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Asymptomatic carotid stenosis is 
associated with both edge and 
network reconfigurations 
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Background and purpose:  Patients with asymptomatic carotid stenosis, even 

without stroke, are at high risk for cognitive impairment, and the neuroanatomical 

basis remains unclear. Using a novel edge-centric structural connectivity (eSC) 

analysis from individualized single-subject cortical thickness networks, we aimed 

to examine eSC and network measures in severe (> 70%) asymptomatic carotid 

stenosis (SACS).

Methods: Twenty-four SACS patients and 24 demographically- and 

comorbidities-matched controls were included, and structural MRI and 

multidomain cognitive data were acquired. Individual eSC was estimated via 

the Manhattan distances of pairwise cortical thickness histograms.

Results: In the eSC analysis, SACS patients showed longer interhemispheric but 

shorter intrahemispheric Manhattan distances seeding from left lateral temporal 

regions; in network analysis the SACS patients had a decreased system segregation 

paralleling with white matter hyperintensity burden and recall memory. Further 

network-based statistic analysis identified several eSC and subgraph features 

centred around the Perisylvian regions that predicted silent lesion load and 

cognitive tests.

Conclusion: We conclude that SACS exhibits abnormal eSC and a less-

optimized trade-off between physical cost and network segregation, providing 

a reference and perspective for identifying high-risk individuals.
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1. Introduction

Clinically “asymptomatic” carotid stenosis, even without stroke, is associated with 
cognitive impairment (de Weerd et al., 2014; Lal et al., 2017; Lazar et al., 2021), which is 
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generally characterized by reduced processing speed and learning/
memory capacity (Martinić-Popović et  al., 2009; Lazar et  al., 
2021). As such, cognitive status has been suggested as an indicator 
of disease progression and efficacy monitoring in these patients 
(Lattanzi et  al., 2018). However, the neuroanatomical basis 
underlying cognitive impairment remains largely unclear.

Neuroimaging studies have revealed notable structural 
alterations in asymptomatic carotid stenosis. Morphological 
analyses, for example, reveal asymmetrical (Gao et al., 2021b) and 
stenosis-ipsilateral dominated gray matter (GM) atrophies (Avelar 
et al., 2015), cortical thinning in the Perisylvian regions (Gao et al., 
2021a), and accelerated aging changes (Alhusaini et al., 2018). 
Lesion mapping has reported prominent subcortical microinfarcts 
and white matter hyperintensity (WMH; Kandiah et al., 2014; van 
Veluw et  al., 2017). Structural imaging also identifies reduced 
white matter integrity and fiber density in such patients (Cheng 
et al., 1970; Meng et al., 2017; Gao et al., 2019). Moreover, these 
patients are reported to show compromised hemodynamics 
(Silvestrini et  al., 2009; Balucani et  al., 2012), glymphatic 
dysfunction and enlarged perivascular spaces (Liu et al., 2021). 
These lines of evidence suggest that extensive morphological 
changes have occurred in these patients, and morphometric 
network analysis based upon may provide rich information for 
understanding the neuroanatomical basis of cognitive impairment 
and predicting long-term risks.

A multivariate methodology is the structural covariance 
network analysis (Alexander-Bloch et al., 2013), which assumes 
that morphological measures [e.g., cortical thickness (CT)] of 
one brain region and another structurally and functionally 
connected one co-vary, forming different communities. These 
co-variations are underpinned by gene co-expression (Romero-
Garcia et  al., 2018), systematically change across lifespan 
development (Montembeault et al., 2012; Kuo et al., 2020), and 
are sensitive to the early stages of neuropsychiatric diseases (e.g., 
Coppen et  al., 2016; Liu et  al., 2019; Qing et  al., 2021). For 
example, normal aging is characterized by a decrease in GM 
covariance connectivity in higher-order associative regions, 
especially those involved in the semantic, executive control, and 
default mode functions (Montembeault et al., 2012). However, 
most previous studies of morphometric networks are based on 
group-level covariance across subjects. While this analysis can 
reveal brain network architecture, it cannot derive individual-
level network measures, which greatly reduces its clinical utility 
for individual patients.

Consequently, individualized single-subject morphometric 
network analyses are emerging as a new area of research (Tijms 
et al., 2012; Li et al., 2017; Xue et al., 2022). They can provide 
measures similar to those derived from functional connectivity 
with functional MRI or structural connectivity with diffusion MRI 
tractography, holding promise for clinical settings. The 
construction of individual morphometric network is generally by 
estimating the interregional/areal relationships, e.g., probability 
distributions, distances, and similarities, of morphological features 
(e.g., GM volume, CT, cortical gyrification, sulcus depth, and 

cortical complexity; Tijms et al., 2012; Wang et al., 2016; Li et al., 
2017; Raamana and Strother, 2018). The pairwise estimates of 
morphological features are termed edges in network analysis. The 
edges and their inter-edge relationships are called edge-centered 
brain connectivity, which is a new direction in human 
brain connectomics.

Asymptomatic carotid stenosis is a condition characterized by 
potential chronic hypoperfusion, microembolism, and 
hemodynamic burdens caused by internal carotid stenosis (Cheng 
et al., 1970; Marshall et al., 2017; Wang et al., 2017). This condition 
primarily affects the Perisylvian cortical reorganization and 
topographically involves somatosensory/motor, semantic, silent 
processing, and frontoparietal systems, as well as cognitive 
functions such as processing speed and semantic memory (Avelar 
et al., 2015; Gao et al., 2019; Nickel et al., 2019; Gao et al., 2021b). 
Thus, an investigation of the morphometric network may provide 
us with a better understanding of the neuroanatomical basis of 
cognitive impairment in carotid stenosis. Network edges derived 
from interareal histogram weights form rich connectivity 
information, and promote the identification of the edges that 
closely relate to cognitive impairment (Raamana et al., 2015; Wang 
et al., 2016, 2018; Raamana and Strother, 2020; Li et al., 2021; Peng 
et al., 2022). However, it is unknown to what extent asymptomatic 
carotid stenosis may affect the edges and network architecture that 
are closely associated with cognitive impairment and serve as 
potential imaging markers.

In this study, we used a novel individual approach to construct 
single-subject CT networks and contrasted unilateral (>70%) severe 
asymptomatic carotid stenosis (SACS) patients with demographically 
and comorbidities-matched healthy controls (HC). We estimated 
edge-centric structural connectivity (eSC) derived from the pairwise 
Manhattan distances of regional CT histograms. We expected that the 
SACS showed abnormal eSC in the Perisylvian and language-related 
regions and that this eSC was associated with cognitive impairment 
in SACS patients. Furthermore, large-scale structural networks 
reconstructed from the eSC would exhibit lower network segregation 
and efficiency globally.

2. Materials and methods

2.1. Participants

This study included 24 SACS patients and 24 demographically- 
and comorbidities-matched elder HC. Patients were 55–80 years; 
unilateral internal carotid artery (ICA) stenosis ≥70% and 
contralateral ICA stenosis <50%; free of stroke, transient ischemic 
attack, or dementia; Modified Rankin Scale (Sulter et al., 1999) 
score of 0 or 1. Patients would be excluded if they had posterior 
circulation diseases, Mini-Mental State Examination (MMSE; 
Tombaugh and McIntyre, 1992) score < 26, modified Rankin scale 
(Sulter et al., 1999) ≥ 2 (functional disability), severe systemic/
neuropsychiatric diseases, education <6 years, or contraindications 
for MRI. Detailed demographic and participant information can 
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be found in our recent publications (Gao et al., 2019, 2021b). The 
present study was approved by the Medical Ethics Committee of 
Zhongnan Hospital of Wuhan University, and all participants gave 
written informed consent.

2.2. Neurobehavioral assessments

Neurobehavioral batteries were administered to the 
participants and focused on different cognitive domains: (i) global 
cognition, including the MMSE and the Montreal  - Cognitive 
Assessment (MoCA; Nasreddine et  al., 2005); (ii) executive 
functions, including the Digit Symbol Tests (DST); and (iii) 
memory, including the Rey Auditory Verbal Learning Tests. A 
detailed description of these neurocognitive tests can be found 
elsewhere (Gao et al., 2019, 2021b).

2.3. MRI data acquisition

MRI data were acquired on a Siemens 3.0 T scanner 
(MAGNETOM Trio, Germany), including 3D T1-weighted 
anatomical images [repetition time (TR)/echo time (TE)/inversion 
time (TI) = 2250/2.26/900 ms, slice thickness = 1 mm, flip angle 
(FA) = 9°, no interslice gap, 176 sagittal slices, matrix size = 256 × 256], 
and T2-weighted fluid-attenuated inversion recovery (FLAIR) images 
(TR/TE/TI = 6,000/388/2200 ms, FA = 120°, slice thickness = 1 mm, no 
interslice gap, voxel size = 0.5 mm × 0.5 mm × 1 mm, 160 axial slices) 
covering the whole brain. Other sequences not included in this study 
were not described here.

2.4. Structural image preprocessing

T1 anatomical images were pre-processed using 
FreeSurfer’s (version 6.0)1 “recon-all” pipeline. Individual CT 
was generated and quality assurance procedures were carried 
out. The CT surfaces were spatially smoothed with a 15-mm 
full width at half maximum (FWMH) Gaussian kernel, as 
recommended by Li et al. (2021), and were verified using a 
25-mm FWMH Gaussian kernel.

2.5. Edge-centric structural connectivity 
estimated from pairwise cortical 
thickness histograms

Graynet2 (Raamana and Strother, 2018) was used to construct 
individualized single-subject CT networks. Network nodes were 
defined using the two atlases, namely the Desikan-Killiany atlas 

1 http://surfer.nmr.mgh.harvard.edu/

2 https://github.com/raamana/graynet

(Desikan et al., 2006) and the Human Connectome Project (HCP) 
MultiModal Parcellation (HCP-MMP) atlas (Glasser et al., 2016). 
They consist of 68 (34 for each hemisphere) and 360 areas (180 for 
each hemisphere), respectively (Figure 1).

For each parcellation/node, 5% outliers from the distribution 
of CT values were discarded to improve the robustness of the 
feature. The residual distribution was transformed into a 
histogram by binning it into N = 100 equally spaced bins. The 
histogram counts were then normalized by for k = 1: N, where hi 
is the node i histogram (Figure 1, step 2). This approach computes 
the pairwise edge-weight for the two nodes i and j, regardless of 
the number of vertices in the two nodes (Figure 1, step 2). For a 
detailed method description, please see the original articles 
(Raamana et al., 2015; Raamana and Strother, 2020). Edges (i.e., 
eSC) were defined as the pairwise Manhattan distance weights of 
interareal CT histograms. A shorter Manhattan distance reflects a 
stronger morphological “connection,” whereas a longer one 
reflects a longer traveling distance or a weaker connection. Finally, 
each eSC was rescaled to [0, 1] using the Min-Max Scaling 
(Figure 1).

2.6. Network segregation and integration

The rescaled matrix was further subtraction normalized (i.e., 
each edge was subtracted by 1) and the diagonal values were set to 
zeros. This transformation generates an adjacent matrix that 
reflects eSC strength, which is consistent with a traditional 
SC matrix.

2.6.1. Within-system and between-system 
connectivity

Since morphological networks, especially the network derived 
from morphological CT connectivity reported here, have an 
apparent distinct modular or community structure from those 
derived from functional connectivity MRI. Thus, a direct use of 
the community index as defined in Chan et  al. (2014) can 
be  problematic. To reconcile this issue, we  used lobar level 
parcellations as initially defined in the Desikan-Killiany atlas to 
assign the whole network nodes into five systems (Desikan et al., 
2006), i.e., frontal, parietal, temporal, occipital, and cingulate 
cortices. Network segregation and integration were therefore 
computed on this basis. Within-system connectivity was 
calculated as the mean eSC of all nodes of that system to each 
other (i.e., the mean eSC between all frontal nodes to all other 
frontal nodes). Conversely, between-system connectivity was 
calculated as the mean eSC between each node of a system and all 
nodes of all other systems (i.e., the mean eSC between all frontal 
nodes and all other nodes in the cortex).

2.6.2. System segregation
The system segregation was computed as values of within-

system connectivity in relation to between-system connectivity 
(Chan et al., 2014), as follows:
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Where Zw  is the mean eSC between nodes within the same 
system and Zb  is the mean eSC between nodes of one system to 
all nodes in other systems.

2.6.3. System integration
The system integration was computed using the participation 

coefficient, which measures to what degree a node diversely 
connects between systems, that is, strong cross-regional 
information integration capabilities (Rubinov and Sporns, 2010), 
as follows:
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Where K mi
w ( )  is the weighted connections of node i  with 

nodes in system m  (a system to which node i  does not belong) 
Kiw is the total weighted connections node i  exhibits. Higher 

participation coefficient values indicate proportionally greater 
communication with nodes in other systems.

2.7. Network-based statistic prediction

To validate the case–control classification ability of the eSC 
measures, we adopted a recently improved and validated method 
called network-based statistical (NBS) prediction (Serin et al., 
2021) to overcome the small sample size of this study.

The NBS-Predict toolbox3 was used to detect and identify 
SACS-related abnormal eSC with both hyperconnectivity and 

3 https://www.nitrc.org/projects/nbspredict

FIGURE 1

Schematic overview. Step 1: T1 anatomical image reconstruction and cortical thickness extraction. Step 2: Single-subject cortical thickness 
connectivity was constructed using the Graynet software. Step 3: Connectivity edges were computed as vectors, and then recovered into adjacent 
matrices for group statistics. Step 4: Network segregation and integration calculation. Step 5: Suprathreshold edges were used for further 
network-based statistics classification and regression.
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hypoconnectivity. Parameters were generally the same as 
recommended (Serin et al., 2021): 40-fold, 50 repeated cross-
validation (CV) procedures, hyperparameters with the grid 
search algorithm, auto optimization for classification 
algorithms, two contrasts, a start value of p of 0.01 for the 
68 × 68 matrix, and a start value of p is 0.005 for the 
360 × 360 matrix.

2.8. White matter hyperintensity (WMH)

WMH burden was automatically measured using individual 
T1 anatomical and 3D T2-FLAIR images with the Lesion 
Segmentation Tool (LST4; Schmidt et al., 2012) as described in its 
tutorial and our recent publications (Gao et al., 2019, 2021a,b). 
WMH lesions were segmented by the lesion growth algorithm 
with a default initial threshold (κ = 0.3), and total WMH number 
and size (ml) were generated. The binary WMH segments were 

4 www.applied-statistics.de/lst

spatially normalized into the standard Montreal Neurological 
Institute (MNI152) space and summarized for group visualization.

2.9. Statistical analysis

For cognitive tests, age, and education, group statistics were 
carried out using SPSS 16.0 (SPSS Inc., Chicago, IL, United States) 
with a significance threshold of p < 0.05; for gender, diabetes, 
hyperlipidemia, and smoking, group statistics were determined 
using Chi-square tests with a significant p < 0.05. For eSC, a 
threshold for the false discovery rate (FDR) p < 0.05 was used to 
address multiple comparisons.

To understand the relationship between suprathreshold edge 
and network measures (i.e., eSC, system segregation, and 
integration scores), cognitive tests, and WMH burden, it is 
instructive to correlate these metrics either using univariate 
nonparametric correlation tests or NBS-based regressions. First, 
suprathreshold edges were used for the prediction of cognitive 
performance and WMH burden with the NBS-Predict toolbox to 
generate confidence intervals by repeating the CV procedure 50 
times. Next, a nonparametric Spearman correlation analysis was 
conducted to examine associations between the system segregation 
and integration scores and neurobehavioral tests and WMH 
burden using SPSS 16.0 (SPSS Inc., Chicago, IL, United States) and 
GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, 
United States).

3. Results

3.1. Demographic and clinical data

As shown in Table 1, the SACS patients had comparable 
demographics with the HC on gender, age, education, 
underlying diseases (hypertension, diabetes, hyperlipidemia), 
and smoking (ps > 0.05). However, they performed significantly 
worse on tests of verbal memory (both immediate and delayed 
recall memories, ps < 0.005), global cognition (MMSE and 
MoCA, ps < 0.05), executive functions (DST, p < 0.05), and 
higher WMH load (ratio between WMH size and total brain 
size, WMH volumes, and WMH number, ps < 0.005; Table 1 and 
Figure 2).

3.2. Group-average edge-centric 
structural connectivity and 
between-group differences in 
edge-centric structural connectivity

Group-average eSC for the SACS and HC groups is shown in 
Figure 3. A long Manhattan distance reflects a weak morphological 
connection; in contrast, a short one reflects a short traveling 
distance or a strong connection.

TABLE 1 Demographics and clinical characteristics.

SACS HC p value

Age (years) 64.3 (7.2) 67.2 (6.1) 0.17

Sex 0.99a

Male 15 19

Female 4 5

Education (years) 9.6 (2.8) 11.1 (3.5) 0.12

Hypertension 17 (89%) 18 (75%) 0.23

Diabetes 4 (21%) 4 (17%) 0.71

Hyperlipidemia 9 (47%) 11 (46%) 0.92

Smoke 9 (47%) 6 (25%) 0.13

Affected side 7 l/12R – –

MMSE 26.8 (0.7) 27.4 (0.7) 0.015*

MoCA 23.3 (1.2) 24.2 (1.6) 0.017*

Word fluency 33.4 (6.2) 37.1 (4.0) 0.258

Digit Symbol Tests 28.0 (4.7) 31.5 (5.5) 0.029*

Backwards digit-span 5.8 (1.0) 6.5 (0.9) 0.042*

Forwards digit-span 3.8 (0.8) 4.5 (0.8) 0.021*

Immediate recall 31.0 (4.5) 35.8 (5.6) 0.004**

Delayed recall 4.6 (1.6) 6.5 (1.1) <0.001***

WMH corrected 0.6 (0.7) −0.6 (1.0) <0.001***

WMH size (mL) 10.8 (3.5) 1.6 (3.1) <0.005**

WMH number 13.4 (5.8) 5.9 (6.3) <0.001***

Values are presented as mean (SD) or number (%). L, left; R, right; MMSE, Mini-Mental 
State Examination; MoCA, Montreal Cognitive Assessment; a, two-tailed Chi-squared 
test; WMH, white matter hyperintensity; WMH corrected, white matter hyperintensity 
(corrected by total cranial volume and log10 transformed); WMH size, white matter 
hyperintensity volumes; WMH number, number of WMH. 
* represents p< 0.05, ** p<0.01, and *** p<0.001

https://doi.org/10.3389/fnagi.2022.1091829
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://www.applied-statistics.de/lst


Ren et al. 10.3389/fnagi.2022.1091829

Frontiers in Aging Neuroscience 06 frontiersin.org

We first examined eSC with the canonical Desikan-Killiany 
atlas. The Manhattan distances of the interregional CT histograms 
revealed significant changes in eSC in SACS patients. The SACS 
patients showed higher interhemispheric but shorter 
intrahemispheric Manhattan distances; in other words, they had 
decreased interhemispheric but increased intrahemispheric 
morphological connectivity seeded from left lateral temporal 
regions (Figure  3). They also had shorter distances between 
somatosensory/motor regions (Figure 3).

Using the finer HCP-MMP atlas, we further examined and 
validated the results. Generally, suprathreshold edges replicated 
those in the Desikan-Killiany atlas, however, the HCP-MMP atlas 
yielded additional significant edges. These unique edges included 
significantly shorter distances both in inter- and intra- 
hemispheric pairs seeding from the right lateral occipital regions 
(Figure 3).

3.3. Validation analysis

We further used a different spatial smoothing kernel, i.e., a 
25-mm FWHM, to validate the group comparison results and 
found they were generally comparable (Figures 3, 4). A larger 
FWHM brought higher local similarity in CT values and, 
therefore, shorter Manhattan distances and a higher eSC.

3.4. Network-based statistic prediction

We investigated the biomarkers of SACS using the eSC data 
from the SACS patients and HC. Using NBS prediction, 

we identified both hypo- and hyper-connected subnetworks in 
patients with SACS, including brain regions located in the 
language, somatosensory/motor, frontoparietal, and salience 
systems (Figure 5 and Table 2).

3.5. System segregation and integration

The SACS patients had significantly lower system 
segregation (0.078 ± 0.025 vs 0.098 ± 0.028, t = − 2.411, p = 0.021) 
at 15-mm FWMH, and (0.063 ± 0.031 vs 0.089 ± 0.029, t = − 
2.811, p = 0.008) at 25-mm FWMH (Figure  6A) using the 
Desikan-Killiany atlas. Using either size or number, a lower 
system segregation score was significantly associated with a 
higher WMH burden (Figures  6B,C). Conversely, a higher 
system segregation score was significantly associated with better 
DST scores (Figure 6D).

3.6. Network-based statistical prediction

Further, NBS-predict regression analysis showed that 
structural hypoconnectivity (negative) predicted WHM burden 
with Pearson’s correlation coefficients of 0.450 (95% CI: 0.369, 
0.531) in WMH size (Figure 7A) and of 0.383 (95% CI: 0.299, 
0.468) in WMH number (Figure  7B), respectively. 
Comparatively, structural connectivity (positive) predicted 
cognitive tests with Pearson’s correlation coefficients of 0.608 
(95% CI: 0.571, 0.646) in immediate recall (Figure 7C) and of 
0.277 (95% CI: 0.210, 0.343) in delayed recall (Figure  7D), 
respectively.

FIGURE 2

Probability map of WMH lesions. Spatial distributions of cumulative WMH for the control group (upper panel) and patients with SACS (lower panel). 
The colorbar indicates the number of subjects who had WMH in the same voxel, i.e., the control group had a maximum of 4 subjects overlapping 
in the same voxel, while the SACS patients had a maximum of 13 subjects overlapping in the same location. L, left; R, right; WMH, white matter 
hyperintensity; SACS, severe asymptomatic carotid stenosis; HC, healthy controls.
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4. Discussion

We estimated the Manhattan distances between pairwise CT 
histograms to compute eSC and construct subject-wise 
morphological brain networks. This analysis showed that the 
SACS patients had longer interhemispheric but shorter 
intrahemispheric Manhattan distances seeding from left lateral 
temporal regions, corresponding to lower interhemispheric but 
higher intrahemispheric connectivity. Further network analysis 
showed that the SACS patients had decreased system segregation 
paralleling with WMH burden and recall memory. Lastly, 
we applied a recently developed NBS approach to get feature 
weights for eSC, and subgraph features that predicted WMH load 
and cognitive tests. These results showed that SACS had 
disrupted structural connectivity, altered eSC measured by 

Manhattan distances, and pronounced lower system segregation. 
Further, NBS analysis yielded good feature classification 
performance. These findings suggest that subject-wise eSC has 
the potential to identify high-risk individuals while also 
providing insights into the morphological connectivity basis of 
cognitive impairment and accelerated aging in advanced 
asymptomatic carotid stenosis.

This study identified that patients with SACS exhibited 
altered pairwise CT co-vary patterns with increased 
interhemispheric but decreased intrahemispheric Manhattan 
distances seeding from the left lateral temporal regions. This 
result is consistent with prior reports on atrophy and 
dysconnectivity in the same regions (e.g., Cheng et al., 1970; 
Lin et al., 2014; Avelar et al., 2015; Marshall et al., 2017; Tani 
et al., 2018; Nickel et al., 2019; Gao et al., 2021b), and also 
generally consistent with previous reports using fMRI 
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FIGURE 3

Subject-level network using the Desikan-Killiany atlas (68 parcels). Group average connectivity matrices for SACS patients (A,C) and healthy 
controls (B,D) with 15 mm and 25 mm smoothing kernels using the Desikan-Killiany atlas are shown. The colorbar shows standard Manhattan 
distances, with shorter values reflecting greater structural connectivity and vice versa. Subgraphs (E,F) show between-group differences on single-
subject network connectivity with 15 mm and 25 mm smoothing kernels, respectively, which could be visualized as graphs. (G,H) The colorbar in 
the lower panel shows t values for the group statistics on edges, with a positive t-value representing that the SACS patients had a longer 
Manhattan distance and thus a lower structural connectivity on the edge, and vice versa. LH, left hemisphere; RH, right hemisphere.
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functional connectivity or diffusion tensor imaging SC (Lin 
et  al., 2014; Huang et  al., 2018; Gao et  al., 2019; He et  al., 
2020). For example, earlier results from resting-state 
functional connectivity show that SACS has reduced 
interhemispheric connectivity, especially in the frontoparietal 
network ipsilateral to stenosis (Cheng et al., 1970). Our prior 
study also has identified lower interhemispheric functional 
connectivity located in the Perisylvian regions, spanning 
across somatomotor, salience, and dorsal attention networks 
(Gao et  al., 2019). We  interpret this finding as altered 
morphological co-variations dominated by the lateral 
temporal regions. Notably, the SACS exhibited shorter 
Manhattan distances and thus a higher eSC. This is unusual 
since neurodegenerative diseases are often associated with 
decreased connectivity globally. On the one hand, this 

phenomenon may reflect pairwise synchronized/co-vary 
atrophy patterns, as much of previous evidence has shown 
that these regions have thinner cortex in SACS (Avelar et al., 
2015; Marshall et  al., 2017; Nickel et  al., 2019; Gao et  al., 
2021a), and this synchronized shrinkage could lead to an 
increased similarity. This speculation requires further 
verification through computational modeling. On the other 
hand, this may reflect compensation in the preclinical stage 
of the disease, as many neurodegenerative diseases have 
shown a compensatory increase in the early stages.

It is also possible that in SACS patients, the long-range 
connections that maintain interhemispheric interactions and 
support advanced cognitive function are impaired, while the 
relatively short-range intrahemispheric connections that are 
essential for functional specification are enhanced. Neuroimaging 
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FIGURE 4

Individualized single-subject networks using the HCP-MMP atlas (360 parcels). Group average connectivity matrices for SACS patients (A,C) and 
healthy controls (B,D) with 15 mm and 25 mm smoothing kernels using the HCP-MMP atlas are shown. The colorbar shows standard Manhattan 
distances, with smaller values reflecting greater structural connectivity and vice versa. Subgraphs (E,F) show between-group differences on 
network connectivity with 15 mm and 25 mm smoothing kernels, respectively, which could be visualized as graphs. (G,H) The colorbar shows t 
values for the group statistics on the edges, with a positive t-value representing that the SACS patients had a longer Manhattan distance and thus a 
lower structural connectivity on the edge, and vice versa. LH, left hemisphere; RH, right hemisphere.
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studies have established that interhemispheric integration and 
intrahemispheric specialization are important underpinnings of an 
individual’s higher cognitive abilities (e.g., Buckner and 
Krienen, 2013).

Another novel finding of our study is that the SACS patients 
exhibited decreased system segregation and comparable system 
integration as compared to the controls. Human functional 
imaging has shown that system segregation decreases with normal 
aging (Chan et  al., 2014) and supports cognitive resilience in 
Alzheimer’s disease (Ewers et al., 2021), and this reduction can 
be improved through visual speed processing training (Chen et al., 
2021). This suggests that the community structure of SACS blurs 
system and network boundaries, which may reflect a compensatory 

mechanism under the condition of chronic hypoperfusion and 
compromised hemodynamics. Such phenomenology has also been 
suggested as decreased within-system and increased between-
system functional connectivity in mild cognitive impairment and 
Alzheimer’s disease (Vipin et al., 2018).

Limitations. First, as a small sample study, we  thus 
repeated the analyses using different smoothing kernels and 
atlases to overcome the potential bias; future large-sample 
studies are needed to address this issue and promote deep 
learning-based prediction of high-risk individuals, with 
emphasis on dementia and stroke, to inform clinical decisions 
for surgical intervention in such patients. Second, since 
morphological networks and functional connectivity networks 
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FIGURE 5

NBS classification. In patients with SACS, the NBS classification identifies both hyper-connected (upper panel) qqand hypo-connected (lower 
panel) subnetworks. Hyper-connected subnetworks (weight threshold = 0.9) in patients are depicted in (A) the suprathreshold adjacent matrix, 
(B) classification performance, (C) a graph visualized with the BrainNet Viewer (https://www.nitrc.org/projects/bnv/), and (D) the circular 
connectome. Edges in both figures, and nodes in the circular graphs are colored according to their weights and standardized nodal degree.
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FIGURE 6

System segregation analysis. Between group comparisons on system segregation scores for the Desikan-Killiany atlas, both with FWMH 15 mm and 
25 mm (A–D). The SACS have significantly lower segregation scores, which are also correlated with the burden of white matter hyperintensity and 
cognitive tests.

have apparently different community structures, the network 
segregation and integration based on their calculations show 
different patterns, which is also an active research direction. 

Third, longitudinal data can provide information on disease 
progression and prediction of high-risk individuals, together 
with other clinically commonly used imaging modalities for 

TABLE 2 Nodes with reduced connections and their degree.

Nodes Degree Nodes Degree Nodes Degree

r_superiorfrontal (RSF) 22 l_lateralorbitofrontal (LIOF) 2 l_pericalcarine (LPCL) 1

l_caudalmiddlefrontal (LcMF) 12 l_middletemporal (LMT) 2 l_precentral (LPRC) 1

r_isthmuscingulate (RIST) 8 l_parsopercularis (LpOP) 2 l_rostralmiddlefrontal (LrMF) 1

l_medialorbitofrontal (LmOF) 7 l_precuneus (LPCU) 2 l_insula (LIN) 1

l_rostralanteriorcingulate (LrAC) 4 l_superiortemporal (LST) 2 r_caudalanteriorcingulate (RcAC) 1

r_caudalmiddlefrontal (RcMF) 4 l_frontalpole (LFP) 2 r_lateraloccipital (RLO) 1

r_postcentral (RPOC) 4 r_lateralorbitofrontal (RIOF) 2 r_medialorbitofrontal (RmOF) 1

l_parsorbitalis (LpOR) 3 r_parstriangularis (RpTR) 2 r_parahippocampal (RPH) 1

l_temporalpole (LTP) 3 r_rostralanteriorcingulate (RrAC) 2 r_parsopercularis (RpOP) 1

r_bankssts (RBK) 3 r_temporalpole (RTP) 2 r_precuneus (RPCU) 1

r_paracentral (RPAC) 3 l_lateraloccipital (LLO) 1 r_rostralmiddlefrontal (RrMF) 1

r_pericalcarine (RPCL) 3 l_lingual (LLG) 1 r_superiorparietal (RSP) 1

l_bankssts (LBK) 2 l_parahippocampal (LPH) 1 r_superiortemporal (RST) 1

l_inferiortemporal (LIT) 2 l_parstriangularis (LpTR) 1 r_frontalpole (RFP) 1
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silent lesion detection, which can lead to better diagnosis 
and prognosis.

5. Conclusion

Our results show that SACS exhibits abnormal subject-
wise structural connectivity and a less-optimized trade-off 
between physical cost and network segregation, suggesting 
asymmetric and/or synchronous cortical atrophy under 
potential chronic hypoperfusion and disordered hemodynamic 
pressure. These results also provide a reference and perspective 
for a future large sample identifying high-risk carotid 
stenosis individuals.

Data availability statement

The original contributions presented in the study are included 
in the article/supplementary material, further inquiries can 
be directed to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed 
and approved by the Medical Ethics Committee of Zhongnan 
Hospital of Wuhan University. The patients/participants 
provided their written informed consent to participate in 
this study.

A

C D

B

FIGURE 7

NBS-based regression on white matter hyperintensity and cognitive tests. NBS predicted WMH burden and cognitive performance from a 
structural network of interareal cortical thickness histograms with Pearson’s correlation coefficients (95% CI) between predicted and actual WMH 
burden and recall memory for (A) white matter hyperintensity (WMH) size, (B) white matter hyperintensity number, (C) immediate recall, and 
(D) delayed recall memories.
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