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The view of the human brain as a complex network has led to considerable 

advances in understanding the brain’s network organization during rest and 

task, in both health and disease. Here, we  propose that examining brain 

networks within the task aftereffect model, in which we compare resting-state 

networks immediately before and after a cognitive engagement task, may 

enhance differentiation between those with normal cognition and those with 

increased risk for cognitive decline. We  validated this model by comparing 

the pre- and post-task resting-state functional network organization of 

neurologically intact elderly and those with mild cognitive impairment (MCI) 

derived from electroencephalography recordings. We  have demonstrated 

that a cognitive task among MCI patients induced, compared to healthy 

controls, a significantly higher increment in global network integration with 

an increased number of vertices taking a more central role within the network 

from the pre- to post-task resting state. Such modified network organization 

may aid cognitive performance by increasing the flow of information through 

the most central vertices among MCI patients who seem to require more 

communication and recruitment across brain areas to maintain or improve 

task performance. This could indicate that MCI patients are engaged in 

compensatory activation, especially as both groups did not differ in their task 

performance. In addition, no significant group differences were observed 

in network topology during the pre-task resting state. Our findings thus 

emphasize that the task aftereffect model is relevant for enhancing the 

identification of network topology abnormalities related to cognitive decline, 

and also for improving our understanding of inherent differences in brain 

network organization for MCI patients, and could therefore represent a valid 

marker of cortical capacity and/or cortical health.
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Introduction

The human brain, as perhaps the most complex body system, is 
in a constant flux of transitions. Even without external stimulation, 
the integration of information between specialized, functionally 
connected brain areas continues. Graph theory provides a simple 
framework to model a complex system as a network, consisting of 
vertices and edges that represent the basic building blocks of the 
system and their relations. The view of the human brain as a 
network has led to considerable advances in understanding the 
topological organization of the human brain during rest and task, 
in both health and disease (Bullmore and Sporns, 2009; Stam and 
Van Straaten, 2012; Stam, 2014). There is strong evidence that 
successful information flow within the network, ensuring proper 
cognitive functioning, is supported by an optimal balance between 
local processing and global integration (Bullmore and Sporns, 2012; 
Bassett and Bullmore, 2016). In this regard, vertices with a more 
central role in the network have a special significance in controlling 
the information flow process and thus in global network 
communication (van den Heuvel and Sporns, 2011, 2013).

Mild cognitive impairment (MCI) is viewed as an early 
transitional state between normal aging and the appearance of 
dementia. This diagnosis is linked to reasonable ability to maintain 
independent activities of daily living, but with early evidence of 
memory loss or other cognitive abilities (e.g., language, executive 
functioning, and visual/spatial ability). Investigating functional 
brain networks in patients with MCI, using resting-state 
electroencephalography (EEG) recordings, seems a promising 
approach and one that might provide a reasonable biological 
marker for differentiation between healthy controls and persons 
with MCI. Several previous EEG studies have reported that the 
optimal network organization is disrupted in MCI with a deviation 
to a less integrated topology (Xu et al., 2014; Zeng et al., 2015; 
Požar et al., 2020). These results have been primarily obtained from 
a single resting-state EEG recording without previous stimulation.

Here, we examine brain network organization within the task 
aftereffect model, in which we compare resting-state brain network 
organization immediately before and after a cognitive engagement 
task. There is some evidence that this model may enhance 
differentiation between those with normal cognition and those with 
MCI. Although baseline, resting-state EEG is considered to represent 
intrinsic neural activity that is highly stable, our research group was 
the first to show that, compared to healthy controls, older adults with 
MCI have a significantly higher reduction in spectral power from 
the pre- to post-task resting-state in specific cortical areas important 
for memory and problem solving (Kavcic et al., 2021). This finding 
indicates that the return to the baseline resting-state EEG is time-
consuming and may index the efficacy of cognitive processing and/
or cognitive health. Subsequently, only one other study has examined 
the interplay between brain network organization in MCI identified 
with resting-state EEG data before and after a cognitive task (Youssef 
et al., 2021). That study revealed a global reorganization from the 
pre- to post-task resting-state of the patients’ brain networks when 
compared to healthy controls. Thus, the task aftereffect model could 

reveal new inherent differences in brain organization for patients 
with MCI. However, it is not clearly understood whether this 
reorganization progressed towards increased or decreased network 
integration in MCI participants (see Discussion). Another issue that 
has not been addressed is how the distribution of the most crucial 
vertices with a more central role in the brain network may change 
in MCI under the task aftereffect model.

The aim of the present study was therefore to investigate if, 
and in which direction, the organization of functional connectivity 
edges changes within the network from the pre- to post-task 
resting-state, and to consider whether the presence of MCI 
modulates these functional connectivity patterns. To this end, 
we compared the pre- and post-task resting-state EEG functional 
network organization of neurologically intact elderly and those 
with MCI using conventional approach based on weighted graphs, 
as well as maximum spanning tree approach.

We computed several network measures to assess the degree 
of local and global network integration, as well as relative 
importance of vertices. We  hypothesized that brain networks 
would be reorganized between the pre- and post-task resting states 
among elderly persons, primarily driven by patients with MCI 
who would demonstrate a variation in distribution of vertices with 
a more central role within the network.

Materials and methods

Participants

In this study, we  explored a dataset that was previously 
collected in a study of 99 African Americans (Kavcic et al., 2021). 
Participants were recruited out of the volunteer pool of Healthier 
Black Elders Center, a joint collaboration between Wayne State 
University’s Institute of Gerontology and University of Michigan’s 
Institute of Social Research, and the Michigan Alzheimer’s Disease 
Research Center (MADRC). Participants were enrolled based on 
their responses to a question included in the health screening 
forms asking if they had experienced a change in memory or other 
cognitive areas over the past year, but not so severe as to interfere 
with their ability to complete daily activities. Of 99 participants 41 
were determined to meet MCI criteria, based on a MADRC 
consensus conference meeting criteria established by the National 
Alzheimer’s Disease Coordinating Center and using measures 
from the Unified Dataset (Beekly et al., 2007). All participants 
were consented and procedures were approved by the Wayne State 
University Research Subjects Review Board and the University of 
Michigan Medical School Review Board (see Table  1 for 
demographics of the participants).

Electroencephalography recordings

Scalp electroencephalographic activity was recorded before 
and after a motion direction discrimination task for at least 3 min 
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of resting-state with eyes closed using Brain Vision (Brain Vision, 
Inc.) equipment. We used the high-density Acti Cap (64 active 
electrodes) modified according to the International 10–20 System. 
The recording locations included eight midline sites, with the FCz 
electrode as an on-line reference and a ground at midline location 
AFz. Low and high pass filter settings were 0.1 and 70 Hz, 
respectively. The cutoff frequencies for these filters were set at 3 dB 
down; the roll-off was 12 dB per octave at both sides. Impedances 
were maintained below 10 kΩ for each channel and balanced 
across all channels within a 5 kΩ range. The sampling rate was 
500 Hz with a 32-bit resolution.

Motion direction discrimination task 
recordings

Global motion stimuli were presented on the computer 
monitor and consisted of white dots subtending 0.125° of visual 
angle presented within a circular aperture 10° in radius on a 
uniform black background. Dot motion was controlled by custom 
software, programmed in C language, compiled with the MinGW 
compiler,1 on a Windows XP computer. Motion duration was 
500 ms, with either rightward or leftward direction on randomly 
ordered trials and button press direction responses collected on a 
laptop (see Table  1 for discrimination task results of 
the participants).

Electroencephalography data analyses

To check the quality of the resting state eyes-closed EEG signal, 
the EEG data were inspected by using Brain Vision Analyzer 2.2. 
Initially, we applied an off-line raw data inspection procedure to 
identify and remove segments of EEG recording that were 
contaminated with excessive noise, saturation, or lack of EEG signal 
activity. Where needed, we  applied independent component 
analyses to correct for eyeblinks and/or lateral eyes movements. The 
visually detected bad channels were interpolated using the spherical 

1 http://www.mingw.org

method. The EEG data were then segmented into consecutive 
epochs (1,024 data points) for further off-line analysis. The epochs 
were identified as acceptable by an automatic artifact rejection 
procedure, using a rejection criterion of 100 mV on any channel 
affected by artifacts (muscular, instrumental). For each subject 30 
artifact-free epochs were used to compute functional connectivity 
in the following frequency bands: delta (0.5–4 Hz), theta (4–8 Hz), 
lower alpha (8–10 Hz), upper alpha (10–13 Hz) and beta (13–20 Hz). 
Functional connectivity between each pair of EEG channels was 
assessed by the phase lag index (PLI; Stam et al., 2007) for all epochs 
of each subject and stored in the corresponding 64 64´  matrix. 
The PLI measures the asymmetry of the distribution of 
instantaneous phase differences between two EEG signals and 
reduces the influence of volume conduction and reference electrode.

Graph analysis

Each functional connectivity matrix with PLI values 
represents a weighted brain graph in which each vertex represents 
one electrode and the functional connectivity edge between any 
two vertices represents the relation between the respective 
electrodes weighted by the strength of functional connectivity.

Traditional graph analysis
We computed two traditional network measures of a weighted 

brain graph to assess the degree of network organization: the 
weighted clustering coefficient and the weighted distance.2 Table 2 
shows an overview of these measures. For subsequent analysis, 
we used mean weighted clustering coefficient over all vertices, called 
global weighted clustering coefficient, to identify the tendency of 
vertices to form local clusters and mean weighted distance over all 
pairs of distinct vertices, called weighted characteristic path length, 
to measure how easily information can be transferred across the 
network. In addition, each of these two measures was normalized 
by its mean over all frequency bands (Rossini et al., 2020).

Maximum spanning tree analysis
The calculated PLI matrices served as input for Kruskal’s 

algorithm (Kruskal, 1956) to compute a maximum spanning tree. 
A maximum spanning tree (MST) of the brain graph is a (sub)
graph consisting of all vertices of the original graph and a smallest 
subset of edges that connects all the vertices and maximizes the 
sum of edge-weights.3 A MST represents, by definition, the 

2 The weighted distance is also referred to as weighted shortest path 

length in the neuroscience literature.

3 Maximum spanning trees are more typically referred to as minimum 

spanning trees in the neuroscience literature. Mathematically, however, 

the sentence a “maximum spanning tree of a weighted brain graph is a 

tree that maximizes the sum of edge weights” makes more sense than the 

sentence “a minimum spanning tree of a weighted brain graph is a tree 

that maximizes the sum of edge weights.”

TABLE 1 Demographic characteristics and discrimination task of 
control and MCI subject groups.

Controls 
(N = 58)

MCI (N = 41) p 
Value*

Mean SD Mean SD

Age (years) 71.10 6.18 73.73 7.19 0.0516

Education (years) 15.26 2.34 14.46 2.42 0.0897

Gender (% female) 91% – 85% – –

MDDT (time) 0.75 0.14 0.75 0.13 0.3979

MDDT, motion direction discrimination task; SD, standard deviation. 
*The p value was obtained using Mann–Whitney U-tests for independent samples.
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backbone of the brain network in the sense that it captures the 
strongest functional connectivity edges and ensures that all 
networks to be compared have the same number of vertices and 
the same number of edges (Tewarie et al., 2015). The obtained 
trees contained 64 vertices and 63 edges. The corresponding edge-
weights were ignored in subsequent characterizations. In this way, 
we can guarantee that no differences between connection density 
or functional strength were present between participants.

To characterize brain network topology, we computed the 
following MST measures indicating network integration and 
efficiency: the leaf number, diameter, eccentricity, and 
betweenness centrality. Table  3 shows an overview of these 
measures and different tree topologies with decreasing degree of 
integration are displayed in Figure 1. For subsequent analysis, 
each measure was normalized by its maximal possible value, 
yielding values ranging from 0 to 1. We also computed mean 
eccentricity over all vertices to identify the eccentricity of the 
whole tree. In addition, we  used the maximum betweenness 
centrality over all vertices as global characteristics of a tree.

A large leaf number and small diameter characterizes a more 
star-like, centralized topology. A star consists of a central vertex 
and several leaves connected to this central vertex (Figure 1A). In 
contrast, a small number of leaves and large diameter reflects a 
more path-like, decentralized network topology. A path consists 
of a sequence of (different) vertices such that every two 
consecutive vertices are connected by an edge (Figure 1D). An 
optimal organization is probably somewhere between a path-like 
topology and star-like topology. A path is weakly integrated and 
is thus inefficient in the transfer of information. A star is highly 
integrated, and consequently, in such a graph information can 
be  efficiently transferred, however, the central vertex whose 
betweenness centrality is maximal possible may experience an 
information overload. Overall, in a highly integrated network, leaf 
number and maximum betweenness centrality are large, while 
diameter and mean eccentricity are small. On the other hand, in 
a less integrated network, leaf number and maximum betweenness 
centrality are small, while diameter and eccentricity are large.

Statistical analysis

All statistical analyses were performed in Matlab v2016b. 
First, network measures were averaged across the epochs per 

subject prior to statistical analysis. Then, outliers in network 
measures for each frequency band were detected and excluded 
from the subsequent analyses. To find outlier values, we used 
an iterative implementation of the Grubbs’s test (Grubbs, 
1969). Accordingly, in the delta frequency band, one subject 
from each group was excluded for the leaf number, one subject 
from the control group for the maximum betweenness 
centrality and one subject from the MCI group for the mean 
weighted clustering coefficient. For the theta frequency band, 
one subject from each group was excluded for the mean 
weighted clustering coefficient and the mean weighted distance. 
For the lower alpha frequency band, two subjects from the 
control group were excluded for the mean weighted clustering 
coefficient. For the upper alpha frequency band, two subjects 
from the control group and one from the MCI group were 
excluded for the mean weighted clustering coefficient, and one 
subject from the control group for the mean weighted distance. 
For the beta frequency band, two subjects from the control 
group were excluded in the leaf number and three subjects 
from the control group in the maximum betweenness 
centrality. All results include the number of usable subjects for 
each graph measure.

To study network topology in the pre-task resting-state, 
permutation tests were applied to identify between-group 
differences in network measures at each of the five frequency 
bands (Nichols and Holmes, 2002). A correction for multiple 
comparisons across frequency bands was performed by the false 
discovery rate (FDR; Benjamini and Hochberg, 1995).

For each frequency band we employed linear mixed models 
(LMM) to describe the influence of the task and group in networks 
measures and also to quantify differences in the effect of the task 
between the two groups. LMM considers the within-subject 
variability by including a random intercept term associated with 
each subject (Laird and Ware, 1982). All LMM included the factor 
timepoint  (the pre-task vs. the post-task), the factor group  (the 
control vs. the MCI group), and the interaction between both 
factors. Age, gender and education were included as covariates. 
Each LMM also involved a random intercept term for the effect of 
the task for each subject. A correction for multiple comparisons 
across frequency bands was performed by the false discovery rate. 
The effects of the timepoints, group, or interaction were considered 
significant if the FDR-corrected p  value was less than 0.05. If the 
effect of the timepoints/interaction was significant, we modeled 

TABLE 2 Traditional measures on a weighted brain graph.

Graph concept Explanation

Intensity The intensity of a triangle is the geometric mean of its normalized edge weights (each weight is normalized by the maximum weight in 

a graph).

Weighted clustering coefficient The weighted clustering coefficient of a node in a weighted brain graph is the average intensity of triangles in which that node 

participates. It reflects the tendency to which edges tend to cluster into tightly connected neighborhoods.

Inverse weighted length The inverse weighted length of a path in a weighted brain graph is the sum of the reciprocals of its edge weights.

Weighted distance The weighted distance between two distinct vertices in a weighted (brain) graph is the shortest inverse weighted length of any path 

between them.
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control and MCI groups separately to evaluate the timepoint effect 
in each group.

To complement the global analysis, we explored significant 
differences between groups based on eccentricity at the vertex 
level. If the interaction effect in mean eccentricity was significant, 
we  computed vertex eccentricity post-task/pre-task ratios to 
assess the changes in eccentricity from the pre- to post-task 
period. To quantify differences between groups on these vertex 
eccentricity ratios, we  performed permutation tests based on 

maximum t-test statistic to control for family-wise-error (FWE) 
p values, i.e., correcting for multiple comparisons across vertices.

Results

The demographic characteristics of participants and 
discrimination task are given in Table 1. The Motion direction 
discrimination task did not differ significantly between the groups.

A

B C

D

FIGURE 1

A transition from a star-like topology (A) to a path-like topology (D) with two intermediate topologies (B,C) corresponding to the brain network 
integration from highest to lowest on trees with nine vertices. Blue vertices: leaves. Green vertices: vertices with the highest betweenness 
centrality and lowest eccentricity representing the most critical/central vertices in the tree. In A, the leaf number is 8, the diameter is 2, the 
maximum betweenness centrality is 28, and the mean eccentricity is 1.9. In B, the leaf number is 4, the diameter is 4, the maximum betweenness 
centrality is 24, and the mean eccentricity is 3.3. In C, the leaf number is 4, the diameter is 6, the maximum betweenness centrality is 22, and the 
mean eccentricity is 4.6. In D, the leaf number is 2, the diameter is 8, the maximum betweenness centrality is 16, and the mean eccentricity is 6.2. 
The figure is adapted from van Lutterveld et al. (2017).

TABLE 3 Basic concepts and measures on a tree.

Graph concept Explanation

Leaf A vertex connected by an edge to precisely one other vertex.

Leaf number The number of leaves. It provides information about network centralization.

Distance The distance between two distinct vertices in a tree is the number of edges on the path between them (note that there is a unique path between 

any two vertices in a tree).

Diameter The greatest distance between any two distinct vertices in the tree. It reflects the communication efficiency of global network topology.

Eccentricity The eccentricity of a vertex in a tree is the greatest distance from that vertex to any other vertex in a tree. It measures relative importance of a 

vertex for global communication, and may indicate the critical vertices in a tree. The lower eccentricity value indicates that the vertex is more 

central since it is closer to the center of the tree.

Betweenness centrality In a tree, the betweenness centrality of a vertex is the number of paths in the tree that include that vertex as an intermediate vertex. It measures 

relative importance of a vertex for global communication, and may indicate the critical vertices in a tree. A vertex with higher betweenness 

centrality exhibits higher domination over the information flows across the network. The maximum betweenness centrality over all vertices 

characterizes the importance of the most central vertex.
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Graph analysis

Resting state network measures before and after cognitive 
engagement are presented in Supplementary Table 1 separately for 
normal controls and MCI.

Functional brain organization at the pre-task 
resting-state EEG

No significant group differences were observed for the 
network measures in any frequency band after FDR correction for 
number of frequency bands.

Functional brain reorganization from the pre- 
to post-task resting state EEG

For each network measure and each frequency band, 
Supplementary Table 2 displays pFDR  values for the parameters 
of the LMM fitted to the whole cohort, and Supplementary Table 3 
gives pFDR  values of the model adjusted to each group. Results 
for MST measures are also shown in Figures 2, 3, including the 
complete distribution of data as well as the fitting of the LMM 
separately for each group as a function of timepoints.

Delta frequency band

In the leaf number, we detected a significant timepoint effect, 
but we did not find a significant group or interaction effect. The 
leaf number significantly increased from the pre- to post-task 
timepoint in the MCI group, while the control group showed a 
trend to increase ( pFDR = 0 0647. ). Moreover, we  observed a 
trend-level interaction effect in the diameter and mean eccentricity 
(pFDR = 0 0688.  and pFDR = 0 0540. , respectively) with a 
significant decrease of both measures in the MCI group from the 
pre- to the post-task timepoint. We  did not find significant 
timepoint, group or interaction effect in maximum betweenness 
centrality, global weighted clustering coefficient and weighted 
characteristic path length.

Theta frequency band

For all four MST measures, we detected a significant timepoint 
effect, but no significant effects of group or interaction. The leaf 
number and maximum betweenness centrality significantly 
increased from the pre- to post-task timepoint in the MCI group, 
while in the control group only a significant increase in leaf 
number was observed. Moreover, mean eccentricity and diameter 
demonstrated a significant decrease in the MCI group and a 
nonsignificant decrease in the control group from the pre- to the 
post-task timepoint. We did not find significant timepoint, group 
or interaction effect in global weighted clustering coefficient and 
weighted characteristic path length.

Lower alpha frequency band

In the leaf number, we found a significant effect of timepoint, 
but we did not detect a significant group or interaction effect. Leaf 
number demonstrated a significant increase from the pre- to the 
post-task timepoint in both groups. Moreover, the interaction 

effect was significant in mean eccentricity, while a trend toward 
significance was observed in diameter (pFDR = 0 0639. ). In both 
cases, we observed a significant decrease in the MCI group and a 
nonsignificant decrease in controls from the pre- to the post-task 
timepoint. Post hoc analysis at the vertex level confirmed between-
group differences in eccentricity. Compared to healthy controls, 
persons with MCI showed reduced vertex eccentricity post-task/
pre-task ratios at all vertices with significant changes at frontal 
vertex AF3 (pFWE = 0 0480. ), central vertex CP4  
(pFWE = 0 0180. ), left temporal vertex FT7 (pFWE = 0 0327. ), 
parietal vertices PO3 and PO4 (pFWE = 0 0498.  and 
pFWE = 0 0472. , respectively), and occipital vertex O2 

(pFWE = 0 0146. ; see Figure  4). We  did not find significant 
timepoint or group effect in maximum betweenness centrality. 
However, we  observed a trend-level interaction effect 
(pFDR = 0 0771. ) in this measure with a notable increase in the 
MCI group from the pre- to the post-task timepoint. We did not 
find significant timepoint, group or interaction effect in global 
weighted clustering coefficient and weighted characteristic 
path length.

Upper alpha frequency band

In the leaf number, we found a significant timepoint effect, 
but we did not detect a significant group or interaction effect. The 
leaf number showed a trend of increasing from the pre- to the 
post-task timepoint in the control (pFDR = 0 0647. )  and MCI 
group (pFDR = 0 0550. ). Moreover, we  found a trend-level 
interaction effect in mean eccentricity (pFDR = 0 0540. ) with a 
significant decrease in the MCI group from the pre- to the post-
task timepoint. As in mean eccentricity, we observed a similar 
trend also in diameter. Furthermore, we detected a significant 
interaction effect in maximum betweenness centrality with a 
significant increase from the pre- to the post-task timepoint in 
the MCI group. We did not find significant timepoint, group or 
interaction effect in global weighted clustering coefficient and 
weighted characteristic path length.

Beta frequency band

In the leaf number, we observed a significant timepoint 
effect, but we did not detect a significant group or interaction 
effect. Leaf number demonstrated a significant increase in 
both groups from the pre- to the post-task timepoint. 
Moreover, the interaction effect was significant in mean 
eccentricity, while a trend toward being significant was 
observed in diameter (pFDR = 0 0639. ). In both cases, 
we detected a significant decrease in the MCI group and a 
nonsignificant decrease in controls from the pre- to the post-
task timepoint. Post hoc analysis confirmed between-group 
differences in eccentricity. Compared to healthy controls, 
persons with MCI showed reduced vertex eccentricity post-
task/pre-task ratios at all vertices with significant changes at 
central vertices C2 and CPz (pFWE = 0 0430.  
and pFWE = 0 0304.  respectively) and left temporal vertex T7 
(pFWE = 0 0270. ; see Figure  4). We  did not find significant 
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FIGURE 2

The pre- and post-task MST measures in the delta band (left column panels), theta band (middle column panels), and lower alpha band (right 
column panels). Each dot represents the value of one subject at pre/post-task timepoint (blue: control, orange: MCI). The black ptime and pinter 
values indicate significant timepoint and interaction effects, respectively, of the LMM fitted to the whole cohort (no significant group effects were 
observed). The blue and orange lines represent the fit of the LMM fitted to the control and MCI group, respectively. The blue and orange ptime 
values indicate significant timepoint effects of the LMM fitted to the control and MCI group, respectively. All the reported p values are FDR-
corrected.
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FIGURE 3

The pre- and post-task MST measures in the upper alpha band (left column panels), and beta band (right column panels). Each dot represents the value of 
one subject at pre-/post-task timepoint (blue: control, orange: MCI). The black ptime and pinter values indicate significant timepoint and interaction effects, 
respectively, of the LMM fitted to the whole cohort (no significant group effects were observed). The blue and orange lines represent the fit of the LMM fitted 
to the control and MCI group, respectively. The orange ptime values indicate significant timepoint effects of the LMM fitted to the MCI group (no significant 
effects were observed in the control group). All the reported p  values are FDR-corrected.
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FIGURE 4

The vertex eccentricity post-task/pre-task ratio across lower alpha and beta frequency bands for controls (left column) and MCI patients (middle 
column). Statistics on the vertex eccentricity post-task/pre-task ratio showed significant differences between the two groups and are shown in the 
right column. Individual vertex t-values are represented with black bolded vertices indicating FWE-corrected p  < 0.05.

effects of timepoint, group or interaction in maximum 
betweenness centrality, global weighted clustering coefficient 
and weighted characteristic path length.

Discussion

This study demonstrates that visual-based cognitive 
engagement has profound aftereffects on functional brain 
networks. Using the task aftereffect model together with MST 
construction we  found significant changes in network 
organization among older adults. Importantly, the results suggest 
that such a model plays a significant role in distinguishing 
healthy controls and persons with MCI.

We have shown that network topology following the task 
performance does not immediately return to a resting 
baseline level in older adults; instead, a cognitive challenge 
had a significant impact on the post-task global MST 
topology. This impact has been seen to some extent in all five 
frequency bands. Importantly, although we found differences 
in the same direction for both groups, the task aftereffect was 
primarily driven by the MCI group, most notably in diameter 
and mean eccentricity, as well as in maximum betweenness 
centrality. The only measure for which a significant timepoint 
effect was present in both groups was leaf number. On 
average, the diameter and mean eccentricity decreased, while 

leaf number and maximum betweenness centrality increased 
from the pre-to the post-task timepoint, suggesting a more 
integrated, star-like topology in both groups. Previous studies 
have reported increased network integration in healthy, 
young adult participants during task performance. For 
example, the integration of fMRI functional networks initially 
increased during an attentional task (Breckel et  al., 2013). 
Similarly, a higher cognitive effort led to a more globally-
efficient MEG network topology during a working memory 
task, indicating a more integrated network architecture 
(Kitzbichler et al., 2011). We might speculate that a similar 
process that induced higher network integration during the 
cognitive task in former studies is also present in our case, 
and this might have led to the increased network integration 
we have observed in older adults, especially in the MCI group, 
from the pre- to post-task timepoint. We  should note, 
however, that in a previous study, post-task fMRI networks in 
healthy, young adult participants became less integrated 
compared to the pre-task timepoint (Breckel et al., 2013). Our 
healthy controls showed negligible differences in the opposite 
direction. This inconsistency could be  due to the age 
differences in two samples, use of different imaging modality, 
different baseline condition, different cognitive, or a 
combination of these factors.

We have demonstrated that reorganization in MST topology 
from the pre- to post-task timepoint was significantly different 
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between MCI and control groups. Patients with MCI showed a 
significantly higher reduction in the mean eccentricity than 
healthy controls in the lower alpha and beta frequency bands. 
At the vertex level, we found reduced eccentricity widespread 
over the brain, mainly in central, left temporal, and parietal 
areas, but also in frontal and occipital areas, indicating that 
several vertices became more central in the MCI group. 
Additional evidence of a disruption in MCI network topology 
was demonstrated from a significantly higher increment in 
maximum betweenness centrality in the upper alpha frequency 
band, suggesting that more information passes through the 
most critical vertices in the MCI group. These results show a 
higher shift towards a more integrated, star-like topology from 
the pre- to post-task timepoint in the MCI group than in 
healthy controls, which breaks the balance between integration 
and overload prevention. Such modified topology increases 
global efficiency and is thus beneficial for information 
processing in the network, yet is less optimal as the central 
vertex has a greater probability to be burdened by a relatively 
large information flow and may require costly infrastructure 
(Meunier et al., 2010). A recent EEG study has reported that 
patients with amnestic MCI (aMCI) showed a significantly 
higher increment in MST hierarchy from the pre- to post-task 
timepoint in the beta frequency band compared to healthy 
controls as reflected by the percentage change from the pre- to 
post-task timepoint (Youssef et al., 2021). Put simply, the tree 
hierarchy is the ratio between the leaf number and maximum 
betweenness centrality and measures the balance between 
integration and overload prevention. We notice, however, that 
increased tree hierarchy does not necessarily imply a more 
integrated, star-like topology and needs to be interpreted with 
caution. For example, the interpretation depends on whether 
the leaf number is preserved or not; in other words, whether the 
leaf number influences the tree hierarchy or not. If we compare 
trees A and B in Figure 1, then A is more integrated than B and 
both the leaf number and tree hierarchy are higher in A than in 
B. In contrast, if we compare trees B and C in Figure 1, then B 
is more integrated than C, but the leaf number is the same in 
both trees while the tree hierarchy is smaller in B than in 
C. Hence, we cannot immediately conclude that increased MST 
hierarchy reported in Youssef et al., (2021) indicates a more 
integrated topology. However, in the same study one can find 
that the percentage of change in mean beta leaf number was not 
preserved from the pre- to post-task timepoint but was slightly 
decreased in the control group and slightly increased in the 
aMCI group. Consequently, it seems that together their results 
indicate a more integrated topology in patients, which is in line 
with our results. Interestingly, our and theirs did not find any 
significant between-group differences in the pre-task MST 
parameters, which supports the notion that analyzing EEG data 
under the task aftereffect model enhances network topology 
abnormalities related to MCI.

Presently, the reasons for changes in network topology 
between MCI patients and healthy controls are unclear, and 
we  can only speculate which factors may contribute to 
this tendency.

One possible interpretation is that a more integrated 
network organization from the pre- to post-task timepoint in 
MCI patients could be a consequence of the slower recovery 
of MCI patients to a resting baseline level. This interpretation 
may be supported by a previous study, in which attentionally 
impaired participants showed an increased network 
integration in the post-task period, while more resilient 
subjects showed a faster recovery in the direction of the 
pre-task values (Breckel et al., 2013). If slower recovery lies 
behind the changes in network topology, this may, in turn, 
be  related to cognitive fatigue (DeLuca et  al., 2008). 
Alternatively, another interpretation is that the capacity of 
certain vertices to process incoming information might 
be reduced in the MCI group and that the identified patterns 
might be  the aftereffect of greater integration of networks 
during task performance in MCI patients compared to 
controls. The reorganization of brain networks with a 
deviation to a more integrated, centralized topology very 
possibly empowers communication (recruitment) between 
certain specialized areas across the brain for the MCI 
participants which would otherwise remain unperturbed and 
unneeded for the controls. This integrated, centralized 
network organization may aid cognitive performance by 
increasing the flow of information through the most critical 
vertices among persons with MCI who seem to require more 
communication and recruitment across brain areas to 
maintain or improve task performance. Such reorganization 
could indicate that patients with MCI are engaged in 
compensatory activation, especially as both groups did not 
differ in their motion direction discrimination task 
performance (Table 1). The presence of such compensation 
can have important consequences. When the traffic load 
increases in a highly-centralized network, the most critical 
vertices might become congested and their neighbors start  
to disconnect from them. These critical vertices are therefore 
very sensitive to break down and can be  lost with the 
progression of the disease (de Haan et al., 2012; Stam, 2014). 
The latter interpretation may be  supported by past  
EEG studies reporting that MST network topology of the MCI 
group becomes more integrated during a cognitive 
engagement compared to healthy control. For example, such 
a pattern has been found while performing a visuospatial 
memory task in the alpha and beta frequency band (Fodor 
et  al., 2021). Another study has shown an increased 
integration in MCI-AD patients under a cognitive task in  
the gamma frequency band (Das and Puthankattil, 2020). 
Future studies are needed, however, to confirm 
these interpretations.
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To characterize network organization, we also apply a more 
conventional approach by computing the global weighted 
clustering coefficient and weighted characteristic path length of 
a weighted brain graph. Graphs that possess a high global 
clustering coefficient and a short characteristic path length 
exhibit healthy brain graphs—a so-called small-world 
organization (Watts and Strogatz, 1998; Bullmore and Sporns, 
2009). Previous studies based on a single resting-state EEG 
recording without previous stimulation have reported a loss of 
small-world topology in MCI (Zeng et al., 2015; Vecchio et al., 
2018; Miraglia et al., 2020). However, we found no significant 
group differences in the global weighted clustering coefficient and 
weighted characteristic path length at the pre-task timepoint. 
We also found no significant pre-to-post differences in these two 
measures over the whole cohort or between groups. This endorses 
the idea that MST parameters are more sensitive to detect 
profound changes in brain networks for MCI patients than 
conventional measures (López et  al., 2017; Požar et  al., 2020; 
Youssef et al., 2021).

We should note that the interpretations of our findings 
should be accepted with some caution. The phase lag index 
does not provide information about the casual or the direction 
of the functional connectivity edges, which is needed for a 
more detailed analysis of the information flow. A possible 
solution would be  to measure effective connectivity that 
examines the direction of communication and estimates how 
likely one region influences the other. Next, we studied brain 
networks in sensor space. Although the phase lag index 
reduces the influence of volume conduction, another approach 
would be to conduct source space analysis.

In conclusion, our findings suggest that differences in the 
network topology may be promising in distinguishing healthy 
controls and MCI, and also in better understanding inherent 
differences in brain organization for MCI patients. The task 
aftereffect model could therefore represent a valid marker of 
cortical capacity and/or cortical health.
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