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Zhongshan School of Medicine, Guangzhou, China

Background/Objective: The efficacy of transcranial magnetic stimulation

(TMS) on Parkinson’s disease (PD) varies across the stimulation targets. This

study aims to estimate the effect of different TMS targets on motor symptoms

in PD.

Methods: A Bayesian hierarchical model was built to assess the effects across

different TMS targets, and the rank probabilities and the surface under the

cumulative ranking curve (SUCRA) values were calculated to determine the

ranks of each target. The primary outcome was the Unified Parkinson’s

Disease Rating Scale part-III. Inconsistency between direct and indirect

comparisons was assessed using the node-splitting method.

Results: Thirty-six trials with 1,122 subjects were included for analysis.

The pair-wise meta-analysis results showed that TMS could significantly

improve motor symptoms in PD patients. Network meta-analysis results

showed that the high-frequency stimulation over bilateral M1, bilateral DLPFC,

and M1+DLPFC could significantly reduce the UPDRS-III scores compared

with sham conditions. The high-frequency stimulation over both M1 and

DLPFC had a more significant effect when compared with other parameters,

and ranked first with the highest SCURA value. There was no significant

inconsistency between direct and indirect comparisons.

Conclusion: Considering all settings reported in our research, high-frequency

stimulation over bilateral M1 or bilateral DLPFC has a moderate beneficial

effect on the improvement of motor symptoms in PD (high confidence rating).

High-frequency stimulation over M1+DLPFC has a prominent beneficial effect

and appears to be the most effective TMS parameter setting for ameliorating

motor symptoms of PD patients (high confidence rating).

KEYWORDS

transcranial magnetic stimulation, Parkinson’s disease, stimulation targets, network
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Introduction

Parkinson’s disease (PD) is a slowly progressive and
neurodegenerative disease that affects more than 6 million
people worldwide (Tolosa et al., 2021). Aging is the leading
risk factor in PD, and populations above 50 years old have a
higher prevalence, approximately 4% (de Rijk et al., 2000). The
incidence and prevalence of PD are increasing as the population
ages, (Tysnes and Storstein, 2017) as well as aggravates by
air pollution (Lee et al., 2016). The main neuropathological
correlates of PD are the loss of dopaminergic neurons in the
basal ganglia circuit (Dauer and Przedborski, 2003; Mullin
and Schapira, 2015) and the accumulation of Lewy bodies
containing α-synuclein (Braak et al., 2003). Patients with PD
manifest both motor symptoms and non-motor symptoms,
which include resting tremor, rigidity, bradykinesia, postural
instability, depression, sleep disorder, cognitive deficit, etc.,
(Postuma et al., 2015). These dysfunctions not only hamper the
patient’s activities but increase the costs to families and burdens
to the society.

The primary protocol for the initial treatment of PD
patients is Levodopa (Ahlskog, 2010). Other drugs are also
developed for alleviating symptoms of PD (Goetz et al.,
2005). However, the drug complications and Levodopa-induced
dyskinesia (LID) will appear along with the progress of PD
(Ahlskog and Muenter, 2001; Rao et al., 2006). In order
to delay the progression, improve the patient’s tolerance
and obtain a better therapeutic effect, non-pharmacological
interventions are now considered as a significant part for
the treatment of PD (InformedHealth.org [Internet], 2015).
In clinical settings, the most featured and widely applied
non-pharmacological strategies for PD include rehabilitation
training and neuromodulation techniques (Heumann et al.,
2014; Abbruzzese et al., 2016).

Transcranial magnetic stimulation (TMS) is a non-invasive
neuromodulation technique that could induce altered cortical
excitability and synaptic plasticity in local brain regions and
ameliorates symptoms in PD patients (Helmich et al., 2006).
There are numerous studies that have verified the treatment
effectiveness of TMS on PD with diverse parameters and
rendered comparable results (Hamada et al., 2008; Cohen et al.,
2018; Chung et al., 2020; Aftanas et al., 2021). Nevertheless,
it is challenging to interpret the outcomes and improve the
effectiveness of TMS in the absence of common parameter
standards. Yokoe et al. found that only high-frequency
repetitive-TMS (rTMS) over primary motor area (M1) and

Abbreviations: CI, confidence interval; CrI, credibility interval; DLPFC,
dorsolateral prefrontal cortex; hf, high frequency; lf, low frequency; TBS,
theta-burst stimulation; LID, Levodopa-induced dyskinesia; M1, primary
motor area; MCID, Minimal Clinically Important Difference; MD, mean
difference; NMA, network meta-analysis; PD, Parkinson’s disease; QPS,
quadripulse stimulation; SCURA, surface under the cumulative ranking
curve; SMA, supplementary motor area; UPDRS-III, Unified Parkinson’s
Disease Rating Scale part III; PM/PMC, premotor cortex; TMS, transcranial
magnetic stimulation.

supplementary motor area (SMA) could improve the motor
symptoms in PD, while the effects of TMS over dorsolateral
prefrontal cortex (DLPFC) were similar to sham condition
(Yokoe et al., 2018). In another study, the amelioration of
symptoms still were detected in 3 months follow-up after low-
frequency rTMS was applied to DLPFC (Zhuang et al., 2020).
The diversity in stimulation parameters contributes to these
discrepancies. A question then arises about whether there are
specified optimal TMS settings (such as stimulation frequency
and targets) for different PD symptoms. Several studies
have compared TMS effects between different frequencies
(Chung et al., 2020) and targets (Hanoglu et al., 2020), but
comprehensive comparisons across frequencies and targets are
still lacking. The network meta-analysis (NMA) can estimate the
therapeutic effects of multiple interventions by incorporating
the results of direct and indirect comparisons (Lumley, 2002),
and present the probability rankings of interventions. In this
study, our purpose is to explore a plausible TMS protocol
including frequencies and targets for PD motor symptoms
through an evidence-based network meta-analysis and give us
an insight into personalized treatment for PD patients.

Methods

Literature search strategy

The Cochrane Handbook for Systematic Reviews of
Interventions and the PRISMA extension statement (Hutton
et al., 2015) were followed in this NMA study. We mainly
searched for literature that focused on the application of
TMS in PD patients. The online databases including Medline,
Embase, PubMed Central, and Web of Science were searched for
articles published date to December 2021. The search specified
Participants and Interventions. The searching strategies were
built as follows: (Parkinson Disease OR Idiopathic Parkinson’s
Disease OR “other MeSH entry terms”) AND (Transcranial
Magnetic Stimulation OR Magnetic Stimulation, Transcranial
OR “other MeSH entry terms”) AND (max sensitivity filters
for controlled trials). See Supplementary Appendix for actual
searching terms. The PROSPERO registration number is:
CRD42022329110.

Inclusion and exclusion criteria

Two independent authors screened the retrieved results
by reviewing the titles, abstracts, and full texts of literature.
Any disagreements were resolved with consensus after group
discussions. Studies that investigated the effectiveness of
TMS for improving motor and non-motor symptoms of PD
were eligible for our NMA. The inclusion criteria were: (1)
Study types: randomized controlled trials (RCTs) or crossover
RCTs. (2) Participants: patients diagnosed with PD. (3)

Frontiers in Aging Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2022.1073310
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-1073310 December 21, 2022 Time: 14:41 # 3

Dong et al. 10.3389/fnagi.2022.1073310

Interventions: the rTMS protocols with different parameters.
(4) Comparison/Control: the comparison among different
frequencies or targets or the control were sham stimulation
or active control. (5) Outcomes: the measurement of motor
symptoms for PD.

The exclusion criteria were: (1) patients with secondary
Parkinsonism or Parkinson’s plus syndrome. (2) the
interventions included other types of neuromodulation
techniques, such as deep brain stimulation (DBS) or transcranial
direct current stimulation (tDCS). The other modalities of
TMS, including theta-burst stimulation (TBS) and quadripulse
stimulation (QPS), were also excluded. (3) conference abstracts,
reviews, and other no-RCTs trials. (4) studies did not offer
sufficient data for calculation. (5) studies with low quality.

Quality assessment

We performed the quality assessment of studies with the
recommended Cochrane Risk of Bias Tool mean values (Higgins
and Green, 2011), which rated studies as three levels (high
risk, low risk, unclear) in six domains: (1) Selective bias, (2)
Performance bias, (3) Detection bias, (4) Attrition bias, (5)
Reporting bias, (6) Other bias. The CINeMA (Confidence In
Network-Analysis) online Web1 was applied to evaluate the
quality of evidence considering six domains: Within-study bias,
Reporting bias, Indirectness, Imprecision, Heterogeneity, and
Incoherence. Any disagreements were resolved with consensus
after group discussions.

Data collection

The characteristics of included studies were extracted and
summarized as follows: authors, publication year, study design,
sample size, rTMS protocols (including stimulation intensity,
frequency, target areas, and sessions), the group’s assignment,
and the outcome measurements.

The primary outcome for analysis was the Unified
Parkinson’s Disease Rating Scale part III (UPDRS-III),
with higher scores indicating severe motor symptoms.
For continuous data, we used the mean and standard
deviation (m ± sd) of the changes in measurements after
TMS administration for data synthesis. When studies provided
these values (m ± sd) at baseline and post-intervention
respectively, we used the following formula to calculate the
changes:

Mchange = Mpost −Mbaseline

SDchange =
√
SD2

baseline + SD2
post − 2 · Corr · SDbaseline · SDpost

1 https://cinema.ispm.unibe.ch/

The correlation coefficient (Corr) was calculated from the
literature providing all the above indicators by the same
formula. We used WebPlotDigitizer2 to extract numerical data
when results were presented with figures. Standard errors and
interquartile ranges were also used to obtain target data. We
used the data at the end of all rTMS sessions for the results
reported at multiple time points. The follow-up period without
rTMS was not considered. The data extraction process was
conducted under the guidance of the Cochrane handbook.

The stimulation frequency was extracted as high-frequency
(hf) when it was greater than 1 Hz, or low-frequency (lf) when
it was below or equal to 1 Hz. The unilateral target was extracted
regardless of stimulating the left or right hemisphere. For some
multiple stimulation targets studies, we described the targets
as bilateral stimulation or one target area plus another area,
including simultaneously or sequentially stimulated multiple
targets. Any disagreements were resolved with consensus after
group discussions.

Network meta-analysis

We performed this network meta-analysis based on the
Bayesian hierarchical models (Lu and Ades, 2004). The
network graph was plotted using STATA software version
16.0 (Stata Corp, College Station, Texas, USA) to present
the evidence of direct and indirect comparisons between
interventions. We used the gemtc (v.1.0-1) (Valkenhoef and
Kuiper, 2021) and rjags (v.4-12) (Plummer, 2022) software
packages to establish a consistency model and conduct
subsequent analysis. These two packages were based on
the Markov Chain Monte Carlo method (MCMC) and
included in R software (v.4.1.2, R Foundation for Statistical
Computing, Vienna, Austria) (R Core Team, 2022). The
model parameters were set as a random effect model with
MCMC number of chains: 4, tuning iterations: 30,000,
simulation iterations: 70,000, thinning interval: 1, variance
scaling factor: 2.5. The model convergence was assessed with
the Brooks-Gelman-Rubin diagnosis plot and the Potential
Scale Reduction Factor (PSRF) (Brooks and Gelman, 1998;
Tunaru, 2016).

The node-splitting approach was used to assess
inconsistency by comparing estimates from both direct
and indirect evidence (van Valkenhoef et al., 2016). The
heterogeneity among studies was evaluated with the I2 statistics.
The random-effect model was adopted with I2 > 50% in the
global heterogeneity. The Sensitivity analysis was conducted to
explore the sources of heterogeneity by excluding one literature
at a time. The meta-regression analysis was performed to
investigate the effect of different covariates on pooled effects.
Publication bias was assessed using funnel plots and Egger’s test.

2 https://apps.automeris.io/wpd/index.zh_CN.html

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2022.1073310
https://cinema.ispm.unibe.ch/
https://apps.automeris.io/wpd/index.zh_CN.html
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-1073310 December 21, 2022 Time: 14:41 # 4

Dong et al. 10.3389/fnagi.2022.1073310

Statistical effects were set to be significant at p < 0.05.
Pooled effect sizes were reported with mean difference (MD)
and 95% credible intervals (CrIs) or confidence interval (CI).
Both pair-wise meta-analysis and network meta-analysis were
analyzed and presented. The rankogram was used to report the
probability ranking of different stimulation targets. We applied
the surface under the cumulative ranking curve (SUCRA)
values to assess the likelihood that the interventions rank
the best (Salanti et al., 2011). The SUCRA value is between
0 and 1, SUCRA equals 1 indicates that the intervention is
absolutely effective, and SUCRA equals 0 indicates that the
intervention is absolutely ineffective (Cope and Jansen, 2013).
The interventions with a higher SUCRA value mean having
better treatment efficacy.

Results

Searching results and characteristics of
literature

After removing duplicates, a total of 787 records were
selected by titles and abstracts. Then, the full text of 144 articles
was evaluated for eligibility. Finally, 36 RCTs on TMS improving

motor symptoms of PD patients were included in this NMA.
The exclusion reasons and the screening process are listed in
Figure 1.

The descriptive data of 36 studies were presented in Table 1.
A total of 36 English articles were included in our study, which
contained 14 crossover trials (Börnke et al., 2004; Lefaucheur
et al., 2004; Koch et al., 2005; Brusa et al., 2006; Rektorova
et al., 2008; Filipović et al., 2009, 2010; Sedlácková et al.,
2009; Maruo et al., 2013; Kim et al., 2015; Flamez et al., 2016;
Dagan et al., 2017; Yokoe et al., 2018; Fricke et al., 2019) and
22 RCTs (Khedr et al., 2003; del Olmo et al., 2007; Hamada
et al., 2008; Pal et al., 2010; Benninger et al., 2012; Shirota
et al., 2013; Brys et al., 2016; Makkos et al., 2016; Shin et al.,
2016; Aftanas et al., 2018; Cohen et al., 2018; Khedr et al.,
2019; Mi et al., 2019; Randver et al., 2019; Chung et al.,
2020; Hanoglu et al., 2020; Khedr et al., 2020; Li et al., 2020;
Zhuang et al., 2020; Aftanas et al., 2021; Lench et al., 2021;
Spagnolo et al., 2021). Of all publications, 24 articles (Khedr
et al., 2003, 2019, 2020; Börnke et al., 2004; del Olmo et al.,
2007; Hamada et al., 2008; Rektorova et al., 2008; Sedlácková
et al., 2009; Pal et al., 2010; Benninger et al., 2012; Maruo
et al., 2013; Kim et al., 2015; Brys et al., 2016; Makkos et al.,
2016; Shin et al., 2016; Dagan et al., 2017; Aftanas et al., 2018,
2021; Yokoe et al., 2018; Mi et al., 2019; Randver et al., 2019;

FIGURE 1

Flow chart presents the literature searching and screening process.
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TABLE 1 The characteristics of included studies.

References Study design Sample size Parameters Sessions Assignment Targets Outcomes Languages

M F

Yokoe et al., 2018 crossover study 7 12 100% RMT; 10 Hz 3 rTMS(DLPFC)/rTMS(M1)/
rTMS(SMA)/sham

DLPFC-DLPFC//M1-
M1//SMA(sequentially)

UPDRS-III English

Spagnolo et al., 2021 parallel RCT 41 18 90–100%RMT; 10 Hz 12 rTMS(M1+PFC)/rTMS(M1)+
sham TMS(PFC)/sham(both)

bi M1-bi PFC//bi
M1(sequentially)

UPDRS-III English

Shin et al., 2016 parallel RCT 8 10 90% RMT; 5 Hz 10 real-rTMS/sham-rTMS left DLPFC UPDRS-III;
HRS-D

English

Pal et al., 2010 parallel RCT 11 11 90% RMT; 5 Hz 10 real-rTMS/sham-rTMS left DLPFC UPDRS-II,III English

Mi et al., 2019 parallel RCT 14 16 90% RMT; 10 Hz 10 real-rTMS/sham-rTMS SMA UPDRS-III English

Maruo et al., 2013 crossover study 11 10 100% RMT; 10 Hz 3 real-rTMS/sham-rTMS bi M1 foot area UPDRS-III English

Li et al., 2020 parallel RCT 16 32 80% RMT; 20 Hz 5 real-rTMS/sham-rTMS M1 contralateral to pain site UPDRS-III;
HAMD

English

Lench et al., 2021 parallel RCT 14 6 110% RMT; 1 Hz 10 real-rTMS/sham-rTMS SMA UPDRS-III English

Lefaucheur et al., 2004 crossover study 7 5 80% RMT; 0.5 Hz/10 Hz 1 0.5 Hz/10 Hz/sham/L-DOPA left motor cortical area UPDRS-III English

Koch et al., 2005 crossover study 4 4 90% RMT; 1 Hz/110%
RMT; 5 Hz

1 1 Hz/5 Hz/sham SMA//Pz UPDRS-III English

Kim et al., 2015 crossover study 12 5 90% RMT; 10 Hz 5 real-rTMS/sham-rTMS lower leg M1 of the dominant
hemisphere

UPDRS-III English

Khedr et al., 2019 parallel RCT 30 90% RMT; 20 Hz 10 real-rTMS/sham-rTMS bi M1-hand area(sequentially) UPDRS-III English

Khedr et al., 2020 parallel RCT 24 9 90% RMT; 20 Hz 10 real-rTMS/sham-rTMS bi M1-hand area(sequentially) UPDRS-III;
MoCA

English

Khedr et al., 2003 parallel RCT 24 12 120% MT; 5 Hz 10 real-rTMS/sham-rTMS bi M1-hand area(sequentially) UPDRS-III English

Hamada et al., 2008 parallel RCT 54 44 110% AMT; 5 Hz 8 real-rTMS/sham-rTMS SMA UPDRS-III;
HAMD

English

Filipović et al., 2010 crossover study 5 5 AMT; 1 Hz 4 real-rTMS/sham-rTMS M1 contralateral to more severely
side

UPDRS-III English
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TABLE 1 (Continued)

References Study design Sample size Parameters Sessions Assignment Targets Outcomes Languages

M F

del Olmo et al., 2007 parallel RCT 6 7 90% RMT; 10 Hz 10 real-rTMS/sham-rTMS DLPFC contralateral to more
affected side

UPDRS-III English

Dagan et al., 2017 crossover study 7 0 100% RMT; 10 Hz 12/16 real-rTMS/sham-rTMS H3 coil;bi medial PFC UPDRS-III English

Chung et al., 2020 parallel RCT 27 24 80% RMT; 1 Hz//80%
RMT; 25 Hz

12 1 Hz/25 Hz/sham bilateral M1 leg area(sequentially) UPDRS-III English

Brys et al., 2016 parallel RCT 37 24 RMT; 10 Hz 10 rTMS over bilateral M1
/left DLPFC/both/neither (sham
rTMS)

bi M1-left DLPFC
//bilateral M1//left
DLPFC(sequentially)

UPDRS-III;
HAMD

English

Brusa et al., 2006 crossover study 6 4 90% RMT; 1 Hz 1 L-DOPA/sham TMS/SMA
rTMS/Pz rTMS

SMA//Pz UPDRS-III English

Benninger et al., 2012 parallel RCT 20 6 80% AMT;50 Hz 8 real-rTMS/sham-rTMS bilateral M1 UPDRS-III English

Aftanas et al., 2021 parallel RCT 21 25 100% RMT; 10 Hz//110%
RMT; 10 Hz

20 real-rTMS/sham-rTMS bilateral M1-LL-left
DLPFC(sequentially)

UPDRS-II,III;
HDRS-17

English

Zhuang et al., 2020 parallel RCT 18 15 110% RMT;1 Hz 10 real-rTMS/sham-rTMS right DLPFC UPDRS-III;
HRS-D;PSQI; MoCA

English

Sedlácková et al., 2009 crossover study 9 1 100% RMT; 10 Hz 1 left PMd/left DLPFC
/left OCC(control)

left PMd//left DLPFC
//left OCC(control)

UPDRS-III English

Rektorova et al., 2008 crossover study 5 1 90% RMT; 10 Hz 1 DLPFC/M1 left DLPFC//M1 contralateral to
frequently used foot

UPDRS-III English

Randver et al., 2019 parallel RCT 3 3 80% RMT; 10 Hz 6 3 W sham+3 W active/6 W active left DLPFC UPDRS-II,III;
MoCA

English

Makkos et al., 2016 parallel RCT 24 20 90% RMT; 5 Hz 10 real-rTMS/sham-rTMS bilateral M1 UPDRS-II,III;
MoCA

English

Fricke et al., 2019 crossover study 15 5 95% RMT; 1 Hz 1 real ADS-rTMS/sham (PMd+M1) contralateral to more
affected body

UPDRS-III English

Flamez et al., 2016 crossover study 8 7 90% RMT; 1 Hz 1/10 Single
session(real/sham)/Multiple
session(real/sham)

bi M1 UPDRS-III English

Filipović et al., 2009 crossover study 5 5 AMT; 1 Hz 4 real-rTMS/sham-rTMS M1 contralateral to the more
severely affected side

UPDRS-III English
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Hanoglu et al., 2020; Li et al., 2020; Spagnolo et al., 2021) used
high-frequency stimulation (5–20 Hz), 7 articles (Brusa et al.,
2006; Filipović et al., 2009, 2010; Flamez et al., 2016; Fricke
et al., 2019; Zhuang et al., 2020; Lench et al., 2021) used
low-frequency stimulation (0.1–1 Hz), 5 articles (Lefaucheur
et al., 2004; Koch et al., 2005; Shirota et al., 2013; Cohen
et al., 2018; Chung et al., 2020) compared the efficacy of both
two frequencies. The stimulation targets involved unilateral
or bilateral stimulation of M1, DLPFC, or both, and SMA,
premotor cortex (PM), central parietal cortex (Pz), etc. All
36 studies set up comparisons with sham stimulation. The
network plot depicted the direct and indirect comparisons
among different rTMS targets (Figure 2). Node size and edge
width were weighted by the involved sample size and number of
studies.

Assessment of risk of bias and evidence
grading

Figure 3 shows the methodological quality assessment
of the included studies. All studies used randomization, but
77.78% of studies did not report the method of generating
random sequences, and 69.44% of studies had an unclear
risk of allocation concealment. Two studies had participants
lost to follow-up, making data incomplete (Brys et al., 2016;
Cohen et al., 2018). Three studies only achieved single
blindness in participants (Filipović et al., 2009, 2010) or
investigators (Zhuang et al., 2020). All studies have no
Reporting bias and Other bias. Overall, the quality of the
included studies is moderate. The risk of bias in each study
was summarized in Supplementary Figure 1. The CINeMA
evidence grading results exhibited the confidence rating of all
interventions relative to sham were available in Supplementary
Figure 2. After accounting for all biases, the comparisons
between hf M1+DLPFC, hf bi DLPFC, hf bi M1, and sham
had high evidence grades. The comparisons with hf PM,
hf SMA, lf DLPFC, lf PM+M1, lf Pz showed very low
evidence grades. The comparisons with hf DLPFC, hf M1,
lf M1, lf Pz, lf SMA, lf bi M1 showed low to moderate
evidence grades.

Traditional pair-wise meta-analysis

The pair-wise meta-analysis investigated the efficacy
of TMS with different parameters compared to control
on PD (the inverse variance method with the random-
effect model was used). As shown in Figure 4, TMS could
significantly improve motor symptoms in PD patients
compared with the control group (the total pooled effect
sizes, MD: −3.72, 95% confidence intervals (CI): −5.01 to
−2.43). Notably, the direct comparison results between active
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FIGURE 2

Network plot for Unified Parkinson’s Disease Rating Scale part III (UPDRS-III) shows the direct and indirect comparisons.

FIGURE 3

Risk of bias graph presents the quality of included studies.

stimulation and sham condition indicated frequency- and
target-dependent effects. The high-frequency stimulation
targeting different areas showed a significant improvement
in motor symptoms (MD: −4.63, 95% CI: −6.25 to
−3.01), while low-frequency stimulation had not the same
effects (MD: −1.21, 95% CI: −2.45 to 0.03). rTMS with
hf M1+DLPFC induced the most significant improvement
in UPDRS-III than other targets (MD: −7.39, 95% CI:
−13.25 to−1.53).

Network meta-analysis

Network meta-analysis estimates the efficacy of different
rTMS targets in PD by incorporating evidence from direct
and indirect comparisons. As exhibited in Table 2, the high-
frequency stimulation over bilateral M1 (MD: −6.50, 95% CrI:
−9.03 to−4.02), bilateral DLPFC (MD:−5.68, 95% CrI:−10.74
to −0.69), and M1+DLPFC (MD: −7.60, 95% CrI: −11.10 to
−4.02) could significantly reduce the UPDRS-III scores when
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FIGURE 4

The results of pair-wise meta-analysis reported with mean difference (MD) and 95%CI when compared to sham.

compared with sham condition. All low-frequency parameters
were not effective in improving motor symptoms in PD patients.
Concerning the comparison between active stimulations, the
high-frequency stimulation over bilateral M1 had a better effect
than targeting unilateral M1 (MD: −5.17, 95% CrI: −9.35 to
−1.04). And, hf M1+DLPFC TMS showed more significant
effects when compared to hf M1 (MD: −6.27, 95% CrI: −11.07
to−1.40), lf M1 (MD:−6.27, 95% CrI:−12.22 to−0.21), lf SMA
(MD: −5.08, 95% CrI: −10.06 to −0.01), and lf Pz (MD: −6.46,
95% CrI:−12.67 to−0.17).

Rank probability

For UPDRS-III, the probability of hfM1+DLPFC being best-
ranked was 39.14% and had the highest SUCRA value (90.66%).
The hf bi M1 ranked third with a probability of 30.93%, and a
SUCRA value was 84.90%. The lf PM+M1 had the worst ranking
probability of 46.70%, and a SCURA value was 19.38%. Figure 5

demonstrates the rankogram and cumulative ranking plot of
different TMS targets.

Model convergence, consistency, and
bias of publication

Model convergence was assessed using the Brooks-Gelman-
Rubin method by comparing within-chain and between-chain
variance. The Brooks-Gelman-Rubin diagnostic plot revealed
that the median value and 97.5% value of the reduction factor
tend to be one after 70,000 iterations, and the PSRF value was
also close to 1, which suggested a satisfactory convergence had
been reached (Supplementary Figure 3). The node-splitting
method revealed that there was no significant inconsistency
between the direct and indirect comparisons (p > 0.05), which
means the results of the used consistency model were reliable
(Supplementary Figure 4). The heterogeneity analysis showed
global heterogeneity with I2 > 50%. Therefore, the random
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TABLE 2 The results of the network meta-analysis reported with mean difference (MD) and 95% CrI.

hf bi M1

−5.17 (−9.35,
−1.04)

hf M1

−0.82
(−6.17,4.55)

4.35
(−1.58,10.37)

hf bi DLPFC

−3.56
(−7.98,0.82)

1.61
(−3.19,6.43)

−2.74
(−9.06,3.50)

hf DLPFC

−3.40
(−7.36,0.53)

1.77
(−2.52,6.11)

−2.57
(−8.18,3.01)

0.17
(−4.76,5.11)

hf SMA

1.11
(−3.01,5.07)

6.27
(1.40,11.07)

1.93
(−4.28,7.98)

4.66
(−0.34,9.61)

4.50
(−0.33,9.22)

hf M1+DLPFC

−4.05
(−12.13,4.02)

1.12
(−7.20,9.45)

−3.22
(−12.45,5.96)

−0.47
(−8.25,7.24)

−0.65
(−9.01,7.70)

−5.15
(−13.52,3.31)

hf PM

−4.28
(-9.96,1.37)

0.89
(−5.47,7.26)

−3.45
(−10.81,3.84)

−0.71
(−7.30,5.87)

−0.88
(−7.15,5.38)

−5.38
(−11.73,1.10)

−0.24
(−9.64,9.18)

lf bi M1

−5.16
(−10.66,0.28)

0.01
(−5.47,5.47)

−4.33
(−11.36,2.59)

−1.59
(−7.70,4.51)

−1.76
(−7.55,4.01)

−6.27
(−12.22,-0.21)

−1.11
(−10.20,7.95)

−0.87
(−8.13,6.35)

lf M1

−0.99
(−10.05,8.04)

4.17
(−5.12,13.53)

−0.17
(−10.25,9.87)

2.55
(−6.89,12.10)

2.40
(−6.87,11.69)

−2.10
(−11.45,7.35)

3.05
(−8.57,14.62)

3.29
(−6.93,13.53)

4.16
(−5.74,14.14)

lf DLPFC

−3.97
(−8.35,0.34)

1.19
(−3.63,6.01)

−3.16
(−9.25,2.89)

−0.41
(−5.63,4.79)

−0.59
(−4.83,3.67)

−5.08 (−10.06,
−0.01)

0.07
(−8.46,8.55)

0.30
(−6.18,6.76)

1.17
(−4.84,7.22)

−2.98
(−12.41,6.40)

lf SMA

−5.36
(−11.07,0.32)

−0.20
(−6.26,5.92)

−4.55
(−11.66,2.58)

−1.80
(−8.16,4.59)

−1.97
(−7.60,3.67)

−6.46
(−12.67,-0.17)

−1.32
(−10.61,7.97)

−1.08
(−8.56,6.40)

−0.21
(−7.25,6.88)

−4.36
(−14.44,5.77)

−1.39
(−6.65,3.92)

lf Pz

−7.83
(−16.56,0.80)

−2.67
(−11.65,6.28)

−7.01
(−16.75,2.66)

−4.27
(−13.45,4.81)

−4.44
(−13.37,4.48)

−8.93
(−17.97,0.12)

−3.79
(−15.13,7.52)

−3.56
(−13.51,6.35)

−2.70
(−12.33,6.98)

−6.85
(−18.97,5.23)

−3.86
(−12.92,5.19)

−2.48
(−12.28,7.29)

lf PM+M1

−6.50
(−9.03,−4.02)

−1.33
(−4.68,2.02)

−5.68
(−10.74,−0.69)

−2.93
(−6.73,0.84)

−3.10
(−6.36,0.14)

−7.60
(−11.10,−4.02)

−2.45
(−10.16,5.23)

−2.22
(−7.65,3.16)

−1.34
(−6.18,3.51)

−5.49
(−14.22,3.16)

−2.52
(−6.11,1.04)

−1.13
(−6.33,4.00)

1.34
(−6.95,9.66)

sham

Values in bold indicate statistically significant. For lower left triangle, the value comes from the NMA results of former parameters relative to the latter.
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FIGURE 5

The rankogram and cumulative ranking plot. [(Top): The rank probabilities of each parameter. (Bottom): The cumulative ranking plot to present
SUCRA value. The hf M1+DLPFC (green line) has the highest probability of being ranked first (39.14%) and had the highest SUCRA value (90.66%)].
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effect model was used in both pair-wise meta-analysis and NMA.
Sensitivity analysis was also performed by omitting one study at
a time. The results of sensitivity analysis showed the robustness
of pooled effects in the outcome. A meta-regression analysis
using the sessions as a covariate indicated the rTMS session
was negatively related to the improvement in UPDRS-III (i.e.,
the more sessions, the larger improvement in motor symptoms.
See Supplementary Figure 5). However, the effect was not
significant (the mean shared regression coefficient was −3.33,
95% CI: −6.87 to 0.30). The bias of publication was not
observed in included studies, with a symmetrical funnel plot and
p = 0.6727 in Egger’s test (Supplementary Figure 6).

Discussion

A growing body of literature has investigated the therapeutic
effects of TMS with different parameters on PD patients, but
the majority of studies were compared with either sham or
conventional interventions or another target. There was still a
lack of literature to comprehensively estimate the efficacy of
TMS on the treatment of PD with multiple different frequencies
and targets. Accordingly, we conducted this NMA, which
included 1,122 PD patients in 36 original studies. According
to the TMS frequency and target involved in the articles,
14 TMS parameter settings were extracted and determined.
The primary outcome was changes in UPDRS-III scores that
evaluate the motor function of PD patients. The results of the
pair-wise meta-analysis showed that different TMS parameters
were more effective than control on improvement of motor
symptoms of PD patients. After mixing with indirect evidence,
high-frequency TMS targeting bilateral M1, bilateral DLPFC,
and both M1 and DLPFC could significantly improve motor
symptoms of PD patients. Hf M1+DLPFC was the most effective
intervention among them.

The M1 is a pivotal brain area for generating voluntary
movements and interacts with the basal ganglia through
direct and indirect pathways (Galvan et al., 2015; Xu et al.,
2017). The synchrony and excitability in the M1 could be
affected by midbrain dopaminergic innervation (Parr-Brownlie
and Hyland, 2005; Grandi et al., 2018). Different models
including the Rate model, (Albin et al., 1989) Oscillation model,
(Hammond et al., 2007), and plasticity model, (Wichmann,
2019) as well as neuroimaging results, (Burciu and Vaillancourt,
2018) give explanations for functional changes in M1 in
PD patients. Therefore, motor dysfunction in PD patients
often involves modifications in the physiological properties of
neurons in M1 (Underwood and Parr-Brownlie, 2021). Studies
have also shown that TMS could induce activity changes in M1
and normalize related neural network circuits, (Lomarev et al.,
2006; González-García et al., 2011) and even lead to the release
of dopamine in the striatum (Strafella et al., 2005).

The prefrontal cortex plays a crucial role in the distributed
network of cognitive processing (Medaglia et al., 2015). In

particular, the DLPFC is usually involved in inhibitory control,
performance monitoring, action selection, and reward learning,
(Ridderinkhof et al., 2004) can also modulate dopamine release
in the striatum (Murase et al., 1993; Strafella et al., 2001). The
intra-cortical connection between DLPFC and M1 can transfer
crucial inhibitory stimulus to perform motor output (Cisek,
2006; Cohen et al., 2010). Impaired connectivity between the
prefrontal cortex, PMC, and SMA is related to bradykinesia
(Rowe et al., 2010; Wu et al., 2011). Several studies have
demonstrated that the activity of DLPFC was decreased in PD
patients (Schmiedt-Fehr et al., 2007; Singh et al., 2018; Trujillo
et al., 2019).

Based on the above discussion, there are several possible
explanations for why M1+DLPFC showed a better performance.
First, facilitation of both regions may additionally increase the
dopamine release of the striatal. Second, the better performance
may originate from the superposition of simple stimulation in
the two regions (dose-effect). Third, the M1 and DLPFC are
hubs for neural communication in PD-related neural networks
and are associated with symptoms such as bradykinesia, resting
tremors, and cognition impairment (Gao and Wu, 2016). Cao
et al. have found that the excitatory changes of DLPFC to M1
are bidirectional (Cao et al., 2018), and the connectivity of the
cortical-basal ganglia-thalamo-cortical pathway is related to the
alleviation of PD symptoms (DeLong and Wichmann, 2007;
Tachibana et al., 2011). Thus, double stimulation may alter the
interactions between different regions by activating cortical-
cortical or cortical-subcortical networks, thereby facilitating
information communication and action output. Forth, the
dyskinesia of PD is related to the neurophysiological alterations
in M1. Besides the allocation of cognitive resources in DLPFC,
the compensatory responses from the motor to the cognitive
system are also essential for optimal motor output (Cao et al.,
2018; Dagan et al., 2018). The double stimulation may balance
the allocation between the two regions. We also found that TMS
over bilateral M1 was more effective than unilateral stimulation.
Besides the bilateral communication mentioned above, it may be
related to the possible bilateral dysfunction in PD.

Several pair-wise meta-analyses have evaluated the effect of
TMS on motor and non-motor symptoms of PD (Chou et al.,
2015; Zanjani et al., 2015; Zhu et al., 2015; Chung and Mak,
2016; Yang et al., 2018). Yet, to our knowledge, this NMA is the
first time to compare the efficacy of different TMS parameters
in PD. Unlike those direct comparisons, after mixing indirect
evidence, we found that hf M1+DLPFC reduced UPDRS-III
by −7.60 points (95% CrI: −11.10 to −4.02) compared to
the sham condition and had a 90.66% probability of being
better than other parameters. In addition, the effect size in our
NMA is significantly larger than the degree of improvement
of UPDRS-III in other meta-analyses [Elahi et al. with −6.68
points (95% CI: −9.66 to −3.69) (Elahi et al., 2009), Zhu
et al. with −5.05 points (95% CI: −8.37 to −1.73) (Zhu
et al., 2015)]. But it is close to the result of hf bi M1 (MD:
−6.56, 95% CrI: −9.10 to −4.09) and hf bi DLPFC (MD:
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−5.69, 95% CrI: −10.77 to −0.68) in our NMA. A previous
study found −3.25 points for the Minimal Clinically Important
Difference (MCID) in UPDRS-III (Horváth et al., 2015). This
NMA demonstrated that hf bi M1 and hf bi DLPFC have a
moderate beneficial effect on UPDRS-III, and the effect of
hf M1+DLPFC is more prominent. The possible explanations
are described above. The finding that a combination of high-
frequency stimulation and the target produced better effects may
be attributed to the activity of the brain state and connectivity
between regions (Chou et al., 2015). Researchers have found
that high-frequency rTMS over the M1 and low-frequency
rTMS over the DLPFC have stronger and more pronounced
therapeutic effects. Similarly, low-frequency rTMS over SMA
produced long-lasting beneficial effects, (Shirota et al., 2013).
Still, the outcome was not significant when low-frequency rTMS
was applied to bilateral M1 (Chung et al., 2020). This suggests
that the activity of the target area may determine the effect of
the frequency of stimulation used.

Our NMA yielded some interesting results, but several
limitations need to be acknowledged. The cognition, mood,
sleep disorders, and other non-motor symptoms were not
considered. Another issue was that the medication status was
not included, which probably had biased our results. The
long-term effects of TMS were not evaluated since we only
compared the difference between the baseline and immediately
after the end of all TMS sessions. Studies targeting other
regions, such as the cerebellum, brainstem, and spinal cord,
were excluded because they did not fully meet the criteria
and were not discussed. In addition, we did not distinguish
stimulation order in multiple targets, and we defined both
simultaneous and sequential stimulation patterns as bilateral or
one target plus another, which might bias the interpretation.
Finally, the characteristics of patients such as age, PD stage,
and accompanying symptoms were also likely to confound our
results and should be noted.

Conclusion

The main conclusion drawn from our network meta-
analysis is that TMS could significantly improve motor
symptoms in PD patients. When considering all parameter
settings, high-frequency stimulation targeting bilateral M1 or
bilateral DLPFC has a moderate beneficial effect on improving
motor symptoms in PD (high confidence rating). High-
frequency stimulation over M1+DLPFC has a large beneficial
effect and appears to be the most effective TMS parameter
setting for ameliorating motor symptoms in PD patients (high
confidence rating).

With the advancement of neuromodulation techniques, the
individualized and precise TMS regulation on PD patients is
essential to improving the therapeutic effect. Based on the
evidence, this research proposes the optimal TMS frequency
and targets for motor symptoms of PD patients. However,

considering some limitations in this study, the large-scale and
multi-center clinical trials are still irreplaceable in the future
to demonstrate the relationship between different parameters
and clinical outcomes.
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