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Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder 

associated with an increased incidence of cognitive and emotional disorders. 

Previous studies have indicated that the frontostriatal circuits play a significant 

role in brain disorders. However, few studies have investigated functional 

connectivity (FC) abnormalities in the frontostriatal circuits in T2DM.

Objective: We aimed to investigate the abnormal functional connectivity 

(FC) of the frontostriatal circuits in patients with T2DM and to explore the 

relationship between abnormal FC and diabetes-related variables.

Methods: Twenty-seven patients with T2DM were selected as the patient 

group, and 27 healthy peoples were selected as the healthy controls (HCs). 

The two groups were matched for age and sex. In addition, all subjects 

underwent resting-state functional magnetic resonance imaging (rs-fMRI) 

and neuropsychological evaluation. Seed-based FC analyses were performed 

by placing six bilateral pairs of seeds within a priori defined subdivisions of the 

striatum. The functional connection strength of subdivisions of the striatum 

was compared between the two groups and correlated with each clinical 

variable.

Results: Patients with T2DM showed abnormalities in the FC of the frontostriatal 

circuits. Our findings show significantly reduced FC between the right caudate 

nucleus and left precentral gyrus (LPCG) in the patients with T2DM compared 

to the HCs. The FC between the prefrontal cortex (left inferior frontal gyrus, 

left frontal pole, right frontal pole, and right middle frontal gyrus) and the 

right caudate nucleus has a significant positive correlation with fasting blood 

glucose (FBG).

Conclusion: The results showed abnormal FC of the frontostriatal circuits 

in T2DM patients, which might provide a new direction to investigate the 

neuropathological mechanisms of T2DM.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disease with 
an increasing incidence worldwide (Lees et  al., 2009; Bobbert 
et al., 2013). This disease constitutes a risk factor associated with 
an increased incidence of cognitive dysfunctions and emotional 
disorders [e.g., Parkinson’s disease (PD), Alzheimer’s disease 
(AD), obsessive–compulsive disorder (OCD), and major 
depressive disorder (MDD)] (den Braber et al., 2010; Pan et al., 
2010; Zhang et  al., 2013; Ashraghi et  al., 2016; Athauda and 
Foltynie, 2016; De Pablo-Fernandez et al., 2018; Cheong et al., 
2020; Wei et al., 2020; Sánchez-Gómez et al., 2021; Fanelli et al., 
2022). However, the specific neural substrate of T2DM-related 
cognitive impairment and emotional disorders remains unclear. 
The frontostriatal circuits have been shown to play an important 
role in the pathophysiology of a variety of cognitive and emotional 
disorders (Casey et al., 2007; Baggio et al., 2015; Achterberg et al., 
2016; Gramespacher et al., 2020; Tomiyama et al., 2022). Given the 
impairment of cognitive and emotional functioning in T2DM, the 
role of frontostriatal connectivity in T2DM is attracting 
considerable attention (Looi, 2017; Pérez-Taboada et al., 2020).

The frontostriatal circuits form a looped structure wherein 
information is delivered directly from the frontal cortex to the 
striatum, while the frontal cortex receives information from major 
outputs of the striatum indirectly via the thalamus (Gopinath 
et al., 2011; Mandelbaum et al., 2019). Different cortical projection 
areas can form different circuits with the basal ganglia: 
sensorimotor circuits involve premotor cortical projections; 
associative circuits involve the dorsolateral prefrontal and parietal 
cortex; limbic circuits primarily involve the orbitofrontal and 
medial prefrontal cortices. These circuits contribute to motor 
control, motor learning, emotions and association (Lanciego et al., 
2012; Barber et  al., 2019; Young et  al., 2022). Disrupted 
connectivity of these circuits may underlie certain abnormalities 
that occur in various cognitive and emotional disorders (Kwak 
et al., 2010; Posner et al., 2014; Huang et al., 2015; Tomiyama et al., 
2021). Recently, an increasing number of studies have provided 
significant insight through neuroimaging of frontostriatal circuits.

Resting-state functional magnetic resonance imaging 
(rs-fMRI) is a promising approach with which to studying the 
brain-related pathophysiology of T2DM (Chau et al., 2021; Lei 
et al., 2022). Functional connectivity (FC) is an effective method 
to explore impaired frontostriatal circuits (Di Martino et al., 2008; 
Kelly et al., 2009). Previous rs-fMRI studies have indicated that 
abnormal FC of the frontostriatal circuits impacts cognitive 
functions and emotional regulation (Casey et al., 2007; Achterberg 
et al., 2016; Lin et al., 2018; Gramespacher et al., 2020; Tomiyama 
et  al., 2022). For example, several studies have revealed that 

frontostriatal connectivity is reduced in patients with PD and AD 
(Middei et al., 2004; Anderkova et al., 2017; Nieuwhof et al., 2017). 
Moreover, disruption of FC within reward-relevant corticostriatal 
neurocircuitry is associated with reduced motivation and motor 
slowing in depression (Felger et  al., 2016). More importantly, 
previous research has shown that T2DM has complex associations 
with cognitive and emotional disorders; for example, T2DM 
increases susceptibility to PD, AD, MDD, and more (D’Amelio 
et al., 2009; Kumar et al., 2014; Zhang et al., 2017; Cheong et al., 
2020). In AD, an increased risk of cognitive decline among 
diabetic patients is well documented (Kodl and Seaquist, 2008; 
Reijmer et  al., 2010; Rawlings et  al., 2014). Regarding PD, a 
number of epidemiological studies indicate that the incidence is 
increased in people with preexisting diabetes (Cereda et al., 2011; 
Xu et al., 2011; Yang et al., 2017). However, the mechanisms of this 
relationship are unknown. Previous studies have shown that 
insulin resistance is associated with disease progression, increased 
severity of dyskinesia, and increased risk in patients with PD 
(Bosco et al., 2012; Athauda and Foltynie, 2016). Furthermore, a 
number of patients with T2DM in the absence of PD exhibit 
pathologies related to subclinical striatal dopaminergic 
dysfunction (Cheong et  al., 2020), and T2DM and PD share 
common etiopathogenic mechanisms (Santiago and Potashkin, 
2014). We  speculate that there are possible alterations in 
frontostriatal circuit connectivity in this population.

Some recent studies have provided further relevant evidence. 
A study using fMRI reported that FC in the frontostriatal circuit 
was decreased in patients with type 1 diabetes mellitus compared 
to normal controls (Croosu et  al., 2022). More importantly, 
multiple studies have shown structural abnormalities of the 
frontostriatal circuit in T2DM. For example, the magnetization 
transfer ratio (MTR) representing the biophysical integrity of the 
cortico-striato-pallido-thalamic circuits was compromised in 
patients with T2DM even in the absence of significant cognitive 
impairments or mood disturbances (Yang et al., 2015). In addition, 
meta-analyses to date have demonstrated a significant decrease in 
gray matter volume (GMV) in the cortico-striato-limbic network 
in patients with T2DM (Wu et al., 2017). This finding further 
demonstrated the important role of the frontostriatal circuitry in 
the pathogenesis of T2DM. T2DM-related changes in these 
circuits may contribute, in part, to increased susceptibility to 
cognitive deficits and/or emotional disorders in patients with 
T2DM and potentially indicate the underlying substrates linking 
T2DM and cognitive and emotional disorders.

However, to the best of our knowledge, there have been no 
studies of dysfunctional frontostriatal connectivity in T2DM. In 
this study, we hypothesized that abnormalities in the FC of the 
frontostriatal circuitry would be associated with T2DM. To test this 
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hypothesis, we performed rs-fMRI analyses to examine the FC of 
the frontostriatal circuitry in patients with T2DM and HCs. More 
importantly, we investigated the relationship between abnormal FC 
of the frontostriatal circuitry and the clinical indicators of T2DM.

2. Materials and methods

2.1. Participants

The medical research ethics committee of Jiangsu Integrated 
Traditional Chinese and Western Medicine Hospital examined 
this cross-sectional research plan and granted ethical approval. A 
total of 31 patients who met the latest diagnostic criteria for 
T2DM (American Diabetes Association, 2013) were recruited 
from the Endocrinology Department of Jiangsu Integrated 
Traditional Chinese and Western Medicine Hospital, and 31 
healthy controls (HCs) were recruited through advertisements. 
The T2DM group and the HC group were matched for age, sex, 
and education level. All subjects participated voluntarily and 
signed informed consent forms. Because some patients had 
incomplete clinical data or imaging data, only 27 patients with 
T2DM and 27 patients with HCs were ultimately included. Table 1 
presents the demographic and clinical characteristics of all 
participants. All subjects were right-handed individuals between 
30 and 75 years of age and had no contraindications to MRI. The 
patients had a diabetes duration of at least 1 year and no 
complications. They were closely self-monitored and routinely 
treated with various hypoglycemic agents, and none had any 
history of hypoglycemic episodes. The exclusion criteria for both 
groups were as follows: (1) abnormal brain structure, including 
the presence of tumors or a history of trauma, surgery, or 
cerebrovascular accidents; (2) neurological or mental disorders, 
such as depression, dementia, schizophrenia or epilepsy.

2.2. Clinical and neuropsychological data

The history and clinical data of patients with T2DM were 
obtained from medical records and questionnaires. The clinical 
data of HCs, along with demographic data such as gender and age, 
were obtained through a questionnaire. After overnight fasting, 
blood samples were obtained to measure the levels of fasting blood 
glucose (FBG) and glycosylated hemoglobin (HbA1c). The Mini-
Mental State Examination (MMSE) and Montreal Cognitive 
Assessment (MoCA) were used to assess the general cognitive 
function of diabetes patients and HCs.

2.3. Image acquisition

A 3.0 TMRI (Discovery 750) scanner from GE (United States) 
was used for MRI examination. During imaging, subjects wore eye 
masks and were instructed to remain awake and keep their heads 

still. Soft pads were used to reduce head movement, and 
headphones were used to reduce noise. rs-fMRI scans were 
obtained by using a gradient-recalled echo echo-planar imaging 
(GRE-EPI) sequence (repetition time (TR) =2,000 ms; echo time 
(TE) =30 ms; flip angle (FA) = 90 degrees; layer spacing =0 mm; 
layer thickness = 4 mm; field of view (FOV) =220 mm × 220 mm; 
matrix dimensions = 64 × 64. A fast gradient-echo sequence 
(magnetization-prepared rapid gradient echo, MPRAGE) was used 
to obtain high-resolution 3D T1-weighted structure images. The 
acquisition parameters were as follows: TR = 8.2 ms, TE = 3.2 ms, 
inversion time (TI) = 900 ms, FA = 9°, FOV = 256 mm × 256 mm, 
and voxel size = 1.3 mm × 0.9 mm × 5 mm; these parameters were 
used for image registration and functional positioning.

2.4. Data processing

Rs-fMRI and structural images were analyzed using the 
CONN toolbox (Version 18.a). Preprocessing of fMRI and 
structural images was performed using CONN’s default 
preprocessing pipeline. The preprocessing pipeline included 
functional realignment and unwarping, slice-timing correction, 
outlier identification, segmentation, normalization of functional 
and anatomical images to the standard Montreal National Institute 
(MNI) template, outlier rejection, and functional smoothing. The 
data were smoothed spatially with an 8-mm full width at half 
maximum Gaussian kernel. The fMRI data were further denoised 
by using the component-based noise correction method 
(CompCor) to remove signal contributions from brain white 
matter, cerebrospinal fluid, and motion parameters. Finally, a 
temporal bandpass filter of 0.008–0.09 Hz was applied, and linear 
detrending was performed.

2.5. FC analysis

For seed-based FC analyses, six ROIs—the bilateral 
caudate, bilateral putamen and bilateral pallidum—were 
created according to anatomical parcellation atlases included 
in the CONN toolbox (Harvard-Oxford Probabilistic Atlas, 
see Figure 1). For the first-level analyses, the average BOLD 
time series of each seed was correlated with remaining voxels 
in the brain, and FC connectivity maps were derived by 
Fisher’s r-to-z transformation to carry out second-level 
analyses. For the second-level analyses, within-and between-
group analysis of results from the T2DM and HC groups was 
further performed. For within-group comparisons, a whole-
brain false discovery rate (FDR)–corrected threshold of 
p < 0.05 was used to identify areas of significant functional 
connectivity, and between-group analyses were performed to 
compare FC changes using two-sample t tests. The results of 
the seed-based analyses are reported at the following 
thresholds: uncorrected voxelwise p < 0.001 and cluster-level 
familywise error (FWE)-corrected p-FWE <0.05. In addition, 
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we investigated the relationship between clinical symptoms 
and the FC maps of the right caudate seed region. Group-level 
analysis of variance was conducted, in which the clinical 
indicators were used as covariates to identify the association 
between the resting-state FC index and T2DM. In this 
covariate analysis, correlations between the FC and clinical 
scores were considered significant at a cluster-corrected 
p-FWE <0.05.

2.6. Statistical analysis

We used SPSS 21.0 to analyze differences in demographic 
and clinical data as well as neuropsychological scores between 
the T2DM patients and the HCs. The mean ± standard 
deviation (x ̅± s) and percentage (%) are used to express 
numerical and categorical data, respectively. The chi-square 
test was used to compare the gender distributions of the two 
groups; Kolmogorov–Smirnov tests were performed for each 
group to verify the normality of other numerical data 
distributions. Depending on whether the distributions were 
normal or nonnormal, two-independent-sample t tests and 
Mann–Whitney U tests were used to identify significant 
differences between the T2DM and HC groups, p < 0.05 was 
considered statistically significant.

3. Results

3.1. Clinical and neuropsychological data

The clinical characteristics and neuropsychological data of the 
patients with T2DM and the HCs are summarized in Table 1. No 
significant group differences were observed in age, sex, or weight (all 
p values >0.05). However, the patients exhibited significantly higher 
levels of HbA1c and FBG than the HCs (all p values <0.05). The 
patients also performed significantly worse on two neuropsychological 
tasks, namely, the Alternate Wiring Test and delayed recall (p < 0.05), 
which mainly involve the cognitive domains of processing speed, 
executive function and episodic memory (Table 1).

3.2. FC of the striatum sub-regions

FC mappings generated with striatum sub-regions as the seeds 
were remarkably consistent with previous studies 
(Supplementary Figures S1–S6). Figure 1 shows the right caudate 
FC maps of the HC and T2DM groups. Only significant differences 
in the FC of the right caudate were found between these two groups 
(p < 0.05, FWE corrected). As shown in Figure  2, significantly 
reduced FC was observed between the right caudate and the left 
precentral gyrus in the T2DM patients compared to the HCs. No 
significant differences in the FC of the left caudate, bilateral putamen 
and bilateral pallidum were found between these two groups.

3.3. Correlations between fasting glucose 
and right caudate FC

To test our hypothesis regarding an association between the 
severity of T2DM variables and right caudate connectivity 
abnormalities in the T2DM group, we performed a correlation 
analysis. We found that FBG was significantly positively correlated 
with the connectivity between right caudate and the LIFG, LFP, 
RFP and RMFG (see Table 2; Figure 3).

4. Discussions

In this study, we used rs-fMRI to investigate the frontostriatal 
circuits in patients with T2DM compared with HCs. We found 
abnormal FC in the frontostriatal circuits within T2DM patients. 
The FC between the right caudate nucleus and the left precentral 
gyrus (LPCG) was significantly reduced in patients with 

TABLE 1 Demographic and clinical characteristics with T2DM and 
healthy controls.

Characteristics
T2DM 

patients 
(n = 27)

HCs 
(n = 27)

p-
values

Age (years) 55.03 ± 10.8 54.56 ± 9.79 0.751

Sex (male/female) 14/13 11/16 1.000

Weight(kg) 65.93 ± 9.86 65.96 ± 13.54 0.796

HbA1c(%) mmol/mol) 9.04 ± 2.44 5.42 ± 0.72 0.000

Fasting glucose (mmol/L) 10.69 ± 3.47 5.33 ± 0.86 0.000

Cognitive performance

MMSE 26.44 ± 2.29 27.96 ± 1.76 0.009

Directional force 9.85 ± 0.36 9.92 ± 0.27 0.396

Auditory verbal memory test 2.93 ± 0.27 2.96 ± 0.46 0.561

Attention and computing power 3.414 ± 1.55 3.83 ± 1.44 0.101

Auditory verbal memory test-

delay

2.44 ± 0.75 2.74 ± 0.45 0.156

Language power 8.11 ± 1.34 8.59 ± 0.67 0.123

MoCA 21.15 ± 3.9 23.41 ± 3.99 0.042

Alternate wiring test 0.296 ± 0.47 0.741 ± 0.45 0.001

visual structural skills1 (cube) 0.407 ± 0.5 0.59 ± 0.5 0.180

visual structural skills2 (clock) 2.15 ± 0.91 2.48 ± 0.7 0.137

Name 2.82 ± 0.48 2.7 ± 0.61 0.461

Memory(No points) / / ——

Attention 4.62 ± 1.39 5.48 ± 0.85 0.06

Repeat 1.29 ± 0.72 1.52 ± 0.58 0.219

Word fluency 0.7 ± 0.8 0.44 ± 0.58 0.299

Abstract force 0.96 ± 0.89 1.0 ± 0.87 0.879

Delayed recall 1.67 ± 1.49 2.67 ± 1.66 0.024

Orientation force 5.85 ± 0.36 5.93 ± 0.27 0.391
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T2DM. Moreover, the FC between the prefrontal cortex (left 
inferior frontal gyrus, or LIFG; left frontal pole, or LFP; right 
frontal pole, or RFP; and right middle frontal gyrus, or RMFG) 
and the right caudate nucleus had a significant positive correlation 

with FBG. This result suggests that the frontostriatal circuits are 
involved in the neuropathology of cognitive impairment in 
T2DM, which might provide a new direction for research into the 
neuropathological mechanisms of T2DM.

A

B C

FIGURE 1

Right caudate FC maps. (A) Right caudate seed region. (B) FC maps for the HC group (second-level analysis, p < 0.05, FDR corrected). (C) FC maps 
for the T2DM group (second-level analysis, p < 0.05, FDR corrected).

A B C

FIGURE 2

Group differences in right caudate FC maps. (A). Right caudate FC maps for the HC group (p < 0.05, FDR–corrected). (B). Right caudate FC maps 
for the T2DM group (p < 0.05, FDR–corrected). (C) Group differences in right caudate FC between the HC and T2DM groups in voxelwise whole-
brain analysis. Compared to HCs, T2DM patients had reduced FC between the right caudate and left precentral gyrus (p < 0.05, FWE corrected).
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4.1. Alterations in the FC of 
prefronto-striatal sensorimotor loops in 
T2DM

Consistent with previously reported findings (Franzmeier and  
Dyrba, 2017), our study found that the FC between the right 
caudate nucleus and the LPCG was significantly reduced in 
patients with T2DM. The frontostriatal sensorimotor loops play 

an important role in sensorimotor control. Many studies have 
found that the striatum may contribute to habit formation and 
motor control by continuously integrating task-relevant 
information to constrain the execution of motor habits (Albin 
et al., 1989; Rueda-Orozco and Robbe, 2015; Sales-Carbonell et al., 
2018). The caudate nucleus is a critical part of prefronto-striatal 
loops that have been consistently implicated in behavior 
(McColgan et al., 2015; Ji et al., 2018). The PCG is the site of the 
premotor cortex, which mainly manages skeletal muscle 
movements throughout the body; at the same time, some 
proprioceptive fibers also project to the PCG to modulate 
somatosensation (Christensen et al., 2007; Marotta et al., 2021). 
Previous studies have shown that patients with T2DM have 
dyskinesias and sensory disturbances. For example, T2DM is 
associated with decreased muscle strength, postural instability, 
and gait difficulties (Park et al., 2006, 2009; Kotagal et al., 2013; 
Cheong et  al., 2020). Furthermore, the peripheral neuropathy 
associated with T2DM may lead to sensory impairments that 
compromise the function of the motor system (Allen et al., 2016). 

FIGURE 3

Four clusters showed significant correlations between FC with the right caudate and fasting blood glucose (FBG) variables among patients with 
T2DM (p < 0.05, FDR–corrected). IFG, inferior frontal gyrus; FP, frontal pole; MFG, middle frontal gyrus; FDR, false discovery rate, L Left; R Right.

TABLE 2 Correlations with FBG variables in T2DM patients.

Brain 
region

MNI  
(x, y, z)

Cluster 
size Tmax p FDR

Left IFG −38,22,16 312 7.50 0.000060

Left FP −36,54,14 99 5.01 0.026387

Right MFG 42,26,24 85 5.60 0.036207

Right FP 38,62,10 102 5.36 0.026387

IFG, inferior frontal gyrus; FP, frontal pole; MFG, middle frontal gyrus; FDR, false 
discovery rate; MNI, Montreal Neurological Institute.
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Thus, deficits in prefrontal-striatal sensorimotor loops between 
the right caudate nucleus and LPCG may be the neuropathological 
basis of motor and sensory dysfunction in T2DM.

A number of studies have examined the correlations of FC in 
frontostriatal sensorimotor loops with movement-related 
disorders. For example, a previous rs-fMRI study of MDD 
reported that the frontostriatal sensorimotor loops are involved in 
psychomotor changes, such as hypo-and hyperactivity (Schmaal 
et al., 2016). More importantly, structural neuroimaging studies 
have demonstrated biophysical abnormalities in the head of the 
caudate nucleus in patients with T2DM and MDD. fMRI studies 
probing motor inhibition in PD have shown that the frontostriatal 
systems are functionally impaired (Schernhammer et al., 2011; 
Kumar et al., 2014; Qin et al., 2021). Thus, our studies support the 
existence of an association between preexisting T2DM and 
movement-related disorders (e.g., MDD and PD) at the level of 
brain function.

However, the pathophysiological mechanism underlying the 
abnormal FC of prefronto-striatal sensorimotor loops in T2DM 
has remained unclear. Some studies indicate that changes in brain 
function are associated with changes in brain structure (Espeland 
et al., 2013; Karama et al., 2014). Previous studies have found that 
high glucose and insulin resistance in T2DM promote striatal 
oxidative stress, alter dopamine neurotransmission, and increase 
the chance of nigrostriatal neuron damage (Morris et al., 2011; 
Pérez-Taboada et al., 2020). Another previous study revealed that 
T2DM was associated with the loss of subcortical gray matter in 
the caudate nucleus and putamen (Moran et al., 2013). Thus, the 
damage to striatal structures may be  responsible for the FC 
changes in the frontostriatal sensorimotor loops in the 
T2DM group.

4.2. Effects of hyperglycemia on the FC 
of prefronto-striatal circuits in T2DM

A number of studies have reported relationships between FBG 
and the FC of brain networks or regions in T2DM. For example, 
some studies have reported that reduced FC is associated with an 
increase in FBG (Xia et al., 2013; Chen et al., 2014; Liu et al., 
2016). In contrast, one study reported that fasting plasma glucose 
was positively correlated with the FC between the left fusiform 
gyrus and the right MFG (Guo et  al., 2021). In line with this 
previous study, our present study also found a positive correlation 
between FBG and the FC between the right caudate nucleus and 
LIFG, LFP, RFP, and RMFG in patients with T2DM.

The LIFG, LFP, and RMFG are components of the prefrontal 
cortex, which plays a key role in feeding control, food craving, and 
metabolic regulation (Li et  al., 2013; Gluck et  al., 2017). The 
caudate nucleus is a critical part of the striatum and is involved in 
mediating hunger and satiety (Holsen et al., 2012), food reward, 
food-seeking behaviors, and food-related emotion-regulatory 
memory processes (Schoenbaum et  al., 1998; Miller, 2000; 
Petrovich et  al., 2002; Saper et  al., 2002). Accordingly, the 
prefronto-striatal circuits have been demonstrated to exhibit 

altered FC in organisms with altered feeding behavior. For example, 
some studies have reported that participants with obesity displayed 
increased FC between the ventral striatum and the medial 
prefrontal cortex, which are linked to food craving and weight gain 
(Contreras-Rodríguez et  al., 2017; Contreras-Rodriguez et  al., 
2019) Our findings may further support the notion that the 
prefronto-striatal circuit plays an important role in feeding 
behavior. Abnormal feeding behavior (e.g., excessive eating) is one 
of the typical clinical symptoms of T2DM and is closely linked to 
the epidemic of obesity (DeFronzo et al., 2015; Leitner et al., 2017). 
One possibility is that the FC of prefronto-striatal circuit 
enhancement may reflect the activation of neural circuits governing 
food reward in T2DM patients. Furthermore, T2DM is an energy 
utilization disorder in which blood sugar cannot be converted into 
energy, resulting in hunger that significantly increases activation in 
the reward-salience circuitry (ventral striatum, dorsal caudate, 
anterior cingulate cortex) during the processing of immediate 
reward (Wierenga et al., 2015), which may be the neural basis for 
the clinical symptoms of abnormal feeding behavior in T2DM.

Overall, T2DM is a chronic metabolic disease that is closely 
related to many unhealthy lifestyle habits, including obesity caused by 
excessive eating. Abnormal FC of the prefronto-striatal circuit may 
contribute to a reduced ability to control food intake and abnormal 
eating habits in T2DM, leading to metabolicdisorder.

5. Limitations

This study has some limitations. First, this study had a cross-
sectional design and a small sample size, which may have resulted 
in limited statistical power. We will perform an additional study 
to confirm the present findings in patients with T2DM. Second, 
the indicators used in the clinical evaluation were not 
comprehensive; further studies should add insulin indicators, 
Motor function, body mass index (BMI), and food addiction (FA) 
scores. Third, the Increased FBG possibility caused by the FC of 
prefronto-striatal circuit enhancement to activate the neural 
circuits governing food reward in T2DM patients, However, 
we did not measure relevant clinical indicators, We should add 
food addiction (FA) scores in future studies. Finally, although 
we  demonstrated altered FC of the frontostriatal circuitry in 
T2DM, its contribution to behavioral and cognitive impairments 
in T2DM is not fully understood. Further studies should 
incorporate cognitive tasks and motor function assessments to 
investigate cognitive and motor dysfunction arising from the 
frontostriatal circuitry in T2DM.

6. Conclusion

In conclusion, this rs-fMRI study revealed abnormal 
frontostriatal FC in patients with T2DM. Moreover, this 
abnormality was closely related to blood glucose, which expands 
the understanding provided by previous studies and further 
supports the concept that the frontostriatal circuits play an 
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important role in the pathogenesis of T2DM. Our findings 
provide important insights into the pathogenetic processes 
of T2DM.
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