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Beyond the core features of Alzheimer’s disease (AD) pathology, i.e. amyloid 

pathology, tau-related neurodegeneration and microglia response, multiple 

other molecular alterations and pathway dysregulations have been observed 

in AD. Their inter-individual variations, complex interactions and relevance 

for clinical manifestation and disease progression remain poorly understood, 

however. Heterogeneity at both pathophysiological and clinical levels 

complicates diagnosis, prognosis, treatment and drug design and testing. 

High-throughput “omics” comprise unbiased and untargeted data-driven 

methods which allow the exploration of a wide spectrum of disease-related 

changes at different endophenotype levels without focussing a priori on 

specific molecular pathways or molecules. Crucially, new methodological and 

statistical advances now allow for the integrative analysis of data resulting from 

multiple and different omics methods. These multi-omics approaches offer 

the unique advantage of providing a more comprehensive characterisation of 

the AD endophenotype and to capture molecular signatures and interactions 

spanning various biological levels. These new insights can then help decipher 

disease mechanisms more deeply. In this review, we  describe the different 

multi-omics tools and approaches currently available and how they have been 

applied in AD research so far. We discuss how multi-omics can be used to 

explore molecular alterations related to core features of the AD pathologies 

and how they interact with comorbid pathological alterations. We  further 

discuss whether the identified pathophysiological changes are relevant 

for the clinical manifestation of AD, in terms of both cognitive impairment 

and neuropsychiatric symptoms, and for clinical disease progression over 

time. Finally, we  address the opportunities for multi-omics approaches to 

help discover novel biomarkers for diagnosis and monitoring of relevant 

pathophysiological processes, along with personalised intervention strategies 

in AD.
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Introduction

The hallmarks of Alzheimer’s disease (AD) are amyloid 
aggregation, tauopathy and neuronal injury. Along with the 
microglia response, these are considered as the “core” AD pathology 
(Scheltens et al., 2021). Indeed, cerebrospinal fluid (CSF) levels of 
Aβ1-42, total-tau and tau phosphorylated at threonine 181 
(p-tau181) levels, mirroring cerebral amyloid, neuronal injury and 
tau pathology, are currently the best validated biofluid markers of 
AD pathology. However, these pathology aspects do not fully explain 
the vast heterogeneity of the observed disease phenotypes. A large 
body of evidence indicates that other biological pathways and 
molecular alterations happening at both cerebral and systemic levels 
are involved in the pathophysiological processes underlying 
AD. These processes may substantially contribute to the 
development and acceleration of amyloid pathology and 
neurodegeneration, precipitate the manifestation of cognitive and 
neuropsychiatric symptoms (NPS) and may therefore represent 
targets for both interfering with the developing AD pathology and 
slowing down or even reverse clinical disease progression. For 
example, neuroinflammation was proposed to play a key role at the 
interface between both tau and amyloid pathologies (Calsolaro and 
Edison, 2016; Luca et al., 2018; Marttinen et al., 2018). Alterations of 
the lipid metabolism including oxysterols (Gamba et al., 2019; Jahn 
et al., 2021), cholesterol and non-cholesterol sterols (Popp et al., 
2012, 2013), eicosanoids (Biringer, 2019) and other lipid groups 
(Kao et al., 2020), have been associated with AD pathology (Barbash 
et  al., 2017). Other metabolic pathways, such as one-carbon 
metabolism (Oikonomidi et al., 2016; Troesch et al., 2016; Dayon 
et al., 2017), glucose (Arnold et al., 2018) and amino acid metabolism 
(De Leeuw et al., 2017), amongst others (van der Velpen et al., 2019; 
Xu et al., 2021), are also implicated in AD. Vascular factors are also 
part of the AD pathology (Bowman et al., 2018; Nation et al., 2019). 
Yet it is difficult to paint a complete figure of the endophenotypes of 
AD as (i) there are large inter-individual variations, (ii) most 
previous studies have focused on single pathway alterations, (iii) 
biological systems are interdependent and interconnected and (iv) 
their relevance for the clinical manifestation and disease progression 
remains unclear. From a clinical point of view, a better understanding 
of the AD endophenotype is needed not only for a better diagnosis 
and prediction of clinical disease progression, but also with regard 
to targeted interventions. To achieve this, systemic biological 
approaches are required. These approaches should simultaneously 

consider multiple biological levels, their interactions and their 
relationships with known features of AD. This is especially relevant 
as so far, the traditional “one gene, one drug, one disease” hypothesis 
has mostly failed to produce clinically relevant drugs, likely because 
of the complex disease pathophysiology of AD (Fang et al., 2020). 
Drug development hypotheses should therefore take into account 
the great complexity of AD spanning multiple biological levels, and 
their clinical relevance.

Such in-depth analysis of a disease phenotype can hardly 
be performed using only hypothesis-driven targeted approaches 
that typically focus on one or a few groups of molecules of interest. 
Applying more comprehensive untargeted, data-driven assessments 
is better suited to address the extent and complexity of disease-
related alterations. The recent development of various omics 
technologies allows, for instance, to resolve the complexity of the 
metabolome and proteome (Sancesario and Bernardini, 2018). It is 
now possible to measure a large number of molecules simultaneously 
with relatively high throughput resulting in sensitive read-outs of 
biological status and for exploration of molecular fingerprints of 
diseases (Jove et al., 2014; Shevchenko et al., 2015; Hasin et al., 
2017). As powerful phenotyping technologies, omics significantly 
accelerate the understanding of mechanisms of pathophysiological 
alterations that underlie complex diseases such as AD.

However, given that biological systems are interdependent 
and interconnected, it is necessary to consider multiple single-
omics datasets together. These approaches are dubbed multi-
omics as they integrate data stemming from multiple biological 
levels, from genes to transcripts, to proteins and to metabolites. 
Such approaches afford the opportunity to explore in depth the 
pathway alterations and molecular mechanisms associated with 
the disease. In the context of AD, distinct endophenotypes and 
alterations could be identified and associated with distinct disease 
manifestations, helping us better understand disease heterogeneity 
and related clinical relevance. Indeed, it is conceivable that distinct 
endophenotypes underlie cognitive and non-cognitive clinical 
manifestations, for example. These approaches also have the 
potential of identifying altered biofluid molecule profiles that 
could be used as biomarkers for the diagnosis and prognosis in 
preclinical or early clinical AD stages. Such biomarkers signatures 
could also be used for monitoring and following up the effects of 
clinical interventions on relevant pathologies over time.

Materials and methods

We conducted a review of the existing literature on multi-
omic approaches in Alzheimer’s disease, with a focus on 

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MCI, mild 

cognitive impairment; NPS, neuropsychiatric symptoms.
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hypothesis-free untargeted approaches that integrated different 
omics modalities and data types originating from different 
molecular biology levels in order to capture the dynamic 
pathomechanisms underlying Alzheimer’s disease. We searched 
PubMed, MEDLINE and Google Scholar for original articles in 
English language referenced in these databases between 30th 
September 2017 and 30th September 2022 using the following 
search terms: “multi-omics,” “multi omics,” “omics,” “Alzheimer’s 
disease,” “Alzheimer’s,” “AD” and “neurodegenerative disease.” The 
titles and abstracts of all references were screened for eligibility. 
Full texts of potentially eligible references were then retrieved and 
assessed for inclusion.

To be  considered, articles had to include systems biology 
approaches that considered together at least two different 
biological modalities at different molecular levels from the 
following: genomics, transcriptomics, proteomics, lipidomics, 
metabolomics or ionomics, obtained from human participants 
with confirmed AD pathology (through validated biomarkers of 
post-mortem neuropathology analysis). We excluded from our 
analysis review articles, commentaries or errata, unreviewed 
pre-prints, articles not using human data or those to which we did 
not have access.

Relevant information was extracted from the included articles, 
including omics modalities used, use of an integrative method, as 
defined according to Ritchie et al. (2015), i.e. the process by which 
different types of omics data are combined as predictor variables 
to allow more thorough and comprehensive modelling of complex 
traits or phenotypes, and their main findings.

Results

After exclusion of duplicates, we  obtained 116 different 
studies. We excluded 32 review articles, 29 studies that were not 
multi-omic studies, 13 that did not consider AD patients, 11 that 
were not performed using human samples or were only in silico 
simulations, 3 unreviewed preprints and 3 to which we did not 
have access. We therefore considered 33 studies for this review 
shown in Table 1. Before discussing them, we will address the tools 
and challenges involved in performing multi-omics studies.

Performing multi-omic studies

Challenges of multi-omic studies

Combining different omics level and data modalities is 
challenging. Indeed, integrating genomics, transcriptomics, 
proteomics and other omics data often results in handling very 
heterogeneous data. This heterogeneity results first from the 
different analytical performances (e.g. precision, trueness and 
limit of quantification) that vary from an omics platform to 
another (even within a given omics field such as proteomics). The 
obtained quantitative data are also diverse in nature (e.g. counts, 

intensities, areas under the curve, relative ratios and 
concentrations) and often transformed and/or treated with 
different normalisation and data scaling approaches. Another 
issue is the potential sparsity of data. This is especially true for 
metabolomics data where multiple molecules can likely be found 
below the lower limit of quantification, or mass spectrometry-
based proteomics when data-dependent acquisition (a data-driven 
stochastic process of recoding data) is used, generating significant 
numbers of missing values in datasets. For these reasons, omics 
datasets must be cleaned and prepared properly before further 
analysis. In this process, outliers should be treated individually 
before data integration.

Other challenges include the subsequent statistical analyses. 
Certain diseases are rarer than others and therefore can cause class-
imbalance in datasets. In these cases, weighted approaches or over-
sampling should be considered. Additionally, cross-validation or 
regularisation should be considered. In the context of AD, this could 
be the case in studies investigating familial AD specifically, as it is 
estimated less than 5% of AD cases are causes by deterministic genes 
(Wu et al., 2012). Another challenge specific to the investigation of 
the endophenotype of AD is the heterogeneity regarding the 
development of the disease pathology and its clinical presentation. 
Indeed, AD has a long preclinical and prodromal period, during 
which distinct pathophysiological processes with their own 
dynamics might emerge at different times. While multi-omics data 
are better suited to distinguish differentiate between individual 
heterogeneity and underlying changes in many participants, this 
makes direct comparisons between cross-sectional studies difficult.

The major problem facing multi-omics studies however is the 
famous “curse of dimensionality” whereby much more features 
(i.e. analytes) are measured compared to the number of datapoints 
available (Bellman and Kalaba, 1959; Berisha et al., 2021). This 
means the dimensional space must be reduced by feature selection 
or extraction approaches such as least absolute shrinkage and 
selection operator (LASSO) or principal component analysis 
(PCA) respectively before data integration. In addition, distinct-
omics modalities and approaches present individual advantages 
and challenges. For example, genomic data are unlikely to capture 
dynamic processes involved in pathophysiological processes. 
Metabolomics data on the other hand provides a dynamic readout 
of the disease state but is likely also affected by the environment 
and nutritional habits.

Available multi-omics integration tools

From a statistical point of view, there are multiple ways to 
approach multi-omics data integration (i) concatenation which 
develops models using a joint data matrix which is formed by 
combining multiple omics datasets, (ii) model-based approaches 
which create multiple intermediate models for the different omics 
data to then build a final model from various intermediate models 
and (iii) transformation methods which first transform each of the 
omics datasets into graphs or kernel matrices and then combine 
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TABLE 1 Multi-omics studies in Alzheimer’s disease considered in this review.

Authors Omics considered Biological sample Clinical features 
of study cohort

Integrative 
method? Findings

Beckmann et al. (2020) Genomics Brain tissue AD No VGF is causally related to AD and is down 

regulated in patients.Transcriptomics

Chung et al. (2022) Genomics Brain tissue AD No MGMT expression and methylation 

associated with AD pathology and risk.Transcriptomics

Clark et al. (2021) Proteomics Cerebrospinal fluid AD and MCI Yes Distinct multi-omics molecular signatures 

differentially related to AD pathology. 

Biomarker candidates of AD and cognitive 

decline.

Lipidomics

Metabolomics

Cohn et al. (2021) Proteomics Brain tissue AD No In late AD tau and neuronal debris are 

resealed through extracellular vesicles.Transcriptomics

Lipidomics

Du et al. (2021) Genomics Plasma AD and MCI No Genomic and transcriptomic biomarkers 

are associated with neuroimaging featuresProteomics

Fang et al. (2022) Genomics Brain tissue AD No Identification of 103 risk genes for AD. 

Three drugs associated with decreased risk 

of AD.

Transcriptomics

Proteomics

Han et al. (2021) Genomics Brain tissue AD No Web-based tool for visualisation of data

Transcriptomics

Hu et al. (2020) Genomics Brain tissue General population Yes Identification of 16 shared causal pathways 

between AD and Type 2 DiabetesTranscriptomics

Johnson et al. (2020) Genomics Brain tissue, 

Cerebrospinal fluid

General population No Microglial metabolism is associated with 

both normal ageing and AD and could 

serve a neuroprotective anti-inflammatory 

function.

Proteomics

Johnson et al. (2022) Genomics Brain tissue General population No APOEε4 and cognitive decline are not 

associated with the same biological 

pathways.

Transcriptomics

Proteomics

Lefterov et al. (2019) Transcriptomics Brain tissue AD No Differential association of APOE genotype 

with transcriptomic and lipidomic profiles 

in AD

Lipidomics

Li et al. (2020) Genomics Brain tissue AD and MCI Yes Prediction of PET-imaging outcomes 

improved by multi-omics modellingTranscriptomics

Li et al. (2021) Genomics Brain tissue AD and MCI Yes Molecular subtypes are associated with 

MCI to AD conversion riskTranscriptomics

Madrid et al. (2021) Genomics Blood AD No Glypican-2 (GPC2) protein downregulated 

in AD casesTranscriptomics

Min et al. (2021) Genomics Brain tissue AD No Somatic mutations unlikely to be causal 

for ADTranscriptomics

Nativio et al. (2020) Transcriptomics Brain tissue AD No AD affects the epigenome. Disease 

pathways are affected by chromatin and 

transcription regulation.

Proteomics

Epigenomics

Odom et al. (2021) Genomics Brain tissue AD Yes Most pathways involved in AD pathology 

are not picked up by single-omic 

approaches

Transcriptomics

Park et al. (2022) Genomics Blood AD and MCI Yes Identification of possible molecular drivers 

of AD heterogeneity or subtypesTranscriptomics

Proteomics

Peña-Bautista et al. 

(2021)

Genomics Blood AD and MCI No Lipids and miRNAs involved in fatty acids 

mechanisms associated with disease.Lipidomics

(Continued)
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of all of them into one before constructing a model. Concatenation 
approaches, such as deep neural networks (Tang et al., 2019) or 
Multi-Omics Factor Analysis (Argelaguet et  al., 2018), do not 
require any pre-processing and can select the most discriminating 
features for a given phenotype but in general do not consider the 
unique distribution of each data modality. Model-based 
approaches such as XGBoost (Ma et al., 2020) and PINS+ (Nguyen 
et al., 2019) facilitate the understanding of interactions amongst 
different omics for a given phenotype but are not effective if the 

data are extremely heterogeneous. Finally, transformative methods 
have the advantage of being able to combine a wide range of omics 
and portray the relationships between different omics samples. 
These methods include MOGONET (Wang T. et al., 2021) and 
NEMO (Rappoport and Shamir, 2019) and are usually more 
challenging to perform because they are computationally more 
intensive than other methods. In addition, transforming the data 
can itself be challenging. Finally, each of these integration types 
can be supervised (fitting a model with labelled training data and 

TABLE 1 (Continued)

Authors Omics considered Biological sample Clinical features 
of study cohort

Integrative 
method? Findings

Rosenthal et al. (2022) Genomics Brain tissue AD No Identification of 17 gene clusters of 

pathways altered in ADTranscriptomics

Ruffini et al. (2020) Genomics Brain tissue AD No AD shares many proteomic and 

transcriptomic pathways with other 

neurodegenerative diseases

Transcriptomics

Proteomics

Seyfried et al. (2017) Genomics Brain tissue AD No Genetic risk loci for late-onset AD are 

preferentially enriched in microgliaTranscriptomics

Proteomics

Shigemizu et al. (2020) Genomics Blood MCI No Effective in MCI-to-AD conversion 

prediction model.Transcriptomics

Song et al. (2021) Genomics Blood AD No 30 cross-omics blood-based biomarkers 

associated with AD.Transcriptomics

Proteomics

Tasaki et al. (2018) Genomics Brain tissue General population Yes Specific set of neuronal genes to controls 

cognitive decline in older adultsTranscriptomics

Tasaki et al. (2019) Genomics Brain tissue General population No Cognitive and motor impairment could 

share an underlying genetic architectureTranscriptomics

Proteomics

Wang M. et al. (2021) Genomics Brain tissue AD Yes Molecular signatures and gene networks 

identified for four brain regions. 

ATP6V1A is an important driver of AD.

Transcriptomics

Wingo et al. (2022) Genomics Brain tissue General population No Many of the neurodegenerative disease 

causal proteins are shared with psychiatric 

disorders

Transcriptomics

Proteomics

Xicota et al. (2019) Transcriptomics Plasma Memory clinic patients Yes Potential blood omics signature for 

prediction of amyloid positivityMetabolomics

Lipidomics

Xie et al. (2021) Genomics Brain tissue General population Yes Discovery of multi-omic networks 

associated with brain function and 

neuroimaging.

Transcriptomics

Proteomics

Xu et al. (2020) Proteomics Plasma AD and MCI No Five lipid modules and 5 protein modules 

regulating homeostasis and innate 

immunity are strongly associated with AD.

Lipidomics

Yu et al. (2022) Transcriptomics Blood, brain tissues AD No Actin cytoskeleton is the most pronounced 

change in the cerebral cortex and serum of 

AD patients

Proteomics

Zhou et al. (2021) Genomics Blood, brain tissues AD No Useful tool for database browsing and 

network visualisationTranscriptomics

Proteomics

AD, dementia of AD type; MCI, mild cognitive impairment.
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then use it for prediction) or unsupervised (finding the underlying 
patterns in unlabelled data using input feature variables) which 
are especially useful for identifying clusters within the data. 
We refer to Reel et al., for an extensive review of the available 
machine-learning tools for multi-omics analysis (Reel et al., 2021). 
Faced with this plethora of available tools, another challenge for 
researchers is indeed which method to choose. It remains often 
necessary to practically evaluate a few strategies.

Multi-omics approaches applied to 
AD

While multi-omics have been used for over a decade to 
investigate alterations in other diseases, in particular in the field 
of oncology (Akhoundova and Rubin, 2022), multi-omic 
investigations of AD are still in their infancy. Nonetheless, in the 
past 5 years, several multi-omics studies have been performed on 
human cohorts and data in the context of AD (Table 1). However, 
few of these studies are truly integrative. While they consider 
multiple biological levels, they only investigated these alterations 
independently of each other. For example, Cohn et al. (2021) 
analysed proteomics, transcriptomics and lipidomics data derived 
from microglial extracellular vesicles obtained from 
cryopreserved brain tissue with neuropathologically confirmed 
AD. They showed that alteration of microglial function in the late 
stages of AD leads to the release of neuronal debris, including tau 
in extracellular vesicles. This suggests that extracellular vesicles 
could be used as not only a source of future omics data but also 
as a potential readout of disease state. More recently, also using 
brain tissue from AD patients, Chung et  al. (2022) explored 
genomics and transcriptomics data and found an association of 
AD with genetic variants in MGMT (O6-methylguanine-DNA 
methyltransferase, which is involved in DNA damage repair 
function) amongst women lacking the APOE ε4 allele, the most 
important genetic risk factor in sporadic (non-familial) 
AD. Furthermore, the epigenetic regulation of MGMT was 
associated with tau-related pathology. The APOE ε4 allele has 
also been associated with proteins within the extracellular matrix 
and glycosaminoglycan-binding proteins in a study considering 
genomics, proteomics and transcriptomics data obtained from 
brain tissue derived from the general population (Johnson et al., 
2022). Also, considering genomics and transcriptomics obtained 
from AD confirmed brain tissue, Min et al. (2021) have shown 
that single-nucleotide variants of AD-candidate genes are not a 
causal factor of sporadic AD. Non-integrative multi-omics 
analyses were also applied to investigate alterations in blood-
based miRNA levels in relation to genomics data, Shigemizu et al. 
(2020) revealing that single-nucleotide polymorphism-
microRNA pairs can be  used to improve the prediction of 
conversion from mild cognitive impairment (MCI) to 
AD dementia.

While all these studies provide important and confirmatory 
clues for the better understanding of the pathophysiological 

mechanisms of AD and reveal potential new risk-factor and 
diagnosis tools, they do not fully leverage the power of multi-
omics data integration. Firstly, they do not use integration 
algorithms, as defined according to Ritchie et  al. (2015), that 
consider the interactions that most likely exist between the 
different biological levels considered. Indeed, no analysis of the 
combined data was performed but rather each individual data 
modalities were investigated separately without integrating the 
different results were integrated into a single framework. Another 
difficulty is that the most studies only consider two or three 
biological levels, such as. genomics and transcriptomics, 
neglecting the downstream events happening at the proteome and 
metabolome levels. The next most considered modality is 
proteomics, but very few studies consider lipidomics, 
metabolomics or ionomics (a term defining the entire elemental 
composition of a living organism) data, all of which have 
previously been associated with AD (Zheng et al., 2016; De Leeuw 
et al., 2017; Gamba et al., 2019; van der Velpen et al., 2019). Of 
note, it is also possible to consider in multi-omics studies 
non-molecular data such as neuroimaging and clinical data. For 
example, investigating both genomics and proteomics of brain 
tissues derived from MCI and AD patients, Xie et al. (2021) found 
20 SNPs from 20 genes associated with the function and structure 
of six frontal cortex regions. These SNPs were also associated with 
increased amyloid deposition in these areas. Integration of such 
clinical and functional data greatly enhances the real-world 
application chances of the generated results.

Some recent studies have however pursued a true integrative 
approach. Importantly, Odom et al. (2021) have used such an 
approach to analyse genomics and transcriptomics derived from 
brain tissue from AD patients. They have shown that most 
pathways involved in AD pathology are not picked up by single-
omics approaches. Indeed, combining multiple weak signals from 
a number of individual molecules is more likely to identify key 
biological hubs or pathway alterations relevant for disease. For 
example, Wang M. et al. (2021) used post-mortem brain tissue 
samples with confirmed AD to identify ATP6V1A (encoding an 
ATPase component) as a key network regulator involved in 
multiple protein networks associated with AD. This suggests that 
this gene is not only a potential risk factor for AD but could also 
serve as a target for disease modifications, highlighting the power 
of integrative approaches for discovering potential disease 
modifying drug targets.

The common findings of all the studies presented in Table 1 
could help build a clearer and more accurate picture of the 
different processes underlying AD pathophysiology. These muti-
omics approaches have provided evidence for alteration of 
molecular and cellular pathways underlying AD pathophysiology 
such as the immune system response (including complement 
activation), haemostasis pathways, energy metabolism and 
mitochondrial function, lipid homeostasis and processing, 
extracellular matrix regulation, synapse biology and plasticity, 
neuronal function, proteostasis, oxidative stress, signal 
transduction pathways and programmed cell death.
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Exploring pathway alterations related to 
core aspects of AD pathology

It also necessary to put these results in the context of previous 
knowledge regarding AD pathology. Whenever possible the 
identified alterations should be associated with the known core 
aspects of AD pathology (i.e. amyloid pathology, tau pathology 
and neurodegeneration). The most obvious route for this is to 
associate the derived networks or groups of alterations with 
established biomarkers of AD pathology. One caveat is that such 
association should be performed a posteriori to avoid any selection 
bias in the considered pathways which would drastically reduce 
the utility of multi-omics approaches. For example, we  have 
recently investigated in a memory-clinic cohort CSF multi-omics 
signatures of AD by integrating multi-omics data (Clark et al., 
2021). We identified five major dimensions of heterogeneity that 
together comprehensively explained the endophenotypic variance 
and were associated with core AD pathology. Exploring these 
dimensions of variance within the cohort we found that individual 
CSF biomarkers of amyloid aggregation, neurodegeneration and 
tau hyperphosphorylation were associated with distinct molecular 
signatures and pathway alterations. For example, the haemostasis 
pathway was associated with tau pathology and neurodegeneration, 
while neuronal function was associated with amyloid pathology.

It is also possible to predict amyloid positivity using multi-omic 
approaches. Li et al. have proposed a model with high accuracy 
using genomic and transcriptomic data (Li et al., 2020). While this 
model outperforms non-multi-omics models, it contains over 200 
variables and is therefore not usable in clinical practice. In another 
study, the authors derived a biomarker signature of early amyloid 
deposition in asymptomatic individuals (Xicota et al., 2019). This 
signature contains only five molecules, and it is also derived from 
omics data obtained from plasma samples. This is especially relevant 
as blood-based biomarkers are much less invasive and more easily 
accessible than currently established CSF biomarkers of AD.

Unfortunately, there is currently no consensus or similarity in 
the biomarker candidates revealed by these studies. Replications 
of those results are needed before considering any of the biomarker 
candidates for therapeutic and/or diagnosis use. All the above 
studies demonstrate that a multitude of pathophysiological 
process can be linked to the development of AD pathology.

Molecular alterations with clinical 
relevance

Cognitive impairment and cognitive 
decline

The studies previously mentioned greatly improve our 
understanding of the underlying mechanisms of AD, but their 
clinical utility is somewhat limited. Indeed, very few of them 
provide any useful information about the relationships between 
specific biological alterations and clinical presentation and 

prognosis. The already mentioned study by Shigemizu et al. (2020) 
shows that single-nucleotide polymorphism-microRNA pairs can 
be used for assessing risk of mild cognitive impairment to AD 
dementia conversion, but unfortunately the mechanisms driving 
the conversion are not currently elucidated. Studies by Johnson 
et al. (2020) and Johnson et al. (2022) have shown that APOE ε4 
and the associated extracellular matrix proteins was not associated 
with cognitive decline whereas mitogen-activated protein kinases 
(MAPK) were associated with cognitive decline. This suggests that 
MAPKs are the principal modulators of the cognitive impairment 
and decline independently of the APOE genotype. According to 
Li et al. (2021), conversion risk differs between patient groups 
presenting distinct genomic, proteomic and neuroimaging 
features. Using proteomics, genomics and transcriptomics data 
derived from brain tissue, Seyfried et al. identified a genetic risk 
locus for AD encoding genes involved in microglia and 
oligodendrocyte function associated with cognitive decline 
(Seyfried et al., 2017). We have also already mentioned our own 
studies (Clark et al., 2021), where we identified dimensions of 
heterogeneity within a cohort associated with AD. Analysing our 
model deeper, we were able to find molecular signatures predictive 
of cognitive decline. Both of these signatures contained only four 
molecules each, taken from multiple biological levels which 
significantly improved prediction performance of cognitive 
decline when added to reference models containing only readily 
available clinical variables.

Neuropsychiatric symptoms

Besides cognitive impairment, neuropsychiatric symptoms 
(NPS) are very common clinical features of AD dementia. The 
presence of NPS alone or in combination with cognitive symptoms 
form a clinical risk factor for further disease progression 
(Taragano et al., 2018). The exact underlying pathophysiology of 
NPS has not been clarified yet. Also, the relationship between AD 
pathology with the pathological mechanisms of NPS is not clear 
to date. Especially the question whether NPS independently 
contribute to cognitive and functional decline needs further 
clarification. Investigating these open questions through multi-
omics approaches seem a reliable option.

Despite the growing number of various omics and multi-
omics studies in AD, very few omics studies and, to our best 
knowledge, no multi-omics approaches currently exist for the 
investigation of NPS in the elderly. We have previously explored 
the pathological mechanisms of NPS in cognitively impaired and 
unimpaired community-dwelling participants in a longitudinal 
cohort study. Using proteomics data derived from CSF, we found 
27 proteins associated with NPS. Enriched pathways analysis 
revealed different biological pathway alterations related to the 
single neuropsychiatric symptoms. For example, depression was 
associated with neuroinflammatory pathways while apathy was 
associated with cell adhesion and signal transduction pathways 
(Mroczek et  al., 2022). Using the same approach applied to 
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blood-based proteomics data revealed 15 proteins associated with 
NPS. These proteins additionally were predictive of disease 
progression, i.e. persistence of NPS over time and associated 
cognitive decline over 3 years. Interestingly, the associations 
seemed to be  independent of the presence of AD pathology 
indicating pathways partially distinct from AD (Rabl et al., 2022). 
Indeed, it appears only 30% of the proteins causative of 
neurodegenerative disease are implicated in psychiatric disorders 
(Wingo et al., 2022). These studies underline the need for further 
omics and multi-omics studies to clarify how NPS alter the clinical 
course of AD.

The promise of personalised 
medicine

There is also a potential for multi-omics approaches to classify 
AD subtypes by their biological endophenotype in the first place. 
Such biologically defined subtypes would be devoid of any clinical 
bias while still allowing for considering the clinical manifestation 
and disease severity, and progression over time. Defining disease 
subtypes biologically would also be  very helpful for grouping 
participants in future clinical trials specifically targeting the 
altered biological pathways. Integration of multi-omics data 
obtained from cerebral tissue of cerebrospinal fluid will allow to 
explore and unravel the disease pathomechanisms and could help 
identify and investigate drug-targets and biological pathways 
alterations. On the other hand, blood (or systemic)-derived multi-
omics data are better suited to identify biomarkers for individual 
diagnosis, prognosis and monitoring. For example, using readily 
accessible blood-derived genomics, transcriptomics and 
proteomics data from patients with cerebral amyloid pathology, 
Park et al. (2022) have identified possible molecular drivers of AD 
heterogeneity or AD subtypes. This suggests that specific clinical 
manifestations of AD could be associated with distinct biological 
alterations. More generally, the molecular signature of disease 
could differ from one patient to another, according to cognitive 
status, age or sex for example (Xu et  al., 2021). Therefore, 
identification of specific molecular signatures is key for (i) better 
understanding the mechanisms underlying the heterogeneity of 
AD, (ii) developing specific diagnosis tests based on multi-omics 
derived biomarkers and (iii) for developing patient-tailored 
interventions that take into account individual biological 
specificities. Taken together, such approaches are likely to increase 
the efficacy of clinical care strategies and interventions.

Perspectives

While substantial advance in the understanding of AD have 
already been made using multi-omics approaches some important 
limitations remain. First, the findings need to be related to the 
“core” aspects of AD pathology to better understand their 
contribution to disease. Indeed, they may be  associated with 

amyloid pathology, tau-related or neurodegeneration, but they 
could also occur as independent pathophysiological processes. 
We therefore propose the research framework shown in Figure 1 
for multi-omics investigations of AD going forwards. In this 
paradigm, both untargeted and hypothesis-driven targeted, single 
omics and multi-omics approaches are performed in parallel and 
combined to allow for bench-side discovery and for clinical 
translation (Wood, 2014). Molecules associated with AD should 
be  identified in both single- and multi-omics datasets. The 
identified molecules should then be  subsequently assigned to 
biochemical pathways using pathway and metabolic network-
embedded analysis as well as ontology approaches. Finally, the 
identified analytes/molecules and pathway alterations should 
be related to specific aspects of AD pathology at both clinical and 
molecular levels. Of note, this framework could easily be applied 
to other neurodegenerative diseases or other pathologies. Moving 
towards a more unbiased and heterogeneous framework 
encompassing genes, proteins and molecules contributing to 
synaptic function, neuroinflammation, transcriptional and 
translational regulation as well as brain structure and function will 
be key in unlocking in-depth understanding of AD. It will also 
allow for the discovery of as-of-yet unimagined biomarkers at 
various stages of the disease. Such approaches require not only 
large cohorts but also great amounts of computing power as well 
as substantial financial resources and therefore can only 
be undertaken as collaborative multi-centric endeavours (Ritchie 
et al., 2016).

In addition to performing single- and multi-omics together, 
the next promising approach could be  the meta-analysis of 
different cohorts as multi-omics data become more and more 
available in public repositories. While this would drastically 
strengthen understanding of AD pathology this approach comes 
with its own challenges. Indeed, there is a vast amount of 
heterogeneity between the cohorts used and one would also have 
to deal with data completeness and labelling issues amongst others.

Conclusion

Despite their relatively small numbers, multi-omics studies 
in AD have already shed light on the complex evolution of AD 
pathophysiology, including at individual level. This is especially 
relevant for a complex disease such as AD where clinical 
manifestations arise through interactions of multiple biological 
pathway that result in multifactorial alterations. While many of 
the identified alterations have been previously investigated in 
single-omic or hypothesis-driven studies, multi-omics studies 
have helped heighten our understanding of AD pathophysiology 
and clinical manifestations and opened perspectives of diagnosis 
and treatment options beyond the core pathophysiological 
mechanisms of AD. This will help identify new targets for 
prevention or treatment for patients at risk of or affected by AD 
symptoms. In addition, specific alterations detected in peripheral 
blood plasma or serum could serve as non-invasive and/or more 
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effective biomarker signatures of AD. These have the potential to 
diagnose AD and its subtypes at early preclinical stages, to 
predict clinical progression and to monitor the development of 
relevant aspects of the AD pathology. Indeed, identification of 
certain metabolic profiles could help clinicians determine 
whether the patient will experience rapid or rather slow cognitive 
decline and develop neuropsychiatric symptoms, and therefore 
help propose better targeted and more efficient clinical care. 
Importantly, all identified biomarkers or drug targets will need 
to undergo absolute quantification and validation in independent 
studies and “real life” cohorts before they can be  used in 
clinical practice.
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