, Montreal Neurological Institute; PCC, posterior 
cingulate cortex; PCUN, precuneus; PHG, parahippocampal gyrus; ROIs, regions of interest; RSC, retrosplenial cortex; SFG, superior frontal gyrus; SOG, superior occipital gyrus; R, 
right; L, left.

A B

C D

FIGURE 2

The ROC curves of all classification models in 100 runs of repeated re-divided dataset randomly. (A) The SVM model; (B) the logistic regression 
model; (C) the decision tree model; (D) the random forest model. AUC, an area under the curve; ROC, the receiver operating characteristic; SVM, 
support vector machine.
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FIGURE 3

The classification performance of models. The mean AUC, accuracy, sensitivity, and specificity were calculated based on 100 runs of repeated 
re-divided dataset randomly. Abbreviations: AUC, an area under the curve; SVM, support vector machine; LR, logistic regression; DT, decision tree; 
RF, random forest.

FIGURE 4

The feature weights of the random forest prediction models.

random forest model (p = 0.019) could distinguish the DNR group 
and the non-DNR group, whereas the decision tree model could 
not (p = 0.118). Furthermore, Welch’s ANOVA was performed to 
compare the classification accuracies of different models. It 
revealed significant differences among the SVM, logistic 
regression, and random forest models in the classification 
accuracies (Welch F = 34.002, p < 0.001). Post-hoc tests showed 
that the accuracy of the random forest model was higher than the 
SVM model (p < 0.001, 95% CI 0.060 to 0.114) and the logistic 
regression model (p < 0.001, 95% CI 0.035 to 0.084), while there 
was no significant difference in the accuracy between the SVM 
model and the logistic regression model (p = 0.068, 95% CI −0.002 
to 0.056). The results indicated that the random forest classifier 
with optimal parameters could achieve the best prediction 
performance for DNR. The random forest algorithm also provided 
the corresponding weight of each feature, thereby identifying the 
features that influence the predictions (Corradi et  al., 2018). 
Figure  4 shows the corresponding weights of each variable 
calculated by the random forest algorithm to reveal the 
contributions of these variables to the model.

4. Discussion

The results of the present study showed that the preoperative 
resting-state whole-brain FC of DMN features could be used to 
predict DNR by establishing a machine-learning model. The key 
findings are as follows: (1) the FC between the key ROIs of DMN 
and other brain regions, especially in visual processing-related 
cortical areas, in DNR patients before surgery was more 
weakened compared to non-DNR patients; (2) the random forest 

machine learning model showed that whole-brain FC features of 
DMN could be  used to predict postoperative DNR with 
high accuracy.

The human brain can be viewed as an integrated network 
consisting of brain regions that are anatomically separated but 
functionally connected (van den Heuvel and Hulshoff Pol, 
2010). Hence, compared with the activity of local brain regions, 
FC analysis can better reflect the actual operation mode of the 
whole brain. The FC approach has obtained good results in 
fMRI data classification studies (Wang et al., 2019; Dai et al., 
2022). Recently, an increasing number of rs-fMRI studies have 
reported that resting-state FC before surgery has a primary role 
in predicting cognitive dysfunction after surgery. Our previous 
study found that patients with preoperative decreased FC 
between the bilateral MCC and left calcarine were more 
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susceptible to DNR following non-cardiac surgery by logistic 
regression (Jiang et al., 2020). By exploring the whole-brain FC 
of key hubs in cognitive-related brain networks, we found that 
the altered whole-brain FC of DMN and central executive 
network could predict DNR in elderly patients using machine 
learning algorithms (Jiang et al., 2021). In addition, Wu et al. 
(2021) established a machine learning DNR classification model 
based on the multi-order brain FC network features, achieving 
good prediction performance. These rs-fMRI studies examined 
preoperative FC changes of brain networks in patients with 
cognitive decline after surgery, revealing some consistent 
findings, such as the importance of DMN connectivity.

The basal activity of the DMN is quite consistent during the 
resting state. The DMN has an essential role in episodic memory, 
processing of cognition and emotion, and so on (Shi et al., 2020). 
Functional abnormalities of DMN have been well-documented 
in various diseases related to cognitive impairment, such as AD 
and MCI (Zhang et  al., 2020; Wang S. M. et  al., 2021). Our 
preliminary findings suggested that the whole-brain FC of 
certain brain regions in the DMN was altered in DNR patients. 
Therefore, in the present study, we  further explored the FC 
patterns of all components of DMN in DNR patients based on 
prior knowledge. We also found that the DMN connectivity was 
significantly decreased in DNR patients. Interestingly, the brain 
regions with altered DMN connectivity were predominantly in 
visual processing areas. Similar changes were detected in AD and 
MCI in previous studies. Krajcovicova et al. (2017) found that 
the patients with MCI/AD had disrupted PCC connectivity with 
areas of the ventral visual pathway, which suggested that 
the  abnormal DMN connectivity patterns may provide a 
possible underlying mechanism of impaired visual processing 
in MCI/AD.

Consistent with cognitive disorders like AD and MCI, and in 
addition to memory deficits, impairment in other cognitive 
domains is present in DNR. Many studies used neuropsychological 
tests to demonstrate visual cognitive dysfunction in DNR patients 
(Lage et al., 2021; Ji and Li, 2022; Zhao et al., 2022). We also found 
that the DNR patients showed poor performance postoperatively 
in visual attention, visual memory, visual–spatial scanning, and 
visual search speed assessed by DSST and TMT-A. However, the 
current diagnosis methods of DNR, which are mainly based on 
assessments of neuropsychological tests, may easily be impacted 
by human factors. As the information obtained from rs-fMRI data 
could provide objective evidence for the brain activity 
characteristics of DNR, combining it with the manual assessment 
of DNR diagnosis may reduce the diagnosis errors of DNR and 
identify the potential biomarkers. Using different FC analysis 
methods, we  demonstrated that the DNR patients showed 
abnormal connectivity in regions related to visual processing, 
especially decreased connection to the key regions in DMN. The 
altered MCC spontaneous activity in DNR patients was detected 
based on the Amplitude of Low-frequency Fluctuation (ALFF) 
analysis. In our previous study, MCC, a subregion of DMN, 
showed a significantly decreased FC to the calcarine in DNR 

patients by ALFF-based FC analysis (Jiang et  al., 2020). In 
addition, we found that the other key region of DMN, the lateral 
parietal cortex, also exhibited a significantly decreased FC to the 
calcarine in DNR patients by seed-based FC analysis (Jiang et al., 
2021). The calcarine lies in the center of the primary visual cortex 
and contributes to visual processing, such as visual attention and 
visual memory (Pratte and Tong, 2014; Bergmann et al., 2016). A 
large body of studies has suggested that abnormal calcarine FC 
might be  associated with the occurrence and development of 
multiple cognitive disorders (Moon and Jeong, 2017; Zuo et al., 
2017; Zhuang et  al., 2019). Among the brain regions with 
abnormal FC to DMN identified in the present study, in addition 
to the calcarine, the cuneus, precuneus, and superior occipital 
gyrus, which are involved in visual processing, were identified. 
We hypothesized that the visual cognitive impairment in DNR 
patients was mainly caused by the inhibition of FC between the 
DMN and visual processing areas. The association of DMN and 
visual processing could be  worthy of further study in future 
DNR research.

In recent years, machine learning has been widely used by 
cognitive dysfunction disease prediction studies due to its 
individualized classification ability (Mufti et al., 2019; Hu et al., 
2021). The combination of brain network research based on fMRI 
and machine learning has become a topic of great interest. Yet, the 
data obtained by fMRI are highly dimensional, sample-limited, 
and non-linear. Traditional modeling methods or linear 
dimensionality reduction cannot meet the requirements of the 
model (Tan et al., 2022). Machine-learning algorithms such as 
SVM and random forest had advantages in dealing with small 
samples and non-linear features. In addition, since the fMRI 
original data contains a large amount of redundant information, 
selecting the proper feature subset is essential to avoid reducing 
the model’s performance (Shuai et al., 2017). The present study 
uses the two-sample t-test after FDR correction to extract features 
with intergroup differences. Based on the FC features of DMN 
selected by feature screening, we built a prediction DNR model 
using the random forest algorithm, achieving great performance.

There are some limitations in the present study. First, the 
postoperative FC patterns of DMN in DNR patients could not 
be identified because most subjects refused to perform another 
fMRI scan postoperatively. Second, the amount of experimental 
data is limited. A sufficient amount of data ensures the reliability 
and stability of machine learning. Although we have conducted 
a strict division of training and testing data and performed the 
SVM and random forest algorithm, which are suitable for small 
samples, the stability and reliability of the prediction models still 
need to be  verified on more datasets, especially multi-
center data.

In conclusion, the present study demonstrated that the 
decreased FC between the DMN and brain regions involved in 
visual processing was detected in elderly patients who 
developed DNR after non-cardiac surgery. Also, the 
characteristic FC patterns could be effective biomarkers for the 
prediction of DNR.
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