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Introduction: Alzheimer’s disease (AD) is a progressive and irreversible brain 
degenerative disorder early. Among all diagnostic strategies, hippocampal atrophy 
is considered a promising diagnostic method. In order to proactively detect patients 
with early Alzheimer’s disease, we built an Alzheimer’s segmentation and classification 
(AL-SCF) pipeline based on machine learning.

Methods: In our study, we collected coronal T1 weighted images that include 
187 patients with AD and 230 normal controls (NCs). Our pipeline began with the 
segmentation of the hippocampus by using a modified U2-net. Subsequently, we 
extracted 851 radiomics features and selected 37 features most relevant to AD by the 
Hierarchical clustering method and Least Absolute Shrinkage and Selection Operator 
(LASSO) algorithm. At last, four classifiers were implemented to distinguish AD from 
NCs, and the performance of the models was evaluated by accuracy, specificity, 
sensitivity, and area under the curve.

Results: Our proposed pipeline showed excellent discriminative performance of 
classification with AD vs NC in the training set (AUC=0.97, 95% CI: (0.96-0.98)). The 
model was also verified in the validation set with Dice=0.93 for segmentation and 
accuracy=0.95 for classification.

Discussion: The AL-SCF pipeline can automate the process from segmentation to 
classification, which may assist doctors with AD diagnosis and develop individualized 
medical plans for AD in clinical practice.
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Introduction

Alzheimer’s disease (AD) is a progressive, irreversible degenerative brain disease characterized 
by memory loss and cognitive impairment (Sevigny et al., 2016; Li et al., 2019). Detecting AD at an 
earlier or prodromal stage is vital for preventing disease progression. Neuroimaging biomarkers may 
give more predictive information and make the diagnosis more reliable (Márquez and Yassa, 2019). 
Magnetic resonance imaging (MRI) is a type of brain imaging biomarker that can be used to detect 
the structures in brain volume, such as hippocampus atrophy or ventricle enlargement, and therefore 
the onset of Alzheimer’s disease and distinguishing normal controls (NC) from AD (Jack Jr et al., 
2011; Hosseini-Asl et al., 2016).

Nowadays, machine learning and radiomics features analysis have been employed to analyze MRI 
data for identifying accurate biomarkers of AD (Moradi et al., 2015; Pellegrini et al., 2018; Feng et al., 
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2021). The most widely used classification techniques are support vector 
machine (SVM), artificial neural network (ANN), and deep learning. The 
main difference between SVM and ANN is the optimization problem. 
Compared with ANN, SVM is more generalizable and can obtain global 
optimal solutions. Among them, feature extraction is an important step 
(Anami and Elemmi, 2022). It is useful to combine neural networks and 
intelligent agents for medical image analysis according to the research of 
Shi et al. (Sarvamangala and Kulkarni, 2022). However, deep learning can 
be trained to automatically extract features from target regions without 
intervention (Shen et al., 2017; Chen et al., 2022). When the number of 
available samples is large enough, deep learning will be highly effective 
(Shen et al., 2017).

In recent years, researchers provided analysis of the works done using 
machine learning for Alzheimer’s disease. For instance, Gray et al. (2013) 
proposed a multi-modality classification framework derived from random 
forest and evaluated the framework by application to neuroimaging and 
biological data from the Alzheimer’s Disease Neuroimaging Initiative. Feng 
et al. (2021) developed three classification models to discriminate AD, mild 
cognitive impairment (MCI), and NC patients by extracting and analyzing 
3,360 radiological features from 3D T1-weighted magnetization-prepared 
rapid gradient echo images. Cao et al. (2017) proposed a multicore-based 
downsampling and oversampling method. The sparsity of regions of interest 
(ROI) was achieved using marginal Fisher analysis with ℓ2.1-multiple kernel 
learning based on paradigms, which enabled simultaneously select subsets 
of relevant brain regions and improved the accuracy of AD classification. 
Besides, In the study of Zhou et al. (2018), Kruthika et al. (2019), Peng et al. 
(2019), Lin et al. (2020), and Richhariya et al. (2020), the researchers used 
multistage classifier, SVM, recursive feature elimination, and TrAdaBoost 
methods to analyze and identify AD based on MRI images, and the 
classification accuracy is 0.88, 0.97, 0.89, and 0.94, respectively.

Deep learning models, including convolutional neural networks 
(CNN), have increasingly been used for image analysis and computer vision. 
In the field of medical imaging, deep learning-based medical imaging 
applications outperform traditional methods in complex tasks (Duraisamy 
et al., 2019; Singh et al., 2020). Of all brain regions associated with AD, the 
hippocampus is one of the earliest to undergo pathology changes (Han et al., 
2014; Dhikav et al., 2017; Park et al., 2022). Helaly et al. (2022) proposed a 
deep learning Alzheimer’s disease hippocampus segmentation framework 
(DL-AHS) for hippocampal segmentation to detect and identify AD. In 
addition, the data was augmented using deep convolutional generative 
adversarial networks (DC-GAN). Sun et al. (2020) proposed a V-Net-based 
3D CNN to segment the bilateral hippocampus from 3D brain MRI scans 
and diagnosed AD progression status. Kwak et al. (2022) constructed a deep 
convolutional neural network to classify stable and progressive MCI and 
evaluated the relative contribution of each hippocampal subfield. 
Buvaneswari and Gayathri (2021) used the seven morphological features 
like grey matter, white matter, cortex surface, gyri and sulci contour, cortex 
thickness, hippocampus and cerebrospinal fluid to accurately classify AD 
and dementia conditions.

As mentioned above, promising progress has been made in AD 
prediction studies based on structural radiological features and machine 
learning. However, most studies have focused on the 3D T1 sequence, 
which has high resolution with long acquisition times. However, coronal 
T1 weighted images are more commonly applied in clinical practice. In 
addition, current classification algorithms are based on semi-automatic or 
manual marking of ROI, and there is no automatic framework from 
segmentation to classification. Nevertheless, a fast and accurate 
identification framework is extremely important for the early diagnosis of 
AD in routine clinical work.

Motivated by these properties and important results, we devised a 
contribution to the study of AD using coronal T1 weighted images. We first 
migrated the U2-net to the hippocampus segmentation task and added a 
deep supervision mechanism module to improve the model performance. 
Second, we applied different feature extraction methods to extract features 
from the segmented hippocampal regions and analyzed which features were 
more relevant to AD classification. Finally, we  performed a binary 
classification task to detect if patients are healthy or have dementia on our 
datasets and explored the possibility of applying our model to 
clinical practice.

Materials and methods

The AL-SCF pipeline workflow includes the MRI preprocessing, the 
hippocampus segmentation, and the AD classification model. All the 
specific processes of the pipeline are shown in Figure 1.

Patients

In total, 187AD patients aged 50–75 years were retrospectively 
selected from the electronic medical records at Huashan Hospital, 
Shanghai, China from April 2016 to 2021. The patient’s demographic 
information is provided in Table 1.

All the AD patients were diagnosed by a qualified neurologist using 
criteria for amnestic AD Fennema-Notestine et al. (2009), with mini-
mental state examination (MMSE) scores between 12 and 27 (inclusive) 
and clinical dementia rating (CDR) scores of 1 or 2. The inclusion criteria 
of AD patients were as follows: (1) right-handed Han Chinese patients 
older than 50 years; (2) clinically diagnosed as AD confirmed by qualified 
neurologists; (3) with available hippocampus MRI images. The exclusion 
criteria of AD patients included: (1) presented structural abnormalities 
such as cortical infarction, tumor, or subdural hematoma; (2) low-quality 
MRI scanning. 230 age and sex-matched normal controls (NC) with 
hippocampus MRI images were also enrolled.

All participants were scanned using a standard eight-channel head coil 
on a 3 Tesla MR scanner (Discovery 750, GE Healthcare, United States). 
Foam pads and headphones were used to minimize participants’ head 
motion and scanner noise. In the model construction, coronal T1 weighted 
images were used. The parameters were as follows: repetition time 
(TR) = 225 ms, echo time (TE) = 24 ms, inversion time (TI) = 780 ms, slice 
thickness = 4 mm. The field of view was 240 mm × 240 mm, and the matrix 
was 512 × 512, resulting in the in-plane resolution of 0.47 mm × 0.47 mm.

Hippocampus annotation

All MRI images were first resampled to voxel size 
1 mm × 1 mm × 1 mm with a resolution of 224 × 224 × 16 by linear 
interpolation method. Then, we  performed the image grayscale 
normalization with the image grayscale unified adjustment to [0,255] 
and cropped all images to 128 × 128 × 16.

Hippocampus was annotated manually by two neuroradiologists, both 
with 5 years of experience using ITK-SNAP software.1 All segmentation 

1 http://www.itksnap.org/
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results were corrected by a senior neuroradiologist with 15 years of clinical 
experience. In this study, the dataset was randomly divided into the training 
set (n = 334) and test set (n = 83) with a ratio of 8:2.

Segmentation model

The segmentation model consists of an encoder and a decoder, 
which is a two-level nested structure, and the top level is a large 
U-shaped structure consisting of five stages (Qin et  al., 2020). 

Specifically, in the decoder of our model, a deep supervision mechanism 
(Lee et al., 2015) was used to improve the performance of our model. It 
can upsample the feature maps to the same size and fuse them to 
generate the final segmentation results with a concatenation operation 
followed by a 1 × 1 convolution layer.

For training the segmentation model, the epoch was set to 250 and 
the batch size was 12. After applying augmentation techniques 
containing flipping, translation, and rotation to the training set, the 
number of data samples increased to 668. We used the Adam optimizer 
to update the gradient with an initial learning rate of 0.001 and 

FIGURE 1

The structure of Alzheimer’s segmentation and classification (AL-SCF). This study is mainly divided into three parts. The first part is data collection and 
preprocessing, the second part is hippocampus segmentation, and the third part is Alzheimer’s disease (AD) classification.
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momentum β_1 = 0.9. The experiments were deployed on NVIDIA 
Titan GPU with the Pytorch2 framework.

Classification model

Feature extraction
Radiomics features were extracted by Pyradiomics (Van Griethuysen 

et  al., 2017). According to guidelines from the Image Biomarker 
Standardization Initiative (IBSI; Zwanenburg et al., 2020), the extracted 
radiomics features included 140 first-order features, 175 morphological 
features, and 501 higher-order texture features, involving Gray Level 
Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), 
Gray Level Run Length Matrix (GLRLM), Neighbouring Gray Tone 
Difference Matrix (NGTDM), and Gray Level Dependence Matrix (GLDM).

Feature selection and classification models
The hierarchical clustering method (Murtagh and Contreras, 2012) and 

the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm 
(Roth, 2004) were performed to reduce the dimensionality of features. First, 
hierarchical clustering was used by calculating Spearman’s correlation 
matrix of the extracted features and the highly correlated features should 
be  removed. Subsequently, LASSO was applied to select representative 
features and remove irrelevant and redundant features which would degrade 
the performance of the further process. Moreover, Gaussian Naive Bayes 
(GNB; Kohavi, 1996), random forest (RF; Breiman, 2001), support vector 
machine (SVM; Graves, 2012), and AdaBoost (Dietterich, 2000) classifiers 
were implemented in the AD classification task.

Evaluation metrics

Dice coefficient is a statistical metric that measures the similarity 
between ground truth and segmentation results, which is defined 
as follows:
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where N is the number of total pixels on the segmentation results; 
pi  and qi  are the pixels of predicted segmentation result and the 

2 https://pytorch.org/

ground truth, respectively. For example, Dice =1  means two samples 
are exactly overlapping.

The diagnostic performance of the classification model was assessed 
using receiver operation characteristics (ROC) curve analysis and measured 
by area under the ROC curve (AUC). Then, we defined AD patients as 
positive samples and obtained the calculation formulas of accuracy (ACC), 
sensitivity (SEN), and specificity (SPE) by the confusion matrix:
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Statistical analysis

In statistical tests of demographical and clinical characteristics, the 
Mann–Whitney U-test was used for numerical variables, and Fisher’s 
exact test was used for categorical variables. Statistical analyses were 
performed using SPSS (version 22.0, IBM). In addition, feature selection 
and radiomics signature construction and validation of the classification 
model were conducted using scikit-learn packages3 based on Python 
(Version 3.8.0; https://www.python.org).

Results

Segmentation results

A total of 668 MRI images along with their corresponding hippocampal 
binary masks were taken as the training set to fit into the segmentation 
model. Then, the model was tested for another 83 MRI images and the 
segmentation results are shown in Figure 2. Figure 2A are some of the 
sample ground-truth, and the corresponding segmentation results before 
and after data augmentation are shown in Figures 2B,C. It is observed that 
the segmentation results after data augmentation are much more identical 
to their corresponding ground-truth images from Figures 2D,E.

We also performed a quantitative analysis of the segmentation results. 
Table  2 shows that the predicted segmentation results achieved 
Dice = 0.95 ± 0.03 in the training set and Dice = 0.90 ± 0.02 in the test set 
before data augmentation. The final Dice = 0.93 ± 0.01 in our test set after 
data augmentation, which was significantly higher (p < 0.05) than when no 
data augmentation was applied at a cost of several seconds. Figure 3 shows 
the distribution of segmentation results in training and test sets. It is noted 
that the results are more concentrated and better for more difficult 
segmented images when applying data enhancement.

Classification results

In the part of feature extraction, 851 radiomics features were 
extracted for the region of the hippocampus. After using Spearman’s 

3 https://scikit-learn.org/

TABLE 1 Patient demographic information.

Variables AD group NC group Value of p

Sample size 187 230 /

Age (years, 

mean ± SD)

67.45 ± 11.23 65.56 ± 13.42 0.38

Gender (Male: 

Female)

23:27 30:20 0.16

Education (years, 

mean ± SD)

15.00 ± 3.00 15.60 ± 3.00 0.52

AD, Alzheimer’s disease; NC, normal control; SD, standard deviation.

https://doi.org/10.3389/fnagi.2022.1073909
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://pytorch.org/
https://www.python.org
https://scikit-learn.org/


Zhou et al. 10.3389/fnagi.2022.1073909

Frontiers in Aging Neuroscience 05 frontiersin.org

correlation matrix filter, 727 features remained. Then, we  used the 
LASSO filter with 5-fold cross-validation to select 37 features for the AD 
classification task. The importance of 37 features were determined with 
the weights of LASSO, which was shown in Figure 4. It is illustrated that 
the shape_MajorAxisLength feature has the largest importance value of 
0.84, followed by the shape_Maximum2DDiameterColumn feature with 
an importance value of 0.81.

For all classification models, we  used 5-fold cross-validation to 
make the results more reliable. Table  3 and Figure  5 show the 
classification results and ROC curves for AD classification in the 
training set. Among the four classifiers, the SVM classifier achieved the 
best performance in the classification task, with ACC = 0.97 (95%CI: 
0.95–0.98), SEN = 0.97 (95%CI: 0.94–0.98), SPE = 0.96 (95%CI: 0.95–
0.99), and AUC = 0.98 (95%CI: 0.96–1.00).

Table  4 shows the classification results in the test set. For the 
performance of different classifiers, the SVM classifier got ACC = 0.95, 
SEN = 0.96, SPE = 0.94, and AUC = 0.97, which performs the best. In 
addition, we  also use ROC and AUC values to evaluate different 
methods. In order to facilitate comparative analysis, we draw the ROC 
curves of different classification algorithms in the same coordinate 

graph, as shown in Figure 6. Among them, the ROC curve of SVM is 
closer to the upper left corner of the coordinate, which means the 
corresponding AUC value is the largest. Besides, the AUC value of GNB 
is significantly lower than the other three.

Discussion

In this study, we proposed a novel machine learning pipeline to 
automatically segment the hippocampus and classify AD from NC. The 
AL-SCF pipeline achieved excellent performance in hippocampus 
segmentation and AD classification. The total time of the whole pipeline 
was less than 1 min in the test set. Thus, our AL-SCF pipeline would 
be helpful to improve diagnostic accuracy and assist radiologists in 
clinical practice.

Our method first cropped the coronal T1 weighted images to 
eliminate the negative effects of the low percentage of hippocampal 
regions in the brain. We  also adopted data augmentation in the 
segmentation task, which could improve the Dice of hippocampus 
segmentation. According to Table 2, data augmentation methods are 
significantly effective to improve the model performance when the 
image samples are limited. Besides, U2-net was transferred in the 
hippocampus segmentation from the target detection tasks. The model 
not only retains the characteristics of traditional U-net but also adds a 
deep supervision mechanism to learn low-dimensional and high-
dimensional features. The convergence of the loss function can 
be accelerated by calculating the difference between the segmentation 
results and the Ground Truth of each layer. In previous studies, Sohail 
and Anwar (2022) and Liu et al. (2020) proposed simple applications for 

A

B

C

D

E

FIGURE 2

The segmentation results of U2-net (A–E). (A) ground truth (GT). (B) Segmentation results before data augmentation. (C) Segmentation results after data 
augmentation. (D) The difference between GT and segmentation results before data augmentation (red areas are the segmentation results). (E) The 
difference between GT and segmentation results after data augmentation (red areas are the segmentation results). Columns from left to right are the 
samples (Subject 1–8).

TABLE 2 Dice coefficients of segmentation models in the training and test 
sets.

Dataset Origin 
data

Data after 
augmentation

Value of 
p

Training 0.946 ± 0.03 0.973 ± 0.02 0.02

Test 0.895 ± 0.02 0.929 ± 0.01 0.03

The best results are in bold.
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U-net, with Dice of 0.87 and 0.89, respectively. Our segmentation model 
achieved Dice of 0.93, better than the former results.

In this study, the features of original images and the wavelet-
transformed higher-order features (Gillies et al., 2016; Yip and Aerts, 2016) 
were collected in the feature extraction part. Among them, the wavelet 
transform could concentrate the energy of the original image on a small 
portion of wavelet coefficients and provide more useful information for 
feature extraction (Feng and Ding, 2020). The hierarchical clustering 
algorithm was used for feature selection, which effectively avoid overfitting, 
and the subsequent LASSO algorithm further optimized the combined 
form and weights of the selected features. In addition, we used the grid 
search method (λ = 0.05, 0.10.0.0.60) and nested 5-fold cross-validation to 
determine the optimal LASSO hyperparameters λ and evaluate the 

performance of the model. Our classification results confirmed the 
effectiveness of the methods.

The majority of current studies (Liu et al., 2020; Nadal et al., 
2020; Park et  al., 2022) used deep learning networks in AD 
classification while we  took the classical classifiers in machine 
learning, which is more interpretable and can find radiomics features 
associated with AD. Radiomic analysis has been applied to some AD 
studies. Zhang et al. (2012) indicated that 3D texture analysis could 
distinguish AD patients from the NC group, with classification ACC 
between 0.64 and 0.96 due to different ROI selections. Feng et al. 
(2018) built a support vector machine model which achieves an 
ACC = 0.87 (SPE = 0.89 and SEN = 0.84) in predicting AD vs. NC. The 
proposed classification models based on hippocampus radiomic 

FIGURE 3

The distribution of Dice coefficients of segmentation results.

FIGURE 4

The importance of 37 radiomics features generated from Least Absolute Shrinkage and Selection Operator (LASSO).
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features in our study showed high performance (ACC = 0.95 and 
AUC = 0.97) in distinguishing AD-NC.

In our study, we selected the hippocampus as the ROIs and the 
results showed that the radiomics features of the hippocampus can 
be used for the diagnosis of AD from normal controls. Furthermore, 
we  found the shape features of the hippocampus (lateral maximum 
diameter and axial length) are highly correlated with AD. These are 
similar to the findings of Shen et al. (2012) and Nadal et al. (2020) used 
the shape descriptors from statistical shape models (SSM) as features to 
classify AD from normal control cases and discovered the shape of the 
hippocampus can provide valuable information for the diagnosis of 

AD. Nadal et al. presented a brain T1-weighted structural magnetic 
resonance imaging (MRI) biomarker which combined several individual 
MRI biomarkers such as volumetric measurements, hippocampal shape, 
and hippocampal texture. Their experiments showed that both common 
and uncommon individual MRI biomarkers contributed to the 
classification of AD.

However, our study still has some inevitable limitations. First, 
although the sample size of our study is relatively larger than that of 
some machine learning studies (Feng et al., 2021; Liu et al., 2022), the 
sample size is still relatively limited. Further studies are needed to 
conduct prospective multi-center studies in conjunction with multiple 
centers. Second, our study only investigated the effect of radiomics 
features in the hippocampus as a biomarker for AD, the application of 
other potential biomarkers for prediction could be  analyzed in 
future studies.

Conclusion

The AL-SCF pipeline is a non-invasive method that includes the 
automatic segmentation of the hippocampus and AD classification. The 
results suggest that micro-structural changes in the brain hippocampus 
region reflected by radiomic features can be a reliable method to assist 
radiologists in clinical practice. Furthermore, the proposed automatic 
segmentation and classification framework could be easily applied to 
other radiomics studies in the future.

TABLE 3 Classification results of different classifiers in the training set.

Classifier ACC SEN SPE AUC

SVM 0.97 0.97 0.96 0.98

(0.96, 0.98) (0.95, 0.99) (0.93, 0.99) (0.96, 1.00)

RF 0.86 0.89 0.93 0.94

(0.83, 0.89) (0.86, 0.92) (0.91, 0.95) (0.92, 0.96)

GNB 0.93 0.89 0.94 0.96

(0.89, 0.97) (0.85, 0.93) (0.92, 0.96) (0.94, 0.98)

Adaboost 0.95 0.96 0.98 0.97

(0.93, 0.97) (0.94, 0.98) (0.96, 1.00) (0.95, 0.99)

The best results are in bold.

A B

C D

FIGURE 5

Receiver operation characteristics (ROC) curves for AD classification in the training set. (A) Support vector machine (SVM) classifier; (B) RF classifier; 
(C) GNB classifier; (D) Adaboost classifier.
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