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Background: Analyses of brain samples from Alzheimer’s disease (AD) patients 

may be expected to help us improve our understanding of the pathogenesis 

of AD. Bioactive lipids, including sphingolipids, glycerophospholipids, and 

eicosanoids/related mediators have been demonstrated to exert potent 

physiological actions and to be involved in the pathogenesis of various 

human diseases. In this cross-sectional study, we attempted to elucidate the 

associations of these bioactive lipids with the pathogenesis/pathology of AD 

through postmortem studies of human brains.

Methods: We measured the levels of glycerophospholipids, sphingolipids, and 

eicosanoids/related mediators in the brains of patients with AD (AD brains), 

patients with Cerad score B (Cerad-b brains), and control subjects (control 

brains), using a liquid chromatography-mass spectrometry method; we also 

measured the mRNA levels of specific receptors for these bioactive lipids in 

the same brain specimens.

Results: The levels of several species of sphingomyelins and ceramides 

were higher in the Cerad-b and AD brains. Levels of several species of 

lysophosphatidic acids (LPAs), lysophosphatidylcholine, lysophosphatidylserine, 

lysophosphatidylethanolamine (LPE), lysophosphatidylinositol, 

phosphatidylcholine, phosphatidylserine (PS), phosphatidylethanolamine 

(PE), phosphatidylinositol, and phosphatidylglycerol were especially high 

in the Cerad-b brains, while those of lysophosphatidylglycerol (LPG) were 

especially high in the AD brains. Several eicosanoids, including metabolites of 

prostaglandin E2, oxylipins, metabolites of epoxide, and metabolites of DHA 

and EPA, such as resolvins, were also modulated in the AD brains. Among the 

lipid mediators, the levels of S1P2, S1P5, LPA1, LPA2, LPA6, P2Y10, GPR174, 

EP1, DP1, DP2, IP, FP, and TXA2r were lower in the AD and/or Cerad-b brains. 

The brain levels of ceramides, LPC, LPI, PE, and PS showed strong positive 

correlations with the Aβ contents, while those of LPG showed rather strong 

positive correlations with the presence of senile plaques and neurofibrillary 

tangles. A discriminant analysis revealed that LPG is especially important for 

AD and the LPE/PE axis is important for Cerad-b.
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Conclusions: Comprehensive lipidomics, together with the measurement of 

lipid receptor expression levels provided novel evidence for the associations 

of bioactive lipids with AD, which is expected to facilitate future translational 

research and reverse translational research.

KEYWORDS

Alzheimer’s disease, lipidomics, lysophospholipids, sphingolipids, eicosanoids

Introduction

Alzheimer’s disease (AD) is the most prevalent form of 
dementia worldwide, and there still remain substantial unmet 
needs for the treatment of AD. Therefore, identification of 
treatment targets for AD, especially using human autopsy brain 
samples, is desired. Since apolipoprotein E (ApoE) polymorphism 
has been shown as a major risk factor for AD (Corder et al., 1993; 
Saunders et  al., 1993) and ApoE-rich HDL is the major 
lipoprotein in the central nervous system (CNS; Vance and 
Hayashi, 2010), the involvement of lipids in the pathogenesis of 
AD has been investigated. Until date, several studies have been 
conducted to elucidate the modulations in the levels of various 
lipids and their involvement in the pathogenesis of AD (Yin, 
2022). A series of elegant basic studies has demonstrated that 
bioactive lipids, such as sphingolipids, glycerophospholipids, and 
eicosanoids/related mediators, which are derived from 
polyunsaturated fatty acids, exert potent physiological actions 
and are involved in the pathogenesis of many diseases in humans 
(Cartier and Hla, 2019; Green et al., 2021; Dyall et al., 2022; Kano 
et al., 2022).

The brain is rich in sphingolipids, and several studies have 
investigated the modulations of sphingolipid levels in AD brains. 
Among the sphingolipids, the biological properties of sphingosine 
1-phoshate (S1P) and ceramides have been the best studied in the 
field of neurology (De La Monte, 2012; Ghasemi et al., 2016). S1P 
is produced from sphingosine (Sph) by S1P kinases (Maceyka 
et al., 2002), and at present, five kinds of S1P receptors, S1P1–S1P5, 
have been identified. Ceramides are derived from sphingomyelins 
(SMs) and can be  converted into Sph. In addition to S1P, 
dihydrosphingosine 1-phosphate (dhS1P) is also known as another 
ligand for S1P receptors. DhS1P is produced from 
dihydrosphingosine (dhSph), and dhSph can also be processed 
into ceramides via dihydroceramides (Bartke and Hannun, 2009). 
Elevated levels of SMs (Varma et al., 2018) and decreased levels of 
S1P (He et al., 2010) have been reported in AD brains. In regard to 
the ceramides, reports are controversial; some studies have 
reported increased ceramide levels (Satoi et  al., 2005; Filippov 
et  al., 2012; Varma et  al., 2018), while one study has reported 
decreased ceramide levels in AD brains (Barbash et al., 2017). One 
study suggested that the modulations of the sphingolipid levels in 
the brain might depend on the type of AD (Cutler et al., 2004). 
Moreover, the modulations in the Sph and dhSph levels and the 
expression patterns of S1P receptors in AD brains remain uncertain.

Among the glycerophospholipids, lysophosphatidic acids 
(LPAs), which are produced from lysophosphatidylcholine (LPC) 
by autotaxin, are well studied (Kano et al., 2022). The levels of 
LPAs in the cerebrospinal fluid (CSF) are reported to be positively 
associated with the presence/absence of AD (Ahmad et al., 2020). 
Basic studies have revealed the involvement of LPAs in the 
development of CNS, in neuroplasticity, and in glial activation; 
LPAs have also been shown to play important roles in the 
accumulation of amyloid b protein (Ab) in the brain (Hao et al., 
2020). However, strong evidence for the modulations of LPA and 
LPA receptor expression levels in human brains is still lacking. 
Moreover, modulations of the levels of LPC, a precursor of LPAs, 
and of phosphatidylcholine (PC), a precursor of LPC, are not yet 
well known. PC levels have been reported to be depressed in AD 
brains (Nitsch et al., 1992; Varma et al., 2018), while modulations 
of the LPA and LPC levels in AD brains remain unknown. In 
addition to the receptors for LPAs, three types of specific receptors 
for lysophosphatidylserine (LPS), namely GPR34, P2Y10, and 
GPR174 (Inoue et  al., 2012), and a specific receptor for 
lysophosphatidylinositol (LPI) and lysophosphatidylglycerol 
(LPG), namely GPR55 (Oka et al., 2007), have also been identified. 
The glycero-lysophospholipid mediators also exert potent 
bioactivities through their receptors (Makide et al., 2014). LPS is 
produced from phosphatidylserine (PS), and LPI and LPG are 
produced from phosphatidylinositol (PI) and phosphatidylglycerol 
(PG), respectively. Until, the modulations of these lipids and of 
their receptor expressions have not yet been investigated in human 
AD brains. Although no specific receptor for this lipid molecule 
has been identified, the levels of lysophosphatidylethanolamine 
(LPE) are also dynamically modulated in several human diseases 
(Emoto et al., 2017; Kurano et al., 2017). Modulations of the LPE 
levels in human AD brains remain unknown, whereas the levels 
of phosphatidylethanolamine (PE), its precursor, have been 
reported to be depressed in AD brains (Nitsch et al., 1992).

In regard to modulations of the levels of fatty acids and their 
derivatives in AD brains, decrease in the DHA content in AD 
brains is almost well established (Astarita et al., 2010; Martin 
et al., 2010; Snowden et al., 2017), and the contents of other fatty 
acids are also reported to be decreased (Snowden et al., 2017). 
The metabolites derived from arachidonic acid (AA), the 
so-called eicosanoids, are known to be involved in the process of 
inflammation. The levels of prostaglandin (PG) E2, PGD2, 
PGF2a, and thromboxane (TX) B2 are reported to be elevated in 
AD brains (Iwamoto et al., 1989; Wong et al., 1992; Prasad et al., 
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1998). Although reports are still scarce at present, levels of 
metabolites of fatty acids other than AA may also be modulated 
in AD brains. The levels of DHA derivatives, such as maresin 1 
and resolvin D5, are reported to be lower in AD brains (Zhu et al., 
2016). Levels of anandamide (AEA), an endocannabinoid, are 
reported to be  decreased in AD brains (Jung et  al., 2012). 
However, there is still insufficient evidence of the modulations of 
the levels of eicosanoids and related metabolites in AD brains, as 
no comprehensive measurements of these numerous metabolites 
have been performed yet. Moreover, studies of modulations in the 
expressions of specific receptors of the eicosanoids, such as DP1, 
DP2, EP1-4, FP, IP, and TXAr2 are also warranted, since they are 
of interest as pharmacotherapeutic targets.

Considering this background, together with the recent 
advances in lipidomics using the liquid chromatography-mass 
spectrometry (LC–MS/MS) system, which can be  applied for 
precise measurements of the levels of lipid metabolites in human 
samples, we simultaneously investigated the modulations in the 
levels of glycero-lysophospholipids, diacyl-phospholipids, 
sphingolipids, and eicosanoids/related mediators, as well as those 
of the mRNA levels of specific receptors for these lipid mediators, 
in the postmortem brains of AD patients, patients with Cerad 
score B (Cerad-b), intermediate probability of AD (Mirra et al., 
1991), and control subjects, in order to elucidate the involvement 
of theses bioactive lipids in the pathogenesis of AD and facilitate 
future translational research to develop novel treatments.

Materials and methods

Samples

We conducted this study using 19 autopsied brain specimens, 
obtained from 6 AD patients, 7 Cerad-b patients, and 6 normal 
control subjects who showed no evidence of other CNS disorders 
in Tokyo Metropolitan Geriatric Medical Center. Frozen 
postmortem cerebral cortex specimens were used for the 
measurements. Cerad score is a semiquantitative measure of 
neuritic plaques and Cerad-b is classified as intermediate probability 
of AD (Murayama and Saito, 2004). All the autopsied specimens 
were obtained from the Brain Bank or Aging Research. The clinical 
phenotypes, including the diagnostic group (control, Cerad-b, or 
AD), grades of senile plaque (SPs), and Braak stage were evaluated 
based on histopathological examination of the specimens. The Ab 
contents were measured using a Human β Amyloid (1–42) ELISA 
kit (298–62,401, WAKO Pure Chemical Industries, Osaka, Japan), 
and adjusted to the brain protein levels. The characteristics of the 
subjects, as well as ApoE genotypes, are described in Table 1.

The current cross-sectional study was performed in 
accordance with the ethical guidelines laid down in the 
Declaration of Helsinki. Written informed consent was obtained 
in advance from the brain donors and/or the next of kin. The 
study design was approved by Tokyo Metropolitan Geriatric 
Medical Center and The University of Tokyo Medical Research 
Center Ethics Committee (2018088NI).

Measurement of the levels of S1P, 
ceramides and sphingosine, 
glycero-lysophospholipids, 
diacyl-phospholipids, and eicosanoids/
related mediators

We measured the levels of the lipid mediators listed below by five 
independent LC–MS/MS methods using an LC8060 system, 
consisting of a quantum ultra-triple quadrupole mass spectrometer 
(Shimadzu, Japan). We  simultaneously measured six ceramide 
species (Cer d18:1/16:0 [C16:0], Cer d18:1/18:0 [C18:0], Cer 
d18:1/18:1 [C18:1], Cer d18:1/20:0 [C20:0], Cer d18:1/22:0 [C22:0], 
Cer d18:1/24:0 [C24:0]), Sph, and dhSph, as previously described 
(Morita et al., 2020). We also measured the levels of S1P and dhS1P 
as described previously (Sakai et al., 2020). Furthermore, the levels 
of LPA, LPC, LPS, LPI, LPG, and LPE were also measured, as 
described previously (Kurano et al., 2015a,b; Morita et al., 2019). In 
the present study, we monitored 11 acyl chains (14: 0, 16:0, 16:1, 18:0, 
18:1, 18:2, 18:3, 20:3, 20:4, 20:5, and 22:6) for these lysophospholipids 
and 22:5 LPI. We also measured the levels of SM, PC, PE, PG, PI, and 
PS (Kurano et al., 2019, 2022). We monitored 17 diacyl chains for SM 
and 64 diacyl chains for PC, PE, PI, PG, and PS. We also measured 
the levels of 193 eicosanoids/related mediators, together with 18 
internal standards, AA, EPA, and DHA, as described previously 
(Morita et al., 2021). In all of these measurements, except those of 
SM and diacyl-phospholipids, both the intra-day and inter-day 
coefficients of variation are below 20%, as validated in our previous 
studies. The lipid contents were adjusted to the protein levels.

Reverse-transcriptase PCR

Total RNA extracted from murine tissues or cells using the 
GenElute Mammalian Total RNA Miniprep kit was subjected to 
reverse transcription with the ReverTra Ace qPCR RT Master 
Mix. Quantitative PCR was performed using an ABI 7300 Real-
Time PCR System (Applied Biosystems), using the primers for 
S1P and several LPA receptors described in previous reports 
(Enooku et al., 2016; Uranbileg et al., 2018) and commercially 
available primers listed in Supplementary Table S1. The 
expression levels of the genes of interest were normalized to those 
of the endogenous control 18 s mRNA.

Statistical analysis

The data were analyzed using SPSS (Chicago, IL) or 
MetaboAnalyst 5.0.1 To examine the statistical significances of 
differences in the lipid levels and mRNA expression levels of the 
lipid receptors among the control brains, Cerad-b brains, and AD 
brains, we used the Kruskal-Wallis test, followed by the Steel-Dwass 
test as a post-hoc test (Figures 1–4). For the correlation studies, the 

1 http://www.metaboanalyst.ca/
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Kendall rank correlation was used to examine the associations of 
the levels of the lipids and of the mRNA expression levels of the 
lipid receptors with the clinical phenotypes (diagnostic group, SP 
score, and Braak stage), and the Spearman rank correlation was 
used to examine the association of the lipids with the contents of 
Ab, considering age and sex as covariates of interest (Figure 5). A 
sparse OPLS-DA was performed by MetaboAnalyst using three 
components to which a maximum of 20 variables can contribute, 
with the results of the lipid levels together with the age, sex, SP 
score, Braak stage, and content of Ab, to explore the characteristics 
of the three diagnostic groups (Figure 6). The graphic figures were 
prepared using Graphpad Prism 9 (GraphPad Software, San Diego, 
CA) or MetaboAnalyst. p values of less than 0.05 were deemed as 
denoting statistical significance in all the analyses.

Results

The levels of several species of 
sphingomyelin and ceramides were 
higher in the Cerad-b and Alzheimer’s 
disease brains

Figure 1 shows the modulations in the levels of sphingolipids 
and S1P receptors in the Cerad-b and AD brains. Although the 
total SM levels were not modulated, the SM (32:1), SM (32:2), SM 

(36:3), and SM (38:3) levels were higher in the Cerad-b and/or AD 
brains (Figures  1A,B). The Sph and dhSph levels were not 
significantly different (Figures 1C,D). The brain levels of ceramides 
were higher in the Cerad-b and/or AD brains (Figures 1E–J). The 
S1P and dhS1P levels tended to be lower in the AD brains, although 
the difference did not reach statistical significance (Figures 1K,L). 
In regard to the mRNA expression levels of the S1P receptors, the 
mRNA levels of S1P2 and S1P5 were lower in the Cerad-b brains, 
and those of S1P5 were lower in the AD brains (Figure 1M).

The levels of several species of 
lysophosphatidic acid, 
lysophosphatidylcholine, 
lysophosphatidylserine, 
lysophosphatidylethanolamine, and 
lysophosphatidylinositol were higher 
especially in the Cerad-b brains, while 
those of lysophosphatidylglycerol were 
higher especially in the Alzheimer’s 
disease brains

Figure 2 shows the modulations of glycero-phospholipids and 
their receptors in the Cerad-b and AD brains. Although the total 
LPA levels were not significantly modulated, the LPA (18:0) levels 
were higher in the Cerad-b brains (Figure  2A; 

TABLE 1 Characteristics of the subjects.

AD Age Sex SP Braak Ab ApoE

a1 86 F 3 5 1.342 3/4

a2 87 F 3 5 1.515 3/4

a3 85 M 3 5 1.258 2/3

a4 88 M 3 5 1.904 3/4

a5 86 F 3 5 1.676 3/3

a6 85 M 3 5 1.851 3/4

Average 86.17 ± 1.07 M/F = 3/3 3.00 ± 0.00 5.00 ± 0.00 1.591 ± 0.242

Cerad-b

b1 86 F 2 2 2.048 3/3

b2 89 F 1 2 1.757 3/3

b3 81 M 2 2 1.207 3/4

b4 89 F 2 2 1.243 3/3

b5 86 F 1 1 1.231 3/3

b6 87 M 1 1 2.172 3/3

b7 80 F 2 1 1.396 3/4

Average 85.43 ± 3.33 M/F = 2/5 1.57 ± 0.49 1.57 ± 0.49 1.579 ± 0.380

Control

c1 89 M 1 1 0.653 3/3

c2 81 M 1 1 0.536 3/3

c3 86 F 1 2 1.001 3/3

c4 83 M 0 1 0.493 3/3

c5 80 F 0 2 0.595 3/3

c6 80 M 1 1 0.539 3/3

Average 83.17 ± 3.34 M/F = 4/2 0.67 ± 0.47 1.33 ± 0.47 0.636 ± 0.171
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FIGURE 1

Modulations of sphingolipid levels and mRNA levels of S1P receptors in the brain of AD and Cerad-b. The sphingolipid levels and the mRNA levels of 
S1P receptors were measured in the brain of control subjects (n = 6), the patients with Cerad-b (n = 7), and those with AD (n = 6). The Kruskal-Wallis 
test, followed by the Steel-Dwass test as a post-hoc test, was used for statistical evaluation of the differences. (A) Total SM levels. (B) The brain levels 
of SM species. (C) Sph levels. (D) DhSph levels. (E–J) The brain ceramide levels. (K) S1P levels. (L) DhS1P levels. (M) The mRNA expression levels of 
S1P receptors adjusted to the expression level of 18 s as the internal standard. *p < 0.05; **p < 0.01; ns, not significant; a, p < 0.05 vs. control; b, p < 0.01 
vs. control; c, p < 0.001 vs. control; d, p < 0.05 between Cerad-b and AD; e, p < 0.01 between Cerad-b and AD; f, p < 0.001 between Cerad-b and AD.
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Supplementary Figure S1A). Among the LPA receptors, the 
mRNA levels of LPA1, LPA2, and LPA6 were lower in the Cerad-b 
brains (Figure 2B). The levels of LPC, a precursor of LPAs, were 
generally higher in the Cerad-b and AD brains (Figure  2C; 
Supplementary Figure S1B), although the mRNA levels of 
autotaxin, an enzyme catalyzing the production of LPAs from 
LPC, were not significantly modulated (Supplementary Figure S2). 
In regard to LPS, although the total LPS levels were not 
significantly modulated, the LPS (18:0) and LPS (18:3) levels were 
higher in the Cerad-b brains (Figure  2D and 
Supplementary Figure S1C). Among the LPS receptors, the mRNA 
levels of P2Y10 and GPR174 were lower in the Cerad-b brains, 
and tended to be lower in the AD brains (Figure 2E). The brain 
levels of LPI, especially of LPI (16:0) and LPI (18:0), were higher 
in the Cerad-b brains, while those of LPG were higher especially 
in the AD brains (Figures 2F–H; Supplementary Figure S1D). The 
mRNA levels of GPR55, a receptor for LPI and LPG, were not 
significantly modulated (Figure 2I). The brain levels of LPE were 
generally higher in the Cerad-b brains (Figures 2J,K).

The levels of several species of 
phosphatidylcholine, phosphatidylserine, 
phosphatidylinositol, phosphatidylglycerol, 
and phosphatidylethanolamine were 
higher in the Cerad-b and Alzheimer’s 
disease brains

Figure  3 shows the modulations of diacylglycerols in the 
Cerad-b and AD brains. The total levels of PC, PE, and PG were 
not different, while those of several PC, PE, and PG species were 
positively modulated in the Cerad-b and AD brains, especially in 
the Cerad-b brains (Figures 3A–C,F). The total levels of PI, as well 
as those of several species of PI, were higher in the Cerad-b brains 
than in the AD brains (Figures 3D,I). The levels of several PI 
species were higher in the Cerad-b brains than in the control 
brains. The total levels of PS, as well as the levels of several species 
of PS were higher in the Cerad-b brains than in the control brains 
(Figures 3E,J). The levels of several PS species were also higher in 
the AD brains than in the control brains.

Several classes of eicosanoids/related 
mediators were modulated in the 
Cerad-b and Alzheimer’s disease brains

Figure 4 shows the significant modulations of eicosanoids and 
related metabolites, and also those of their specific receptors in the 
Cerad-b and AD brains. Among the eicosanoids, the brain levels of 
13,14-dihydro-15-keto PGA2, a PGE2-derived metabolite, were 
higher (Figure  4A), while those of 11-trans-LTE4, an LTC4 
metabolite, were lower (Figure 4B) in the AD brains. The levels of 
5,6-DHET, an AA-derived epoxide metabolite, were lower in the 
Cerad-b brains and and tended to be lower in the AD brains, and 
those of 5,6-DHET-lactone, a metabolite of 5,6-DHET, were lower 

in the AD brains than in the Cerad-b brains (Figures 4C,D). The 
levels of 15-HETE, an oxylipin, were also lower in the AD brains 
than in the Cerad-b brains (Figure 4E). Among the EPA-derived 
metabolites, the levels of PGE3 and 5,6-DiHETE were lower in the 
AD brains than in the Cerad-b brains (Figures 4F,G). The levels of 
DHA were lower in the AD brains than in the control brains and 
those of resolvin D5 were lower in the AD brains than in the 
Cerad-b brains (Figures 4H,I). In regard to the metabolites of other 
fatty acids, the levels of 13,14-dihydro-PGE1, a metabolite of PGE1, 
which is produced from dihomo-γ-linoleic acid, were lower in the 
AD brains (Figure 4J). Among the specific receptors for eicosanoids, 
the mRNA levels of PGE2 receptor 1 (EP1), PGD2 receptor 1 (DP1), 
PGI2 receptor (IP), and TXA2 receptor (TXA2r) were lower in the 
AD brains, while those of DP2 and IP were lower in the Cerad-b 
brains (Figures 4K–M). The mRNA levels of the PGF receptor (FP) 
were lower in the AD brains than in the Cerad-b brains (Figure 4M).

Correlations of the levels of bioactive 
lipids and of their receptor expression 
levels with the clinical phenotypes as 
determined by brain autopsy

Next, we investigated the correlations of the levels of bioactive 
lipids with the clinical phenotypes. Figures  5A,B shows the 
correlation coefficients and the p-values of the top  20 lipid 
mediators with the lowest p values in the analysis of the 
correlations with any specific clinical parameters (group [control, 
Cerad-b, and AD], SP score, Braak stage, and Ab content) as heat 
maps. Among the metabolites of AA, the metabolites which 
showed positive correlations with clinical phenotypes were 11,12-
DHET and 5, 6-DHET (AA-derived epoxide metabolites), 
12-HETE, 5-HETE, 5-KETE, and 9-HETE (oxylipins produced by 
LOX), and PGD2, while the metabolites which showed negative 
correlations with the clinical phenotypes were 11-dehydro-2,3-
dinor-TXB2 (a TXA2 metabolite), 13,14-dihydro-15-keto PGA2 
(a PGE2-derived metabolite), 5-iPF2a-VI (an isoprostane), and 
tetranor-PGJM (a PGD2 metabolite). The levels of 12-HEPE and 
14,15-DiHETE (EPA metabolites) and 4-HDHA (a DHA 
metabolite), and 13-HpODE (a linoleic acid metabolite) also 
showed positive correlations with the clinical phenotypes.

Among the sphingolipids, SM (38:2), and the C18:1, C20:0, 
and C22:0 ceramides showed positive correlations with the clinical 
phenotypes, and we  observed strong positive correlations 
especially between the levels of the ceramides and the Ab contents. 
In regard to the glycero-lysophospholipids, some species of LPC 
and LPI showed strong positive correlations with the Ab contents, 
while some LPG species showed strong positive correlations with 
the diagnostic group, SP score, and Braak stage. Among the 
diacylglycerols, some species of PC, PG, and PI showed rather 
strong positive correlations with the diagnostic group, SP score, 
and Braak stage, while some species of PE and PS showed positive 
strong correlations with the Ab contents.

In regard to the association of the expressions levels of the lipid 
receptors with the clinical parameters, the mRNA levels of TXAr2, 
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FIGURE 2

Modulations of the glycero-lysophospholipid levels and mRNA expression levels of LPA, LPS, and LPI/LPG receptors in the brain in AD and Cerad-b. The 
glycero-lysophospholipid levels and mRNA expression levels of LPA, LPS, and LPI/LPG receptors were measured in the brains of control subjects (n = 6), 
patients with Cerad-b (n = 7), and patients with AD (n = 6). The Kruskal-Wallis test, followed by the Steel-Dwass test as a post-hoc test, was used for 
statistical evaluation of the differences. (A) Total LPA levels. (B) The mRNA levels of the LPA receptors adjusted to the expression level of 18 s as the 
internal standard. (C) Total LPC levels. (D) Total LPS levels. (E) mRNA expression levels of LPS receptors adjusted to the expression level of 18 s as the 
internal standard. (F) Total LPI levels. (G) Total LPG levels. (H) LPG species. (I) mRNA levels of the LPI/LPG receptor, GPR55, adjusted to the expression 
level of 18 s as the internal standard. (J) Total LPE levels. (K) LPE species. *p < 0.05; **p < 0.01; ***p  < 0.001; ns, not significant; a, p < 0.05 vs. control; b, 
p < 0.01 vs. control; c, p < 0.001 vs. control; d, p < 0.05 between Cerad-b and AD; e, p < 0.01 between Cerad-b and AD; f, p < 0.001 between Cerad-b and AD.
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FIGURE 3

Modulations of the diacylphospholipid levels in the brains in AD and Cerad-b. The diacylphospholipid levels were measured in the brains of control 
subjects (n = 6), patients with Cerad-b (n = 7), and patients with AD (n = 6). The Kruskal-Wallis test, followed by the Steel-Dwass test as a post hoc 
test, was used to evaluate the difference. (A) Total PC levels. (B) Total PE levels. (C) Total PG levels. (D) Total PI levels. (E) Total PS levels. *p < 0.05. 
(F) PC species. (G) PE species. (H) PG species. (I) PI species. (J) PS species. ns, not significant; a, p < 0.05 Cerad-b vs. control; b, p < 0.01 Cerad-b vs. 
control; c, p < 0.001 Cerad-b vs. control; d, p < 0.05 AD vs. control; e, p < 0.01 vs. AD vs. control f, p < 0.001 AD vs. control; g, p < 0.05 Cerad-b vs. AD; h, 
p < 0.01 Cerad-b vs. AD; i, p < 0.001 Cerad-b vs. AD.
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FIGURE 4

Modulations of the levels of eicosanoids and related mediators, and the eicosanoid receptor mRNA levels in the brains in AD and Cerad-b. The levels 
of eicosanoids and related mediators and the mRNA expression levels of the eicosanoid receptors were measured in the brains of control subjects 
(n = 6), patients with Cerad-b (n = 7), and patients with AD (n = 6). The Kruskal-Wallis test, followed by the Steel-Dwass test as a post-hoc test, was used 
for statistical evaluations of the differences. (A) 13,14-dihydro-15-keto PGA2 levels. (B) 11-trans-LTE4 levels. (C) 5,6-DHET levels. (D) 5,6-DHET-
lactone levels. (E) 15-HETE levels. (F) PGE3 levels. (G) 5,6-DiHETE levels. (H) DHA levels. (I) Resolvin D5 levels. (J) 13,14-dihydro-PGE1 levels. (K–M) 
The mRNA levels of the eicosanoid receptor, GPR55, adjusted to that of 18 s as the internal standard. *p < 0.05; **p < 0.01; ns, not significant.
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FIGURE 5

Correlations between bioactive lipids/their receptors and the clinical phenotypes. The correlations between the bioactive lipid/their receptor 
expression levels and the clinical phenotypes (group [control, Cerad-b, and AD], SP, Braak stage, and Ab) were examined using the Kendall rank 
correlation for correlations with the diagnostic group, SP, and Braak stage, and the Spearman rank correlation for Ab, using age and sex as the 
covariates of interest. (A,B) The correlation coefficients and the p-values of the top 20 lipid mediators with the lowest p values in the analysis of 
the correlations with any specific clinical parameters (group [control, Cerad-b, and AD], SP, Braak stage, and Ab) as heat maps. (C–K) The 
significant correlations between the lipid receptor expressions and clinical phenotypes.
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DP1, EP1, IP, and S1P5 showed significantly negative correlations 
with the diagnostic group (Supplementary Figure S3). The mRNA 
levels of EP1, DP1, and TXAr2 were negatively correlated with the 
levels of SP, those of TXAr2, DP1, and EP1 were negatively 
correlated with the Braak stage, and those of DP1, S1P2, and DP2 
were negatively correlated with the Ab contents (Figures 5C–K).

Sparse PLS-DA identified bioactive lipids 
which contributed to discriminating 
Alzheimer’s disease brains from Cerad-b 
and control brains and those which 
contributed to discriminating Alzheimer’s 
disease and Cerad-b brains from control 
brains

Lastly, we performed a sparse PLS-DA to identify the bioactive 
lipids that contributed to discriminating among the diagnostic 
groups, considering the clinical phenotypes together. As shown in 
Figures  6A,B, component 1 allowed Cerad-b brains to 
be  discriminated from the control and AD brains, whereas 
component 2 allowed discrimination of each group from the other 
diagnostic groups. Component 3 explained the individual 
differences among the groups. The levels of LPE (16:0), PE (32:3), 
LPE (18:0), PE (42:5), LPS (18:3), PE (42:11), LPE (16:1), and 
5,6-DiHETE contributed to component 1 (Figure 6C). The Braak 
stage and SP score contributed most strongly to component 2, 
followed by the levels of LPG (16:0), LPG (18:0), and LPG (16:1) 
(Figure  6D). The individual dot plots of the contributing 
metabolites are described in Supplementary Figure S4.

Discussion

In this study, we investigated the modulations of the levels of 
bioactive lipids, such as glycero-lysophospholipids, sphingolipids, 
and eicosanoids/related mediators, and of the mRNA expression 
levels of their receptors in Cerad-b and AD brains. The results are 
summarized in Figure 7.

Regarding the sphingolipids, the levels of several species of 
SM and ceramides were higher in the Cerad-b and AD brains, and 
were positively associated with the clinical phenotypes (Figures 1, 
5). These results are consistent with several previous reports (Satoi 
et al., 2005; Filippov et al., 2012; Varma et al., 2018). Considering 
the bioactivities of ceramides, such as pro-apoptotic (Obeid et al., 
1993) and pro-inflammatory (Vandanmagsar et  al., 2011) 
activities, the elevated levels and positive correlations of the levels 
of ceramides with the clinical phenotypes seem reasonable. 
Although the brain contents of S1P were not significantly 
modulated in the present study, they tended to be lower in the AD 
brains, which is consistent with the results of a previous study (He 
et al., 2010). In regard to the responsible receptors, the mRNA 
levels of S1P2 and S1P5 were negatively modulated in the Cerad-b 
and/or AD brains. Although no involvement of S1P2  in the 

pathogenesis of AD has been reported, S1P5 is widely expressed 
in the CNS, and in one study, an S1P5 agonist was demonstrated 
to attenuate age-related cognitive decline in mice (Hobson et al., 
2015). The present results suggest attenuated S1P5 signaling in the 
pathogenesis of AD, which might support the idea of the potential 
clinical usefulness of an S1P5 agonist in AD treatment in humans.

While only slight modulation of the levels of LPAs was 
observed, the mRNA levels of LPA1, LPA2, and LPA6 were 
decreased in the Cerad-b brains (Figures  2A,B; 
Supplementary Figure S1A). Regarding the associations between 
the expression levels of specific LPA receptors and AD, no direct 
associations have been reported, and only LPA1 has been reported 
to facilitate the brain delivery of donepezil (Choi et  al., 2021); 
however, considering the important roles of LPA in the field of 
neurology, as described in the Introduction section (Hao et  al., 
2020), the present results suggest that the LPA receptors might 
be potential therapeutic targets for AD. The finding in this study 
that modulations of these LPA receptors were observed only in 
Cerad-b brains, and not AD brains, might be of some significance. 
We also observed elevation of the PC and LPC levels in the Cerad-b 
and AD brains (Figures 2C, 3A,F; Supplementary Figure S1B). In 
addition to the physiological significance as precursors of LPA 
(Uranbileg et al., 2021), LPC, in particular, possesses lipotoxicity 
(Chen et al., 2022; Yoshioka et al., 2022). Strong positive correlations 
of the levels of LPC and PC with the clinical phenotypes were 
observed (Figures 5A,B). The levels of several species of LPS/PS, 
LPE/PE, and LPI/PI were also higher in the Cerad-b brains 
(Figures 2D,F–H, 3B,D,E,G,I,J; Supplementary Figure S1C,D). Since 
the mRNA levels of P2Y10 and GPR174 were lower and those of 
GPR34 were not modulated in the Cerad-b brains (Figure 2E), the 
elevation of LPS in these brains might imply the specific activation 
of GPR34 signaling among the LPS receptors. Until date, no 
association of LPS with AD has been reported. Considering that 
GPR34 signaling activates the microglia (Sayo et al., 2019) and 
P2Y10 signaling suppresses inflammation of the microglia (Kita 
et al., 2019), these modulations observed in the Cerad-b brains may 
aggravate the pathogenesis of AD. In regard to PS, although 
involvement of the physiological actions of PS itself in the 
pathogenesis of AD remains unresolved, the intake of PS-containing 
foods has been reported to improve the phenotypes of AD (Zhang 
et al., 2015). In this study, the brain contents of PS showed strong 
positive correlations with the Ab contents. PS reportedly enhances 
the activity of BACE-1, an enzyme that catalyzes the production of 
Ab, which is consistent with the results of the present study 
(Kalvodova et al., 2005). In regard to LPE/PE, although the evidence 
might not be  sufficient, suppression of PE generation has been 
reported to decreased Aβ accumulation (Nesic et  al., 2012), 
suggesting that the modulations observed in the Cerad-b brains 
might promote the pathogenesis of AD, while one report 
demonstrated that LPE suppressed inflammatory changes and 
oxidative stress in microglial cells (Tsukahara et  al., 2021), 
suggesting that elevation of LPE might be a compensatory change 
and that failure of this modulation might lead to the pathogenesis 
of AD from Cerad-b (Tsukahara et al., 2021). Regarding LPI/PI, 
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while activation of GPR55, a receptor for LPI, has been reported to 
improve the pathological condition of AD (Xiang et al., 2022), a 
GPR55 antagonist has been reported to attenuate inflammatory 
changes of the microglia (Saliba et al., 2018), as of macrophages 
(Kurano et al., 2021). These axes are rather downregulated in AD 
brains as compared with the Cerad-b brains. To elucidate the 
significance of these modulations, basic researches are necessary to 
understanding the involvement in these lipids in the pathogenesis 

of AD with basic research is necessary. Compared with other 
glycerophospholipids, LPG/PG axis, especially LPG, is up regulated 
in AD and LPG had rather strong positive correlations with SP and 
Braak scores (Figures  2G,H, 3C,I, 5A,B). LPG seemed to 
characterize AD against control and Cerad-b (Figure 6D). This is 
the first study demonstrating the association between LPG and 
AD. LPG is another agonist for GPR55 (Oka et al., 2007). GPR55 is 
reportedly involved in a glia–neuron communication for neural 

A B

C D

FIGURE 6

Discriminant analysis using the brain levels of bioactive lipids for diagnostic groups. Sparse PLS-DA was performed to identify bioactive lipids that 
contribute to discriminating AD from Cerad-b and control, and those that contribute to discriminating AD and Cerad-b from control. (A,B) Score 
plots. (C) Loading plot for component 1. (D) Loading plot for component 2.
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development (Guy et al., 2015). Although the association has not 
been elucidated in neurology, LPGAT1, an enzyme involved in the 
metabolism of LPG/PG axis, has been demonstrated to be associated 
with mitochondria functions (Zhang et al., 2019). In addition, other 
biological properties are emerging now (Kawana et al., 2019). The 
further study on the involvement of LPG in the pathogenesis of AD, 

especially on the formation of SP, neurofibrillary tangle, and 
progression from Cerad-b to AD, is expected.

Compared with sphingolipids and glycerophospholipids, the 
contributions of eicosanoids and related lipid mediators to 
discriminate Cerad-b and/or AD seemed rather weak (Figure 6), 
however substantial changes were observed in the present study 

FIGURE 7

Schematic showing modulation of bioactive lipid species in the brain in AD.
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(Figures 4A–J). Regarding the modulations among three groups, the 
increase in a PGE2 metabolite and the decrease in DHA and its 
metabolite were concordant with the previous studies (Prasad et al., 
1998; Astarita et al., 2010; Zhu et al., 2016). The decrease of 15-HETE 
in human brain of AD was firstly reported in this study, which is 
concordant with the previous study with mice (Tajima et al., 2013). 
The modulations of other mediators have not been reported 
previously. Regarding the physiological significance, since EP1 was 
down regulated in the brain of AD and PGE2 was not modulated 
(Figure 4K), the input of EP1 signal might be suppressed in the brain 
of AD. Reportedly, EP1 signal exacerbated neurotoxicity in murine 
brain (Zhen et al., 2012; Mendes et al., 2020), the down regulation of 
EP1 might be  a compensatory modulation. The decrease of 
11-trans-LTE4, a LTC4 metabolite, might also represent a 
compensatory change, considering their potent pro-inflammatory 
properties (Sasaki and Yokomizo, 2019), whereas the decrease of 
15-HETE might accelerate the phenotypes of AD, since 15-HETE 
reportedly has anti-inflammatory properties (Profita et al., 2000). 
5,6-DHET is an epoxide of AA, although its physiological properties 
are largely unknown at present. Among AA derivatives, it is 
interesting that several metabolites showed positive correlations, 
whereas others showed negative correlations with clinical phenotypes. 
The positive correlations of oxylipins produced by LOX or 
AA-derived epoxide metabolites might reflect the oxidative stress in 
the brain of Cerad-b or AD, while those of EPA or DHA metabolites 
might possess compensatory significances, considering their anti-
inflammatory roles (Ishihara et  al., 2019). 13-HpODE might 
be involved in the facilitating the pathogenesis of AD, considering its 
pro-inflammatory and pro-apoptotic properties (Dwarakanath et al., 
2004; Ryman et al., 2016). 11-dehydro-2,3-dinor-TXB2 (a TXA2 
metabolite) showed negative correlations and the mRNA levels of 
TXA2r were lower in the brain of AD and negatively correlated with 
clinical phenotypes. These results suggested the attenuation of TXA2 
signal in AD. Considering that COX-2 has been proposed to possess 
deteriorating effects in AD pathophysiology (Tyagi et al., 2020), these 
associations might possess some significances, although the 
experimental research does not exist on these associations. Regarding 
other receptors for eicosanoids, the down regulation of DP1, DP2, IP, 
and FP was observed in the brain of Cerad-b and/or AD 
(Figures 4L,M). The result of DP1 was contrary to a previous report 
with a mice model of AD (Mohri et al., 2007) and the involvement of 
other receptors in AD has not been explored.

Since this is observational research with rather small number 
of subjects, understanding the detail mechanisms with basic 
studies and clinical studies is needed. However, comprehensive 
measurement of bioactive lipids in the brain of AD has not existed 
and we believe that this approach is important since these lipid 
mediators have the same origins, to some degree. For example, 
diacyl-phospholipids undergo hydrolysis into fatty acids, and 
lysophospholipids and eicosanoids and derivatives of w3 fatty acids 
can be produced from these fatty acids (Sato et al., 2016). Actually, 
the present study revealed that LPG is especially important for AD 
and LPE/PE axis is important only for Cerad-b (Figure 6).

In addition to the lipids we investigated in the present study, 
many other lipids exist in the brain and the lipids and their related 
proteins have been proposed to be  associated with AD. As 
described in the Introduction section, the variant epsilon 4 of 
ApoE is established as a risk factor for AD (Corder et al., 1993). 
ApoE-rich HDL binds to LDL receptor and LRP1, which have 
been also demonstrated to be involved in the pathogenesis of AD 
(Shibata et al., 2000; Deane et al., 2004; Shi et al., 2021). Actually, 
in the samples we used in the present study, we observed the 
decrease of LRP1  in the brain of Cerad-b 
(Supplementary Figure S5). Moreover, cholesterol has been 
reported to be involved in the pathogenesis of AD (Rudajev and 
Novotny, 2022) and oxysterols such as 24S-hydroxycholesterol, a 
derivative of cholesterol (Mutemberezi et al., 2016), have been also 
demonstrated to have roles in the amyloidogenic process in AD 
(Sodero, 2021). Further investigation on the modulation of 
various lipids in the human postmortem samples would elucidate 
novel associations of lipids with AD in the future.

In summary, the present study revealed many novel potential 
associations between bioactive lipids or their receptors and AD in 
human brain. Especially, we  could provide evidence for the 
involvement of ceramides in AD. We also elucidated the association 
of LPG/PG, LPE/PE, LPS/PS, and LPI/PI in human AD for the first 
time, which would facilitate future novel reverse translational 
research and also promote the translational research of elegant 
series of previous research in the fields of AD. The investigation on 
the modulations of lipid receptors will impact on the potential 
importance of S1P2, S1P5, LPA1, LPA2, LPA6, P2Y10, GPR174, 
EP1, DP1, DP2, IP, FP, and TXA2r as a target for AD.
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