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Since the development of antibiotics and vaccination, as well as major

improvements in public hygiene, the main risk factors for morbidity and

mortality are age and chronic exposure to environmental factors, both of

which can interact with genetic predispositions. As the average age of the

population increases, the prevalence and costs of chronic diseases, especially

neurological conditions, are rapidly increasing. The deleterious effects of age

and environmental risk factors, develop chronically over relatively long periods

of time, in contrast to the relatively rapid deleterious effects of infectious

diseases or accidents. Of particular interest is the hypothesis that the

deleterious effects of environmental factors may be mediated by acceleration

of biological age. This hypothesis is supported by evidence that dietary

restriction, which universally delays age-related diseases, also ameliorates

deleterious effects of environmental factors. Conversely, both age and

environmental risk factors are associated with the accumulation of somatic

mutations in mitotic cells and epigenetic modifications that are a measure of

“biological age”, a better predictor of age-related morbidity and mortality than

chronological age. Here we review evidence that environmental risk factors

such as smoking and air pollution may also drive neurological conditions,

including Alzheimer’s Disease, by the acceleration of biological age, mediated

by cumulative and persistent epigenetic effects as well as somatic mutations.

Elucidation of such mechanisms could plausibly allow the development of

interventions which delay deleterious effects of both aging and environmental

risk factors.
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Introduction

The transition from infectious diseases
to chronic age-related diseases

The dramatic increase in life expectancy, even when
excluding infant mortality, from about 40 years in 1900 to about
80 years today, is mainly due to the over 90% decline in deaths
due to infectious diseases (Armstrong et al., 1999). Today, most
morbidity and mortality are due to chronic diseases, especially
neurological conditions (Armstrong et al., 1999).The prevalence
of chronic diseases increases with age, while infectious disease
incidence does not (Armstrong et al., 1999). In a representative
study in Rhode Island, dementia and stroke were the second and
fourth leading cause of crude mortality, the third and fourth
leading causes of disability-adjusted life years, the fourth and
fifth leading causes of years of life lost, and the third and
fourth leading causes of years lived with disability (Katan and
Luft, 2018). Alzheimer’s Disease (AD) alone has been estimated
to cost the US health system $305 billion in 2020, and costs
are expected to reach over $1 trillion per year by 2050 if
effective treatments are not developed https://doi.org/10.37765/
ajmc.2020.88482. By way of comparison, the entire budget for
Medicare (which would be expected to cover the vast majority
of health care for dementia) was “only” $767 billion (13% of the
entire federal budget) in 2020.1 Similarly, stroke is the second
leading cause of death and a major cause of disability worldwide
(Katan and Luft, 2018). Thus, discovering interventions to
reduce the incidence and improve the treatment of neurological
conditions could reduce the burden of these diseases, potentially
saving Medicare from bankruptcy, among many other benefits.

Environmental risk factors for
dementia and other cognitive
impairments

Disparities in the risk of dementia are largely due to
environmental factors that are differentially experienced by
different ethnic groups (Deckers et al., 2019). In this review we
use the term “environmental risk factors” to refer any feature
of the environment except for agents of infectious diseases.
However, as we discuss below in addition to causing well-
known short-term deleterious effects, infectious diseases can
sometimes also cause long-term chronic conditions similar
to those characteristic of aging, and this phenomenon can
inform mechanisms by which standard risk factors produce
similar symptoms. Several studies have found associations
between the built and social environment and age-related
outcomes (Clarke and Nieuwenhuijsen, 2009). Greenness and

1 https://www.pgpf.org/budget-basics/medicare

walkability were associated with better mental health, cognitive
function, wellbeing, and physical capability among older adults
(Markevych et al., 2017; Nieuwenhuijsen et al., 2017; de Keijzer
et al., 2020). Safety has been particularly noted as crucial
for the health of the elderly population (Tong et al., 2016),
with associations between self-reported safety and self-reported
health (Cain et al., 2018). Lifestyle patterns – including diet
and physical activity – were influenced by the built and social
environment and influence age-related health (Pruchno and
Wilson-Genderson, 2012; Pruchno R. A. et al., 2012; Pruchno
R. et al., 2012).

Brain structure is mainly formed during early life (Lenroot
and Giedd, 2006) and is a crucial determinant of individuals’
susceptibility to AD (Borenstein et al., 2006). The environmental
factors described above have been associated with children’s
neurodevelopment. Socioeconomic status has been linked to
diverse neurocognitive outcomes (Ursache and Noble, 2016).
Greenness benefits neuropsychological outcomes and mental
health (Luque-Garcia et al., 2022). High-risk neighborhoods –
defined with a composite index including neighborhood
measures such as percentage of the population with high school
diploma, percentage of a single-parent household, and racial
composition – were associated with increased odds of severe
neurodevelopmental impairment, cognitive and language delays
(Nwanne et al., 2022).

Healthy prenatal and childhood diet has been linked to
improved neurodevelopment and improved childhood health
outcomes such as body composition (Nigg et al., 2016). In
addition, the food environment has been associated with
executive functioning in children (Bryant et al., 2020). Lower
objective food store availability has also been associated with
increased dementia incidence, possibly mediated by reduced
physical activity as much as diet (Tani et al., 2019). In another
study, participants who reported low subjective food store
availability had a higher likelihood of developing disability
than those who reported high subjective food store availability,
and low subjective food store availability was associated with
early onset of disability (Wu et al., 2020). On the other
hand, some fast-food establishments have been associated with
improved cognitive functioning: the authors hypothesize that
this surprising result could be due to the benefits of social
interactions (Finlay et al., 2020).

Elucidation of the interaction of environmental factors and
age on neurological diseases also promises to address another
major challenge to the health system: the unconscionable
persistence of major health disparities in these diseases as
a function of ethnicity. For example, it is estimated that
individuals of African-American heritage are about twice as
likely to develop AD, and those of Hispanic heritage about 50%
more likely, than individuals of Caucasian Western European
heritage. These disparities are not due to genetic differences but
rather to different environmental factors that different ethnic
groups experience because of segregation due to a history of
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structural racism (Rajan et al., 2021). The prevalence of stroke
exhibits similar disparities between ethnic groups which are
similarly due to environmental factors (Levine et al., 2020). Thus
identifying and eliminating these environmental discrepancies
could rectify what is clearly among the most egregious failures
of the American health system.

Do environmental risk factors
accelerate biological age?

The CDC defines the term “chronic disease” as a condition
that lasts one year or more and require ongoing medical
attention or limit activities of daily living, or both. Conceptually
it may be useful to use the term “acute disease” to refer to
conditions in which symptoms last less than a year (and usually
less than a month). This distinction, for example, provides a
framework for examining the mechanisms by which COVID-
19 evolves from an acute disease to a chronic disease with
entirely different symptoms (Higgins et al., 2021). Indeed, the
most fastidious clinicians diagnose post-acute (or long) COVID
syndrome only if acute symptoms (such as acute respiratory
distress) are not evident (Lechner-Scott et al., 2021; Tabacof
et al., 2022). Other viral diseases also present acute and chronic
(post-acute) forms, such as (acute) Lyme Disease followed by
(post-treatment) Lyme disease syndrome (PTLDS) (Wong et al.,
2022). SARS-CoV1 and MERS exhibit similar acute and post-
acute forms (Higgins et al., 2021). It is of interest that cognitive
impairments are a particularly prominent feature of post-acute
COVID syndrome (Lechner-Scott et al., 2021; Tabacof et al.,
2022).

Furthermore, evidence suggests that COVID-19 activates
mechanisms that are implicated in the etiology of AD. For
example, chronic conditions such as diabetes are risk factors
for both COVID-19 and AD and may exacerbate the symptoms
of both conditions (Xia et al., 2021). The relevant mechanism
mediating these effects is most likely increased inflammation,
particularly TNF-alpha and IL-6, which appear to be among the
most robust predictors of severity of disease and death due to
COVID-19 (Del Valle et al., 2020). Similarly, TNF-alpha and IL-
6 are highly implicated in the etiology of both AD (Cavanagh
and Wong, 2018; De Sousa Rodrigues et al., 2019; Kaur et al.,
2019; Park et al., 2019) and stroke (Mayne et al., 2001; King et al.,
2013; Lei et al., 2013; Doll et al., 2015).

A potentially informative interaction between infectious
diseases and aging is suggested by the observation that
mortality rate in the acute phase of COVID-19 increases
exponentially with age (Levin et al., 2020). The most likely
explanation for this striking phenomenon is that, as with
other infection-induced mortality such as sepsis (Lv et al.,
2014), the age-related increase in mortality from COVID-
19 is most likely due to excessive inflammation (“cytokine
storms”) in response to the infection. It is not understood why

inflammation increases with age, a phenomenon referred to as
“inflammaging” (Franceschi et al., 2018). However, extensive
evidence suggests that “environmental and lifestyle factors can
promote systemic chronic inflammation (SCI) that can in turn,
lead to several diseases . . . such as neurodegenerative disorders”
(Furman et al., 2019). Nevertheless, environmental factors
are only a subset of several processes driving inflammaging.
Similarly, inflammation is only a subset of mechanisms
mediating effects of environmental factors to drive age-
related neurological conditions, some of which may be direct
(Figure 1). Consistent with the likely role of TNF-alpha and IL-
6, these cytokines increase during normal aging, linked with age-
associated increased risk of morbidity, including neurological
conditions, and mortality (Michaud et al., 2013). Particularly
compelling evidence of a link between environmental risk
factors, inflammation, and aging is that protective effects
of dietary restriction, which generally ameliorates age-related
impairments, including in models of AD (Halagappa et al., 2007;
Wu et al., 2008; Zhang et al., 2009) and stroke (Manzanero et al.,
2011), appear to be mediated by a reduction in innate immune
system activity, the source of inflammation, via a metabolic
mechanism (Wu et al., 2019). This metabolic mechanism is
almost certainly a shift away from glycolysis and toward the use
of alternative substrates, which is a universal effect of dietary
restriction and is thought to mediate the protective effects of
dietary restriction (Mobbs et al., 2007; Mobbs, 2018). This
hypothesis is particularly compelling for AD and stroke, since
the activation of microglial inflammation in these conditions by
Abeta is associated with the reverse metabolic profile produced
by dietary restriction: increased glycolysis and reduced oxidative
phosphorylation (Baik et al., 2019). In fact, increased glycolysis
is required for microglia to produce inflammatory responses
which drive neuronal death (Meng et al., 2020). Major support
that inflammation causes, and is not simply caused by, age-
related diseases, is that Humira, simply a monoclonal antibody
against TNF-alpha, is the best-selling drug in history and is
increasingly the first-in-line therapy for a wide range of age-
related conditions (Ladika, 2019).

The observation that mortality due to COVID-19 increases
exponentially with age, plausibly due at least in part to an age-
related increase in inflammatory responses, raises the critical
question of why inflammation increases with age. This tendency
is part of a wider phenomenon described as “biological age”
as opposed to chronological age (Polidori et al., 2021). To
the extent that increased inflammation may be considered a
component of biological age, this raises the hypothesis that
environmental factors may accelerate biological age. Thus
elucidation of these mechanisms raises the tantalizing possibility
that single interventions focused on delaying the progression of
biological age could also generally delay deleterious effects of
environmental factors, similar to the generally protective effects
of dietary restriction, which arguably does precisely this: delay
the progression of biological age. While this may seem like a
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FIGURE 1

Schematic representation of conceptual framework integrating effects of environmental factors and age on neurological and age-related
diseases.

wildly speculative hypothesis, herein we will develop arguments
in favor of this and even propose specific mechanisms driving
biological age in the context of deleterious environmental
factors.

In fact, lingering chronic symptoms after the acute phase
of infectious diseases, which have more in common with
chronic diseases than acute diseases, do appear to entail
accelerated biological aging (Mongelli et al., 2021). To address
this hypothesis, it is necessary to elucidate mechanisms by which
effects of these chronic processes accumulate and persist. The
issue addressed herein is whether similar mechanisms mediate
the deleterious effects of both environmental factors and age.

Arguably the first convincing demonstration of the
cumulative effects of a deleterious environment on chronic
disease was the observation that smoking is by far the most
important risk factor for lung cancer (Doll, 1953). Subsequently,
mechanisms mediating the cumulative deleterious effects of
smoking were elucidated: smoking, like all carcinogens, causes
the accumulation of somatic mutations in lung cells, and when
sufficient mutations accumulate in oncogene and anti-oncogene
genes, the cells transform to a cancerous phenotype (Yoshida
et al., 2020). This basic mechanism was further supported by
the discovery that carcinogens are generally powerful mutagens
as well (Wagner et al., 1992). Similar observations have been
made across a wide variety of tissues and associated with other
environmental factors. For example, RNA-sequencing data from
∼6,700 samples across 29 normal tissues demonstrated many
somatic mutations which increase with age, and sun-exposed
skin, esophagus, and lung had a higher mutation burden than
other tested tissues, further supporting that environmental
factors can promote somatic mutations which increase with
age (Yizhak et al., 2019). Specifically relevant to age-related
neurological and psychiatric diseases, known to be influenced
by environmental factors such as urban living, somatic

mutations also increase with age in the brain, suggesting that
environmental factors drive those age-related mutations as well
(Bedrosian et al., 2016). More recent studies have demonstrated
that persistent effects of carcinogens leading to carcinogenesis
may also involve persistent modulation of epigenetic states
(e.g., DNA methylation and histone modification) that do not
entail mutations in the primary DNA sequence (Peltomaki,
2012). Air pollution, the main environmental risk factor for
dementia (Killin et al., 2016), also produces persistent changes
DNA methylation (Bollati and Baccarelli, 2010). As described in
detail below, epigenetic changes in DNA methylation are now
the key parameters used to calculated biological age, and these
epigenetic changes are highly sensitive to environmental factors
(Oblak et al., 2021).

Since deleterious effects of environmental factors on chronic
diseases are only manifest after enough time has passed for
effects to accumulate (e.g., development of sufficient numbers
of mutations and persistent epigenetic modifications), it could
be argued that the correlation between age and age-related
diseases is simply due to the accumulation of environmental
insults, even if the nature of those environmental factors
may not generally be known. In fact, this is essentially the
argument developed by the same investigator, Richard Doll,
who discovered the relationship between smoking and lung
cancer. This perspective was developed in a review provocatively
entitled “There is no such thing as aging”, written some 40 years
after his discovery of the link between smoking and lung cancer
(Peto and Doll, 1997). This review develops the hypothesis
that the link between age and cancer is straightforward: even
without carcinogen activity, since DNA replication is imperfect,
cells will accumulate mutations during mitosis as a matter of
random factors, essentially as a consequence of the Second
Law of Thermodynamics. While this is a plausible view of the
relationship between age and cancer, other age-related diseases
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such as AD are largely manifest in non-dividing cells (e.g.,
neurons) so there is no reason that these diseases would be
driven by the same mechanisms driving cancer, other than that
damage driving such diseases are similarly a result of the time it
takes for sufficient entropy to increase to produce the disease
(again, Second Law of Thermodynamics). Thus the review
concludes that “Similar considerations probably also apply to a
wide range of adult diseases: the fact that they tend to arise in
the same part of the life span is not good evidence that they have
similar underlying mechanisms, nor is it good evidence that any
single, unifying change awaits discovery that could properly be
called ‘aging”’ (Peto and Doll, 1997).

On the other hand, the review did concede that “although
there may be no direct link between any one thing that
can usefully be called ‘aging’ and the rates of the separate
cellular processes that culminate in cancer, there remains a
strong and mechanistically unexplained relation between the
life span and the rates of these processes” and without that
link “humans would not survive” (Peto and Doll, 1997).
Similarly unexplained is the remarkably robust exponential
increase in mortality with age, the so-called Gompertz equation,
such that the log transform of age-dependent mortality
yields a straight line whose slope (designated “G”) varies
widely between species and indeed could be considered a
mathematical definition of the rate of aging (Olshansky
and Carnes, 1997). Of particular interest in this regard are
manipulations that robustly increase lifespan and delay age-
related diseases. These include dietary restriction (Neafsey
et al., 1989; Yen and Mobbs, 2008), reduction of insulin-like
signaling (Johnson, 1990), and reduced temperature (Yen and
Mobbs, 2009), all reduce the slope of G, strongly implying
common mechanisms that determine lifespan impacted by these
manipulations and the development of age-related diseases
(which can be defensibly referred to as “aging”). Indeed, it
has been proposed that only diseases whose incidence, like
mortality, increases exponentially with age, which includes
“the major non-communicable diseases dementia, stroke and
ischemic heart disease,” should be considered age-related
diseases. However, this defensible position implicitly assumes
that the same processes which drive the exponential increase in
mortality also drives the exponential increase in these diseases
(Le Couteur and Thillainadesan, 2022).

Does biological age influence the
cumulative effects of
environmental factors on life
expectancy and age-related
diseases?

Further support that lifespan and diseases of aging
are driven by common mechanisms is the discovery of

robust markers of “biological age,” particularly epigenetic
modifications, which correlate with chronological age, but better
predict life expectancy and age-related diseases. There are four
main related measures of biological age, the Hannum, Horvath,
Levine, and Grimage “clocks,” all of which, while correlated
with chronological age, predict life expectancy and morbidity
significantly better than chronological age (Oblak et al., 2021).
It is therefore of interest that COVID-19 accelerates biological
age, as indicated both by standard epigenetic modifications
of DNA methylation as well as telomerase shortening in
blood cells (Mongelli et al., 2021), and evidence that the
exponential increase of mortality with age from COVID-19
correlates better with biological age than chronological age
(Polidori et al., 2021). Of particular interest to the present
theme, these 4 “clocks” are accelerated by a variety of
environmental risk factors; smoking has by far the greatest
effect on accelerating these “clocks”, followed by alcohol
(Oblak et al., 2021). These results quantitatively track with the
relative risk in global cancer produced by smoking and alcohol
(Collaborators, 2022).

An improved model showed that biological age at
baseline was superior to chronological age and traditional
biomarkers, in predicting mortality, morbidity and
onset of specific diseases such as stroke, cancer, and
diabetes (Waziry et al., 2019). Furthermore, adding brain
biomarkers for neurological degeneration (plasma NfL,
total-tau, amyloid beta–40 and –42) further improved
the association of biological age with dementia, including
AD These observations were confirmed, and extended by
even further refinement of the markers of biological age
(Wu et al., 2021).

To the extent that environmental risk factors accelerate
biological age, a salient issue is whether this acceleration
is influenced by biological age itself. For example, since
low birth weight is a risk factor for many conditions
that are mainly manifest during aging, it is plausible that
deleterious effects of environmental factors during fetal
development can persist long after the factors themselves
are no longer acting on the organism and exacerbate
impairments that occur during normal aging (Godfrey
and Barker, 2001). This latter study raises the critical
question of whether cumulative effects of environmental
factors accumulate at a constant rate, or whether effects
may depend on age or prior exposure to the environmental
factors and may be influenced by environmental factors.
For example, the environmental factor most implicated in
the development of dementia is air pollution (Killin et al.,
2016). It is therefore of great interest that fetal exposure
to air pollution produces epigenetic effects observable in
the placenta, which if also produced in the fetus during
development would be expected to persist into adulthood,
thus predisposing to impaired health in adulthood and aging
(Saenen et al., 2019).
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Molecular hysteresis occurs in
response to environmental factors
and impacts biological age

The particular sensitivity of the fetus to environmental
factors is reminiscent of the more general phenomenon of
“critical periods,” in which the fetus, neonate, and even juvenile
is particularly susceptible to environmental perturbation, which
has consequences in the adult. For example, the default sex
during mammalian fetal development is female; the fetus
with a Y chromosome will only develop into a male if it
is exposed to androgens during fetal development, although
paradoxically, this effect occurs via the conversion of androgens
to estrogens (Gorski, 2002). However, mammals are not
completely mature when born, so some amount of sexual
maturation continues between birth and weaning. During this
critical period, treating neonates with relatively low doses
of estradiol will not masculinize them, but it will render
them permanently acyclic and sterile (Mobbs et al., 1984).
Such low doses of estradiol no longer produce sterility after
weaning, but a single injection of a very high dose of estradiol
will produce permanent sterility due to hypothalamic defects
which are similar to those hypothalamic defects that seem
to be the cause midlife reproductive failure in mice (Mobbs,
1994). Conversely, removing ovaries from young mice prevents
the age-related hypothalamic defects (Mobbs, 1994). These
observations and related studies led to the hypothesis that
each time estradiol-regulated genes were acted on during
normal reproductive cycling, there remain residual effects of
that regulation, which thereby accumulate to produce largely
irreversible effects on gene expression (Mobbs, 1994). A similar
phenomenon occurs with estrogen-induced ovalbumin, in
which a single exposure to estradiol produces permanent
epigenetic changes, indicated by persistently increased DNAse
sensitivity of the gene associated with persistently enhanced
sensitivity to estradiol (Burch and Weintraub, 1983). A similar
“gene memory” effects occur in the lac operon (Laurent et al.,
2005; Mobbs et al., 2007). Glucose induces a similar persistent
effect on glucose-regulated gene expression also associated
with persistent epigenetic changes in glucose-regulated genes, a
phenomenon referred to as “metabolic memory” and which is
thought to mediate the progression of diabetic complications,
and in particular why diabetic complications appear irreversible
even when blood glucose is completely normalized by beta
cell transplants (Ihnat et al., 2007; Kowluru et al., 2007,
2010; Villeneuve et al., 2008; Siebel et al., 2010; Tonna
et al., 2010; Zhong and Kowluru, 2010; Kim et al., 2013;
Mobbs, 2018). It is thus particularly informative that diabetes,
which as described above is a major risk factor for both
AD and stroke, accelerates biological age as determined by
the classic “clock” models (Oblak et al., 2021). Similarly
informative, these persistent effects of glucose are associated

with epigenetic modifications which increase expression of, or
sensitize expression of, inflammatory genes (Zheng et al., 2021).
Cumulative glucose-induced persistent epigenetic modifications
also appear to drive many aspects of the aging process, and
the many protective effects of dietary restriction are arguably
mediated by a chronic reduction of glucose, and thus a delay
in the cumulative epigenetic effects of glucose which may
drive many age-related diseases, including neurological diseases
(Mobbs, 2018).

We hypothesize that a similar phenomenon of “gene
memory” or “molecular hysteresis” occurs in response to
environmental risk factors, consistent with evidence that
chronic exposure to environmental factors increase expression
of, or potentiate priming of, inflammatory genes, or responses
to inflammatory cytokines, particularly TNF-alpha (Kalliolias
and Ivashkiv, 2016). Furthermore, stimulation of inflammatory
activity, particularly TNF-alpha secretion, is associated with
induction of HDAC activity, inhibition of which reduces
these epigenetic modulations and secretion of TNF-alpha
(Doherty et al., 2013). This is particularly relevant because
we have previously demonstrated that protective effects of
dietary restriction as well as inhibition of the daf-2/Insulin
IGF1/FOXO pathway on lifespan and impairments in an
animal model of AD require the histone acetyltransferase
CBP, and these protective effects are mimicked by HDAC
inhibition (Zhang et al., 2009). Taken together, these data
support that exposure to environmental risk factors as well as
during aging (possibly due to the cumulative effects of glucose)
promote persistent increase in inflammatory gene expression via
epigenetic modifications characteristic of biological age, which
in turn drives many if not all, impairments associated with
environmental risk factors and age, including dementia and
stroke (Figure 1).
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