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Schizophrenia (SCZ), which is characterized by debilitating neuropsychiatric

disorders with significant cognitive impairment, remains an etiological and

therapeutic challenge. Using transcriptomic profile analysis, disease-related

biomarkers linked with SCZ have been identified, and clinical outcomes

can also be predicted. This study aimed to discover diagnostic hub genes

and investigate their possible involvement in SCZ immunopathology. The

Gene Expression Omnibus (GEO) database was utilized to get SCZ Gene

expression data. Differentially expressed genes (DEGs) were identified and

enriched by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and disease ontology (DO) analysis. The related gene modules

were then examined using integrated weighted gene co-expression network

analysis. Single-sample gene set enrichment (GSEA) was exploited to detect

immune infiltration. SVM-REF, random forest, and least absolute shrinkage

and selection operator (LASSO) algorithms were used to identify hub genes.

A diagnostic model of nomogram was constructed for SCZ prediction based

on the hub genes. The clinical utility of nomogram prediction was evaluated,

and the diagnostic utility of hub genes was validated. mRNA levels of the

candidate genes in SCZ rat model were determined. Finally, 24 DEGs were

discovered, the majority of which were enriched in biological pathways

and activities. Four hub genes (NEUROD6, NMU, PVALB, and NECAB1) were

identified. A difference in immune infiltration was identified between SCZ and

normal groups, and immune cells were shown to potentially interact with

hub genes. The hub gene model for the two datasets was verified, showing

good discrimination of the nomogram. Calibration curves demonstrated

valid concordance between predicted and practical probabilities, and the

nomogram was verified to be clinically useful. According to our research,

NEUROD6, NMU, PVALB, and NECAB1 are prospective biomarkers in SCZ

and that a reliable nomogram based on hub genes could be helpful for SCZ

risk prediction.
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Introduction

Schizophrenia (SCZ) is a multifaceted mental illness with
a broad variety of clinical and physiological manifestations;
this disorder affects 20 million people and ranks among the
top 25 leading causes of disability worldwide (Roy, 1986; GBD
2019 Diseases and Injuries Collaborators, 2020). SCZ is related
with an approximately 15-year reduction in life expectancy in
comparison to the gross population and a 5–10 percent lifetime
risk of suicide. The low quality of life caused by cognitive
impairment and mortality risks make SCZ a severe public health
burden (Cloutier et al., 2016; Avramopoulos, 2018; Wahbeh
and Avramopoulos, 2021). Despite the abundance of literature
of SCZ manifestations, its exact etiology and pathogenesis are
poorly known. Therefore, research on the pathogenesis and
genetic mechanisms of SCZ is crucial.

The whole-transcriptome gene expression profiling study
has been extensively utilized to discover SCZ-associated genes,
identify disease-associated biomarkers, and anticipate treatment
benefit. FOS was found to be a biomarker related to central and
peripheral changes in SCZ (Huang et al., 2019), with NFKBIA,
CDKN1A, BTG2, and GADD45B being recognized as core
SCZ genes (Feng et al., 2022). Autophagy-related competing
endogenous RNAs have been found to exhibit diagnostic efficacy
in SCZ (Li R. et al., 2021). Moreover, S100B is regarded as
a marker of nervous system impairment, and elevated levels
have been seen in individuals with SCZ at illness onset as
well as in drug-naive patients (Langeh et al., 2021). Several
additional immunological indicators in microglia cells, such
as cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2),
have been proposed as possible new therapeutic targets for
SCZ treatment (Najjar et al., 2013). However, due to a lack
of objective diagnostic methods, definitive assessment and
therapy selection for SCZ remain problematic. To increase the
efficacy of treatment methods, it is critical to develop innovative
biomarkers that are strongly connected with SCZ.

Our research intended to investigate gene expression
alterations in the pathophysiology of SCZ and to develop new
possible diagnostic biomarkers. In this work, we scrutinized
two Gene Expression Omnibus (GEO) datasets and sorted
out 24 differentially expressed genes (DEGs) from prefrontal
cortex (PFC) samples. The essential modules associated with
SCZ were identified and four hub genes, NEUROD6, NMU,
PVALB, and NECAB1, were sorted using the support vector
machine–recursive feature elimination (SVM-RFE), random
forest (RF), and least absolute shrinkage and selection operator
(LASSO) algorithms. Then, utilizing hub genes, we developed
and validated a predictive nomogram for clinical SCZ diagnosis.
The diagnostic values of the four hub genes and the nomogram
model were validated with good accuracy per receiver operating
characteristics (ROC) curves. The selected four hub genes

and nomogram could help improve SCZ diagnosis in high-
risk patients, thereby helping to elucidate the neuropsychiatric
etiology of SCZ.

Materials and methods

Data processing

GSE211381 and GSE539872 [GPL570 platform (HG-
U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0]
were obtained from the GEO database. We collected datasets
including PFC samples, of which GSE21138 contained 29
normal and 30 SCZ samples and GSE53987 contained 19
normal and 15 SCZ samples. Then, the R packages limma
and sva were applied for profiles combination and the
normalization. Probes not matching any known gene were
eliminated. If more than one probe matched to a gene, the
average expression was aggregated. The Perl programming
language was used to remove lncRNA profiles and identify
mRNA matrix files. The R package ggplot2 was used to
normalize data after processing. Information of datasets is listed
in Supplementary Table 1. The study’s flow diagram is shown
in Figure 1.

Differentially expressed genes
identification

To find DEGs between SCZ and healthy samples, the limma
R package was employed. The cutoff criteria were adjusted
P < 0.05 and | log fold change (FC) | > 0.5. Using the ggplots
package, the heatmap and volcano diagram were generated.

Enrichment analysis

To determine the biological implications of genes and
functions, DEGs were subjected to GO, Kyoto Encyclopedia
of Genes and Genomes (KEGG), and DO analyses using
clusterProfiler and DOSE package. A P-value of less than 0.05
was set as the cutoff criterion.

Gene set enrichment

GSEA is a computer tool to determine the accordance
of a highly enriched gene set. The reference gene set,
“c2.cp.kegg.v6.2. symbols.gmt,” was downloaded from the

1 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse21138

2 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse53987
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FIGURE 1

Study workflow.

Molecular Signature Database (MSigDB). Enrichment sets
comprising fewer than 10 or more than 200 genes were omitted.
The upregulated pathways had a normalized enrichment score
(NES) greater than zero, whereas the downregulated pathways
had a NES less than zero. Five of the most essential pathways
were determined (FDR < 0.05).

Weighted gene co-expression network
analysis

We combined and batch-processed the data from GSE21138
and GSE53987. Weighted gene co-expression network analysis
(WGCNA) package was used to assess the trait-related
modules. A topological overlap matrix was constructed from
the expression profile. The soft-thresholding power of 5 and
minimum module size of 30 were set to screen core modules.
A height limit of 0.25 was used as a guideline for modules
combination. The modules were then tested using Pearson’s
correlation test at a significance threshold of P 0.05.

Support vector machine, random
forest, and least absolute shrinkage
and selection operator model
construction

First, candidate genes were found by crossing DEGs with
genes of WGCNA hub module. Next, hub genes were classified

by overlapping genes from the SVM-RFE method with the e1071
package (Noble, 2006), the RF algorithm with the randomForest
R package (Paul et al., 2018), and the LASSO algorithm with
glmnet package (Vasquez et al., 2016).

Single sample gene set enrichment
analysis

Single sample gene set enrichment analysis (ssGSEA), using
the GSVA package, was performed to compare the infiltration of
28 immune cells within normal and SCZ samples (Hänzelmann
et al., 2013). We identified 28 immunocytes: immature dendritic
cells, type 1 T helper cells, activated CD4 + T cells, T
follicular helper cells, activated dendritic cells, CD56 dim
NK cells, central memory CD4 + T cells, effector memory
CD4 + T cells, eosinophils, gamma delta T cells, activated
CD8 + T cells, CD56 bright natural killer (NK) cells, mast
cells, myeloid-derived suppressor cells, B cells, effector memory
CD8 + T cells, monocytes, natural killer cells, natural killer T
cells, macrophages, neutrophils, plasmacytoid dendritic cells,
regulatory T cells, central memory CD8 + T cells, immature B
cells, type 17 T helper cells, and type 2 T helper cells, memory B
cells.

Nomogram model construction

To forecast the incidence of SCZ, rms package was
applied to develop the diagnostic nomogram model. “Points”
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denotes scores of the corresponding factor. Following that,
the nomogram model’s predictive ability was evaluated using
a calibration curve (Chen et al., 2019). Finally, the practical
applicability of the model was assessed using decision curve
analysis (DCA) (Vickers and Elkin, 2006). We used the pROC
package (Wolbers et al., 2009) to conduct ROC curve and the
diagnostic capacities of hub genes and the nomogram model
were examined using the area under the curve (AUC).

qRT-PCR validation

SCZ models were obtained from rats injected
intraperitoneally with saline or MK801 (Sigma-Aldrich,
St.) (0.5 mg/kg body weight) for 6 days continuously. Total
RNA from the rat PFCs was extracted with TRIzol reagent
(Takara, Shiga, Japan). 500 ng mRNA in total was transcribed
reversely using a Prime-Script RT reagent Kit (Takara), and
qRT-PCR was performed at a final volume of 20 µL. Thermal
settings were 95◦C for 30 s, 40 cycles of 95◦C for 10 s, and 60◦C
for 30 s. Hub gene expression was determined using the 2−1 1

CT methodology. Primers information is shown in Table 1.

Connectivity map analysis

The online platform Connectivity Map (CMap)3 was
used to measure the connectivity between illnesses gene
expression features and compound-induced gene signatures
to better comprehend drug mechanisms and uncover novel
therapeutic compounds. Thus, DEGs were uploaded to the
CMap database to anticipate the possible therapeutic small-
molecule medicines on SCZ.

3 https://clue.io/

TABLE 1 Primer sequences used in this study.

Primers NEUROD6

Forward TCTAGAGGCTCCAGGAGAC

Reverse GACTCGTCAAACGGTAGTG

Primers NMU

Forward CAAAGTGAATGAATACCAGGGTC

Reverse GTTGACCTCTTCCCATTGC

Primers PVALB

Forward GCTAAGGAAACAAAGACGCT

Reverse CAGAGTGGAGAATTCTTCAACC

Primers NECAB1

Forward AACTCCTCAGAAGAGCTCAG

Reverse GTCTGCTCTCCTCAGTATGTC

Primers GAPDH

Forward AACTCCCATTCTTCCACCT

Reverse TTGTCATACCAGGAAATGAGC

Statistical analysis

R software (version 4.1.3) was used for data examination.
The Wilcoxon test was performed for groups comparation, and
P < 0.05 was defined as a significant difference.

Results

Differentially expressed genes
identification in schizophrenia and
healthy control groups

In this study, two microarray datasets (GSE21138 and
GSE53987) were used to analyze differential expression. The
expression matrix before and after normalization is shown in
Supplementary Figure 1. In the integrated expression matrix,
there were 24 DEGs revealed, with 10 upregulated and 14
downregulated, as shown in Figures 2A,B. The protein–protein
interactions of the DEGs are shown in Supplementary Figure 2.

Functional analysis

GO analysis revealed 232 biological processes (BP), 29
cellular components (CC), and 28 molecular functions (MF),
as shown in Supplementary Table 2. Figure 3A lists the top 10
GO items. DEGs were significantly enriched in neuropeptide
pathways, adult behavior, aging, pallium development, axon
terminals, neuron projection terminals, and receptor-ligand
activity. According to KEGG analysis, DEGs were enriched
in neurofunctional ligand-receptor interactions, as shown
in Figure 3B. DO analysis revealed 54 items, as shown in
Supplementary Table 3. Figure 3C shows the top ten items
revealed by each functional and enrichment analysis. GSEA
as shown in Supplementary Table 4 demonstrated the genes
upregulated were primarily enriched in the Notch and TGF-beta
signaling pathway, as shown in Figures 4A,B; downregulated
genes were enriched in neurofunctional processes, as shown
in Figure 4A, including GABAergic synapses, serotonergic
synapses, circadian entrainment, synaptic vesicle cycle,
morphine addiction, and dopaminergic synapses. Figure 4C
shows the top five items.

Overlap between
schizophrenia-related module genes
with differentially expressed genes

A scale-free network with a soft threshold of 5 (R2 = 0.91)
was built, as shown in Figure 5A and Supplementary Figure 3.
Subsequently, we computed module eigengenes, which indicate
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FIGURE 2

DEG screening between SCZ and healthy control. (A) Volcano graphic visualizing DEGs of SCZ and normal samples. (B) Heatmap of DEGs
among normal and SCZ samples.

FIGURE 3

Functional DEG enrichment. (A) GO analysis. (B) KEGG pathway analysis. (C) DO analysis.

the total gene expression level of each module and were grouped
based on their association. Three modules were identified, as
shown in Figure 5B. Only one module was correlated with
SCZ (turquoise; cor = -0.27, P = 0.01). The 64 genes related
with SCZ identified in this module were maintained for future
investigation, as shown in Figures 5C,D. Finally, eight genes
were determined to overlap between DEGs and the selected
Genes in MEturquoise and are also shown in Figure 5E.

Hub gene identification

To discover gene signatures, the eight candidate genes were
submitted into SVM-RFE, RF, and LASSO. We identified an
eight-gene signature using SVM with a precision of 0.711, as
shown in Figures 6A,B. The random forest method sorted
eight genes with importance scores greater than four, as
shown in Figures 6C,D. LASSO regression analyses identified
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FIGURE 4

GSEA analysis for DEGs. (A) Ridgeline plot of GSEA analysis results. (B) Top five enrichment terms for upregulated DEGs. (C) Top five enrichment
terms for downregulated DEGs.

four gene signatures, as shown in Figures 6E,F. To obtain a
robust gene signature for SCZ, we determined which genes
overlapped from the three methods and obtained four hub
genes: NEUROD6, NMU, PVALB, and NECAB1, as shown
in Figure 6G. NEUROD6, NMU, PVALB, and NECAB1 were
significantly decreased in SC samples compared to control, as
shown in Figures 7A,B. Correlation analysis showed that the
four genes had robust positive correlations with each other, as
shown in Figure 7C.

Gene set enrichment of the hub genes

To further uncover the probable roles of NEUROD6,
NMU, PVALB, and NECAB1, we conducted GSEA. Genes

in the low expression categories of the four hub genes
were significantly enriched in allograft rejection, autoimmune
thyroid disease, graft vs. host disease, antifolate resistance, and
glycosaminoglycan biosynthesis, as shown in Figure 8.

Correlation of hub genes and
immunocyte infiltration

We investigated the pattern of immunocytes infiltration
using ssGSEA and found that the abundance of CD56 bright
NK cells, gamma delta T cells, mast cells, follicular T helper
cells, and central memory CD8 + T cells were much greater in
SCZ samples than in normal samples, whereas the regulatory
T cells and effector memory CD8 + T cells was significantly
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FIGURE 5

Identification of critical modules by WGCNA. (A) Scale-free fit index and mean connectivity for different soft-thresholding powers.
(B) Topological overlap dissimilarity aggregation of DEGs clusters. (C) Module-feature correlations Each row represents a module list, whereas
each column represents a clinical characteristic. The first line of each cell includes the associated correlation, while the second line gives the
P-value. (D) Scatter plot of the turquoise module. (E) Venn diagram for overlapped genes.

reduced, as shown in Figure 9A and Supplementary Figure 4.

Furthermore, we calculated the correlation between hub gene
expression and infiltrating immune cells, and the results showed

that most immunocytes had a significant negative connection

with hub genes, as shown in Figure 9B. These results imply that

the inflammatory components may play an essential role in the

development of SCZ, and hub genes may have a novel regulatory

role in immune function.

Diagnostic model construction

A nomogram model for SCZ diagnosis was established based
on NEUROD6, NMU, PVALB, and NECAB1, as shown in
Figure 10A. The calibration curve indicated that the variance
between observed and predicted risk was limited, indicating that
the nomogram model performed very well in predicting SCZ,
as shown in Figure 10B. At the risk threshold of 0.1–1.0, DCA
showed that the hub genes curve was above the gray line and
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FIGURE 6

Hub gene identification. (A) Eight gene signatures were identified by SVM-RFE analysis with an accuracy of 0.711. (B) Error of 0.289.
(C) Prediction accuracy of the RF model. (D) Gene importance scores of RF model. (E) Cross-validation to select the optimal tuning parameter
log (Lambda) in LASSO regression analysis. (F) LASSO coefficient profiles of candidate genes. (G) Venn diagram of four hub genes shared by the
SVM-RFE, RF, and LASSO algorithms.

indicated a significant net benefit from using nomograms to
forecast SCZ risk, as shown in Figure 10C. The AUC of the
nomogram reached at 0.724, and the 95% confidence interval

(CI) ranged from 0.622 to 0.827, as shown in Figure 10D.
High-accuracy risk prediction of the diagnostic nomogram for
SCZ was observed.
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FIGURE 7

Expression analysis of hub genes. (A) Expression of four hub genes in SCZ and control groups. (B) Heatmap of hub gene expression. (C)
Correlation between hub genes. **P < 0.01, ***P < 0.001 vs. Ctrl.

Diagnostic evaluation of hub genes

We further evaluated the diagnostic values of the four
hub genes (NEUROD6, NMU, PVALB, and NECAB1) and
nomogram model scores in GSE21138 and GSE53987 using
ROC curves. The AUC values of hub genes in SCZ and healthy
samples measured in GSE21138 were NEUROD6:0.731 (95% CI,
0.600–0.862), NMU: 0.737 (95% CI, 0.602–0.871), PVALB: 0.739
(95% CI, 0.613–0.865), and NECAB1:0.668 (95% CI, 0.526–
0.810). The AUC of the nomogram model score was 0.813 (95%
CI, 0.702–0.923), as shown in Figure 11A. In GSE53987, the
AUC of hub genes were NEUROD6: 0.867 (95% CI, 0.739–
0.995), NMU: 0.758 (95% CI, 0.572–0.994), PVALB: 0.877 (95%
CI, 0.764–0.990), and NECAB1: 0.723 (95% CI, 0.535–0.911).
The AUC of the nomogram model score was 0.937 (95% CI,
0.863–1.000), as shown in Figure 11B. These results indicate

that the four hub genes may have significant diagnostic value
for SCZ. The AUC of the nomogram model based on the four
hub genes was larger than that of a single hub gene, suggesting
that when hub genes were regarded together, the diagnostic
value was greater, which is more conducive to clinical SCZ
prediction.

Hub gene validation

The experimental design was approved by the Animal
Ethics Committee of the First Hospital of Jilin University (NO:
20210637). NEURO6, NMU, and NECAB1 were downregulated
in the MK801-induced SCZ rat model compared to the control.
Nevertheless, no significant changes were observed in PVALB
expression, as shown in Figure 12.
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FIGURE 8

GSEA analysis of hub genes. Top 5 GSEA enrichment in the high and low expression gene set of (A) NEURO6, (B) NMU, (C) PVALB, and
(D) NECAB1.

Drug prediction for schizophrenia
treatment

Differentially expressed mRNAs in SCZ were submitted
to the CMap database to predict prospective small-molecule
compounds with SCZ therapeutic potential. Drugs exhibiting
negative correlations have the potential to improve SCZ
symptoms. The top ten small molecular drugs (all connectivity
scores > 0.7) are shown in Figure 13. Among these, LE-300
is a dopamine receptor antagonist, WAY-161503 is a serotonin
receptor agonist, and endo-IWR-1 is an inhibitor of the Wnt/-
catenin signaling pathway.

Discussion

SCZ is a psychiatric disorder with high global prevalence
and a multifactorial biological etiology. The mechanics of SCZ

are yet to be completely understood. Clinical manifestations
of SCZ include hallucinations, disordered emotions, and
social isolation caused by disruptions of the immunological,
metabolic, and endocrine systems (McCutcheon et al., 2020).
Owing to the likelihood of developing disability and rising
prevalence, SCZ not only significantly impacts patient health
but also has major public health implications (Carpenter
and Buchanan, 1994). Therefore, understanding the critical
pathways and gene signatures in SCZ could aid in the
assessment of risk evaluation, pathogenesis, and personalized
therapy.

In this work, we conducted a comprehensive examination
of SCZ using PFC samples, which was revealed as a hub region
correlated with SCZ. Impaired cognitive functions and aberrant
behaviors have been consistently implicated in patients with
SCZ with decreased PFC volumes (Tomasik et al., 2016). Despite
the complexity of PFC functional regions, the connectivity
between the basal ganglia, inferior frontal gyrus, hippocampus,
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FIGURE 9

Immune cell distribution in SCZ. (A) Differences in infiltrated immune cells between SCZ and control groups. (B) Correlation analysis between
hub genes and immune cells.

lateral habenular, and other brain atlases is characterized by
extremely complex anatomical networks and variability in
behavior and activation (Zhou et al., 2015; Brady et al., 2019;
Mathis et al., 2021). However, both hypo- and hyperfrontality
have been hypothesized as valid and informative reflections
of PFC dysfunction in SCZ. The basis of this dysfunction

and its exact contributions remain unclear (Manoach, 2003).
These variables may also impact the co-prevalence of certain
autoimmune illnesses and some instances of SCZ (Tomasik
et al., 2016).

Cells of the immune system and the central nervous
system can interact. The immune system responds to infection,
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FIGURE 10

Nomogram model construction for SCZ diagnosis. (A) Nomogram to predict SCZ risk. (B) Calibration curve evaluation for the diagnostic
potential of the nomogram model. (C) DCA curve to assess the nomogram practical efficacy. (D) ROC curve to evaluate prediction accuracy.

tissue damage and trauma by releasing substances that
trigger an inflammatory response. Inflammatory cytokines
released by the immune system are considered to be a
key feature of neurological pathology, such as chronic
pain, neurodegenerative diseases, spinal cord injuries, and
neuropsychiatric disorders, particularly SCZ (Skaper et al.,
2014). Immune infiltration impairment was found in the
SCZ PFC, which is consistent with previous findings (Maas
et al., 2017). A higher CD56 bright NK cells proportion has
been observed in SCZ patients, with activation to secrete
TNF-α and IFN-γ, which causes damage to the central
nervous system (Miller et al., 2013). Mast cell infiltration
may also affect cognitive performance (Skaper et al., 2014).
Increased gamma/delta T lymphocytes in unmedicated patients
with SCZ impair the blood–brain barrier (Wo et al., 2020).
Abundant increases in any of these cell types of influence
SCZ pathology. Moreover, the number of regulatory T cells
(Treg) was found to decrease in SCZ samples. Inflammatory

disorders and SCZ have been linked throughout the recent
decades. Immunological-mediated neuropathology is a rising
issue, and new research emphasizes the significance of innate
immune signaling in SCZ (Hartwig et al., 2017; Yang and
Tsai, 2017). Tregs may contribute to the improvement of
negative symptoms in SCZ (Kelly et al., 2018). Elevated Tregs
in SCZ are correlated with fewer negative symptoms, possibly
by counteracting ongoing inflammatory processes (Corsi-
Zuelli and Deakin, 2021). Recent studies have demonstrated
regulatory connections between microglia, astrocytes, and
Tregs. Treg cell dysfunction relates to glial damage, low-level
inflammation, and reduced life expectancy in SCZ (Kelly et al.,
2018; Corsi-Zuelli et al., 2021). Tregs are also capable of
promoting oligodendrocyte differentiation and (re)myelination.
Treg knockout mice had markedly reduced remyelination
and oligodendrocyte differentiation, resulting in cognitive
impairment (Dombrowski et al., 2017). Our study revealed
the immune infiltration landscape of SCZ, which paved the
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FIGURE 11

Diagnostic evaluation of hub genes and nomogram score. ROC curve to evaluate prediction accuracy in (A) GSE21138 and (B) GSE53987.

FIGURE 12

qPCR validation. Comparison of gene expression between SCZ rat model and control in (A) NEURO6, (B) NMU, (C) PVALB, and (D) NECAB1.
∗P < 0.05, ∗∗∗P < 0.001 vs. Ctrl.

way for designing immunotherapy for SCZ based on molecular
alterations.

For decades, pathophysiological investigations on SCZ
have concentrated on dopaminergic and glutamatergic
neurotransmission abnormalities, with scant clinical
advancements. Microarray data may now be utilized to
uncover hub genes, interaction networks, and pathways that
interpret SCZ, according to the tremendous progress of
bioinformatics. In this study, DEGs were mainly enriched for
neurofunctional activities. The CMap database predicted highly
correlated molecular drugs (connectivity scores > 0.7) for SCZ
treatment. Bumetanide is a selective antagonist of Na-K-Cl
cotransporter (NKCC1) which can reduce intracellular chloride
concentrations and enhances the inhibitory effect of GABAergic
neurons, an FDA-approved drug with the potential to treat or
prevent cognitive impairment in SCZ syndrome (Lemonnier
et al., 2016). CCL2 levels are significantly higher in patients
with SCZ, dysregulated CCL2 may be one of the important

reasons for the negative symptoms of SCZ, and the duration of
the disease is closely related to the negative symptoms (Hong
et al., 2017). CCL2 inhibition by oral administration of bindarit
may potentially improve symptoms of SCZ (Raghu et al., 2017).
Rifaximin can reduce gut-derived inflammation, which may
also contribute to the relief of SCZ (Li H. et al., 2021; Patel et al.,
2022). The brain-gut axis refers to the two-way communication
network between the brain and the gut. Different signals from
the gastrointestinal tract can regulate brain function through
neural, endocrine, immune, metabolic and other pathways
(Lach et al., 2018). When the types of intestinal microbes
change, the central nervous system will also change accordingly,
which is mainly due to the change of metabolites of intestinal
microbes (Erny et al., 2015). Although the reasons for this are
not fully understood, altering the gut microbiome can improve
mental activity, emotional and cognitive processes and behavior
in animals (Zheng et al., 2016; Valles-Colomer et al., 2019).
Further analyses are necessary to analyze the effect of these
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FIGURE 13

Drugs prediction. CMap instances organized by compounds and cell lines depict the most significant positive and negative correlations to the
impact on SCZ. The connection score, shown on the x-axis, represents the strength of the association.

molecules on behavioral tests in animal models of SCZ and
patients with SCZ.

Based on bioinformatics methods, this is the first study to
find four hub genes closely related to SCZ (NEUROD6, NMU,
PVALB, and NECAB1). Enrichment and immune infiltration
analyses showed that these genes might lead to the onset of
SCZ by regulating the genetic process of cells or affecting the
immune environment. The NEUROD family (NEUROD1, 2,
4, 6) is a key regulator of neural progenitor cell differentiation
(Tutukova et al., 2021). NEUROD6 plays a role in cytoskeletal
protein function, mitochondrial trafficking, membrane potential
regulation, and mitochondrial chaperoning (Cherry et al.,
2011). NEUROD6 may also improve cellular resistance to
oxidative stress, which is important in neurodegenerative
illness prevention including Parkinson’s disease and autism
spectrum disorder (Viereckel et al., 2016). Recently, NEUROD6
was revealed as a potential biomarker for of Alzheimer’s
disease (AD) diagnosis. Alzheimer’s animal models and
postmortem Alzheimer’s patients have both shown low levels

of NEUROD6 expression (Satoh et al., 2014). Locomotion
was dramatically increased in NEUROD6-KO mice with
repeated psychostimulant administration, and optogenetic
stimulation of NEUROD6-Cre VTA neurons was found to
trigger glutamatergic postsynaptic currents as well as DA
secretion in nucleus accumbens (Bimpisidis et al., 2019).
Information processing is affected by γ-aminobutyric acid
(GABA) neurons that produce parvalbumin, somatostatin, or
vasoactive intestinal peptides (Fachim et al., 2018). Parvalbumin
(PVALB) deficits or downregulation are common in patients
with SCZ (Tsubomoto et al., 2019). PV-deficient (PV-/-) mice
exhibit a strong autism-like behavioral phenotype. PVALB
neurons exhibit precise control over spike timing, leading to
the formation and regulation of gamma rhythms, which are
necessary for sensory perception and awareness (Janickova et al.,
2021). NMDA receptor hypofunction in pyramidal cells results
in decreased activity of PVALB neurons, thus reducing network
gamma oscillatory activity (Kaur et al., 2020). Neuromedin U
(NMU) is widely distributed neuropeptide. NMU is involved in
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physiological activities, including feeding behavior, metabolism,
physiological stress, circadian rhythmicity, and inflammatory
processes (Ly and Root, 2021; Sasaki-Hamada et al., 2021),
as well as reward circuits (Anan et al., 2020). The ability
of neuropeptides to reduce food intake in rodents prompted
the modification of peptide ligands (Vallöf et al., 2020).
NMU receptor activation promotes GABAergic neurons in
the hippocampus (Ghashghayi et al., 2022). Recent research
indicates that NMU may regulate psychomotor activity. NMU-
21 elicits anxiolytic-like effects in the goldfish brain (Matsuda
et al., 2020). As the major calcium-binding protein in CB1/CCK-
positive interneurons, neuronal calcium-binding protein 1
(NECAB1) is found in several excitatory neuron populations
in the rat spinal cord. The soma volume of pyramidal cells
immunoreactive for NECAB1 is significantly reduced in SCZ
(Maldonado-Avilés et al., 2006).

Correlation analysis found that the four hub genes were
highly positively correlated with one another (all cor > 0.6).
Therefore, we suspect that they play a vital role in SCZ
pathology. Furthermore, we established a nomogram model
for SCZ risk prediction. The diagnosis and treatment of
SCZ currently are mostly dependent on clinical surveys with
inadequate response rates. Recurrence of symptoms is typical
among people who cease treatment. Precise diagnosis and early
precautions for SCZ are essential to help reduce suffering
and enhance the prognosis of the condition. In the present
two datasets of SCZ, the AUCs of the four hub genes were
greater than 0.65. These results suggest that NEUROD6, NMU,
PVALB, and NECAB1 have good diagnostic values. Moreover,
the AUC of the nomogram model reached 0.813 (GSE21138)
and 0.937 (GSE53987), which exhibited excellent accuracy for
disease prediction. Collectively, NEUROD6, NMU, PVALB,
NECAB1, and the nomogram model of the four hub genes
have great potential as diagnostic biomarkers and therapeutic
targets for SCZ.

This study was subjected to the following limitations. First,
four hub genes were identified by qPCR, and their localization
and distribution should be verified, and the model method may
cannot completely simulate SCZ. This may be one of the reasons
that the results of qPCR were not completely consistent with
expectations. Second, the scope of this study was insufficient to
include detailed validation of in vivo and in vitro. Third, more
clinical and demographic characteristics of patients with SCZ
should be included in the study for further subgroup analysis.

Conclusion

Based on bioinformatics methods, a gene signature of
NEUROD6, NMU, PVALB, and NECAB1 that intimately
associated to SCZ were initially identified. A predictive
nomogram for the clinical diagnosis of SCZ was established.

This predictive nomogram can be applied clinically to identify
patients at high risk of SCZ.
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