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Determining how noncoding genetic variants contribute to neurodegenerative 

dementias is fundamental to understanding disease pathogenesis, improving 

patient prognostication, and developing new clinical treatments. Next 

generation sequencing technologies have produced vast amounts of 

genomic data on cell type-specific transcription factor binding, gene 

expression, and three-dimensional chromatin interactions, with the promise 

of providing key insights into the biological mechanisms underlying disease. 

However, this data is highly complex, making it challenging for researchers 

to interpret, assimilate, and dissect. To this end, deep learning has emerged 

as a powerful tool for genome analysis that can capture the intricate patterns 

and dependencies within these large datasets. In this review, we organize and 

discuss the many unique model architectures, development philosophies, and 

interpretation methods that have emerged in the last few years with a focus 

on using deep learning to predict the impact of genetic variants on disease 

pathogenesis. We highlight both broadly-applicable genomic deep learning 

methods that can be fine-tuned to disease-specific contexts as well as existing 

neurodegenerative disease research, with an emphasis on Alzheimer’s-

specific literature. We conclude with an overview of the future of the field at 

the intersection of neurodegeneration, genomics, and deep learning.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading 
cause of dementia worldwide. Recent models have projected that the number of people with 
dementia will increase from approximately 57 million people in 2019 to 153 million people 
by 2050 (GBD Dementia Forecasting Collaborators, 2019). Despite recent improvements 
in our understanding of AD pathophysiology and the emergence of newly proposed 
treatment strategies, no effective therapy currently exists to fully prevent or reverse the 
effects of AD (Long and Holtzman, 2019). Given that genetic factors account for an 
estimated 60–80% of an individual’s risk of developing AD (Sims et al., 2020), an improved 
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understanding of the genetic architecture of AD and the affected 
biological pathways in disease pathogenesis can inform better 
prognostication and drug development.

Since 2007, numerous genome-wide association studies 
(GWASs) have identified dozens of potential risk loci containing 
genetic variants, or single-nucleotide polymorphisms (SNPs), that 
have a high statistical correlation with AD (Andrews et al., 2020). 
However, the true promise of these GWASs has yet to be realized 
due to multiple challenges involved in pinpointing the true causal 
variant, its corresponding gene target, and the cell type(s) affected. 
Underlying each of these challenges is the observation that nearby 
genetic variants are often co-inherited, and thus statistically 
indistinguishable, due to non-random segregation of alleles 
during meiotic recombination, a phenomenon known as linkage 
disequilibrium (Schaub et al., 2012). Further exacerbating this 
challenge is the observation that greater than 90% of all GWAS-
implicated variants map to noncoding regions of the genome 
(Maurano et  al., 2012). Unlike variants that affect coding 
sequences which have predictable downstream amino acid 
alterations, assigning function to noncoding variants is 
comparatively less straightforward as we  lack a fundamental 
understanding of how sequence changes affect the activity of 
noncoding gene regulatory elements (Gallagher and Chen-
Plotkin, 2018).

Within the nucleus, gene expression is controlled by an 
intricate interplay between multiple molecular mechanisms. The 
chromatin state (the post-translational modification of histone 
tails that is associated with differing gene regulatory potential), the 
methylation of cytosine bases (“DNA methylation”), and the 
binding of sequence-specific transcription factor proteins (the 
“cis-regulatory code”) all influence a cell’s complex expression 
profile. In the right epigenetic context, a TF recognizes and binds 
to a specific DNA sequence called a “motif,” initiating an 
incompletely understood cascade of events that ultimately leads 
to a change in gene expression. In this way, genetic variants within 
the noncoding genome could affect TF binding, thus altering 
downstream gene expression and linked cellular behaviors. To 
begin to predict which noncoding variants have plausible effects 
on regulatory element activity and thus could play a role in disease 
predisposition, an in depth understanding of the gene regulatory 
circuitry of the brain is required. To this end, functional genomics 
techniques that analyze chromatin accessibility, gene expression, 
three-dimensional (3D) chromatin conformation, histone 
modifications, and other chromatin features have been employed 
to characterize cell type- and cell state-specific gene regulatory 
landscapes in the brain.

Genomics is inherently a data-driven science, and the 
genome-scale assays utilized for chromatin and transcriptome 
profiling generate vast amounts of complex data. With the growth 
of high-throughput sequencing technology, researchers have 
increasingly turned to machine learning (ML) in order to 
effectively discover intrinsic relationships and patterns in such 
large amounts of data (Libbrecht and Noble, 2015). However, the 
potential of traditional ML algorithms is often limited by the 

complex task of feature extraction, where researchers manually 
decide which variables would be most important to use in training 
the model. Once identified, these features would be  extracted 
through preprocessing of the raw data into new handcrafted 
representations for training inputs (Storcheus et al., 2019). Not 
only is this a time-intensive process requiring multiple iterations 
and careful thought, but subtle changes with feature selection can 
have substantial effects on model performance.

Deep learning (DL) is a subdiscipline of ML that circumvents 
this challenge of feature engineering by using multiple layers to 
capture salient features in the model’s internal weights during 
training (Goodfellow et al., 2016). In the last decade, DL models 
have emerged as the state-of-the-art models for complex pattern 
recognition in high-dimensional data and have been instrumental 
in fields such as natural language processing, computer vision, and 
bioinformatics (LeCun et al., 2015).

In this review, we give a brief background of DL, focusing 
specifically on supervised DL, which encompasses models trained 
with labeled data (pairs of input and output values such as DNA 
sequences and associated genomic data). We then highlight recent 
DL innovations in genomics and neurodegenerative disease 
research, with a focus on AD as it’s the most studied 
neurodegenerative disease to date. In particular, we center our 
discussion on the task of noncoding variant prioritization, the 
process by which functional variants with the potential to affect 
an individual’s disease predisposition are isolated from large sets 
of GWAS variants. DL algorithms are particularly well-suited for 
this “variant effect prediction” task because they are computational 
representations of the biological relationship between a DNA 
sequence and its genomic features. The purpose of this review is 
to grant readers a complete picture of the current state-of-the-art 
DL methods that can be used for variant effect prediction and 
clearly represent the benefits and drawbacks of each given 
approach. Crucially, the adoption of DL techniques has 
tremendous potential in neurodegeneration research, where DL 
computational methods that are currently underutilized could 
serve as a supplementary analytical platform to traditional 
genomic techniques and improve our understanding of 
disease pathogenesis.

Deep learning

To understand the competing design philosophies behind 
modern DL model architectures, one must first understand the 
basic structure of a deep neural network, the foundational 
construct for most DL models. The fundamental unit of a deep 
neural network is the artificial neuron. An input vector of real 
values is passed into the neuron, which calculates the weighted 
sum of those values and passes it through a nonlinear 
transformation function (Goodfellow et al., 2016). DL models are 
constructed of multiple layers of neurons that can receive input 
data from neurons in the previous layer and output values to 
neurons in the following layer (Figure 1A). The input into the first 
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layer of the deep neural network is generally a matrix of real 
values, while the output of the last layer is the desired prediction. 
The intermediate layers are referred to as “hidden layers,” and 
although generally not human-interpretable, represent the 
complex nonlinear relationship between the input and 
output values.

Deep learning frameworks, such as PyTorch (Paszke et al., 
2019), Keras on Tensorflow (Abadi et al., 2016), and JAX (Frostig 
et  al., 2018), have been instrumental for the success and 
proliferation of DL models. These software libraries handle the 
elementary operations behind model development, including 
matrix multiplication for forward propagation of an input matrix 
through the model and backpropagation for updating model 
weights to better fit the desired relationship. Model training is a 
critical part of model development and is the process by which 
weights are adapted to minimize the loss function, which 
quantifies the difference between the expected outcome and the 
model’s prediction. During training, the backpropagation 
algorithm takes the partial derivative of the loss function with 
respect to each of the weights in the network and iteratively 
updates the weights to descend the gradient by a factor of the 
learning rate (Schmidhuber, 2015).

The researcher accounts for the other aspects of model 
development, namely data preparation and hyperparameter 
optimization. After task-specific preprocessing methods that can 
assist with feature extraction and selection, data is partitioned into 
three distinct sets: the training set, which is used to update model 
weights; the validation set, which is used during training to check 
model performance; and the test set, which is used to determine 
the final model accuracy metrics after training. To assess a model’s 
performance under conditions it has not previously encountered, 
the data must be partitioned such that the validation and test sets 
represent samples the model could not have memorized during 
training. In genomics, this distinction is traditionally achieved by 
withholding entire chromosomes or cell types during training. 
Common metrics used to evaluate model performance on the test 
set include the Pearson correlation coefficient and Spearman 
correlation coefficient for regression tasks or the area under the 
receiver operating characteristic (AUROC) and area under the 
precision-recall curve (AUPRC) for classification tasks. 
Hyperparameters, which include the model architecture, learning 
rate, batch size, and other training variables, are adjusted to 
maximize model performance while avoiding overfitting, the 
phenomenon where the model does not generalize well to data 
points outside the training set. Proper monitoring of the loss 
function of the training and validation sets during the training 
process gives insight into the best time to stop training.

Deep learning architectures

Artificial neural networks (ANNs), also known as multi-layer 
perceptrons or feed-forward neural networks, consist of fully 
connected layers where every node (neuron) takes an input from 

every node in the previous layer of the network, and the overall 
ANN models the propagation of stimuli across synapses in the 
brain (Figure 1A; Krogh, 2008). Although ANNs have been used 
in genomics research to prioritize candidate causal SNPs for disease 
(Quang et al., 2015), predict enhancer activity (Liu et al., 2016), or 
predict RNA splicing (Xiong et al., 2015), convolutional neural 
networks (CNNs), recurrent neural networks, and transformer 
models integrate the fully connected layer into more advanced 
structures that have been able to better capture biological patterns 
in the genomic data and achieve higher performance metrics.

Convolutional neural networks are a type of deep neural 
network that rely on convolutional filters to traverse an input 
matrix of values, performing multiplication operations between 
input values and their corresponding weight followed by a 
nonlinear transformation (Figure 1B). Originally developed for 
image processing and classification (Lecun et al., 1998), CNNs 
have been widely used for applications where it is important to 
capture local dependencies in spatial or sequential data. In 
genomic applications, the DNA sequence used as the input to 
CNN models is commonly represented using one-hot-encoding, 
which forms a 4-by-N matrix of binary values where N is the 
length of the DNA sequence and the four rows represent the 
presence or absence of the bases A, C, G, and T, respectively. This 
4-by-N matrix can then be treated as an image and scanned by 
convolutional filters to extract relevant patterns and features for 
the target output (Figure 2). These filters consist of a matrix of 
weights that are each multiplied by the corresponding input 
element and are often designed in a 4-by-X shape to traverse the 
DNA sequence like a sliding window. Specialized convolutional 
layers further optimize model performance, including dilated 
convolutional layers that expand the convolutional kernel and 
residual convolutional layers that provide an alternative path to 
pass information through convolutional layers. Dilated layers 
increase a convolutional filter’s input context by introducing gaps 
in the filter elements (Figure  2), while residual layers enable 
much deeper architectures by avoiding the vanishing gradient 
problem, where back-propagated gradients become extremely 
small and cannot effectively update model weights in training. 
In recent years, CNNs have been by far the most popular model 
architecture used for sequence-based prediction tasks and have 
been used to model a multitude of biological phenomena and 
data types including but not limited to general chromatin 
features (Kelley et al., 2018), TF binding profiles (Avsec et al., 
2021b), gene expression (Zhou et  al., 2018), 3D chromatin 
conformation (Fudenberg et  al., 2020), DNA methylation 
(Angermueller et  al., 2016), massively parallel reporter assay 
(MPRA) data (Movva et al., 2019), and RNA splicing (Jaganathan 
et al., 2019).

Residual Neural Networks (RNNs) are derived from 
ANNs and designed for tasks with sequential or temporal 
input data of variable length, having found particular use in 
natural language processing with problems regarding speech 
recognition, sentiment analysis, or text translation. RNNs 
engage in parameter-sharing where each input is passed 
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through the same feedforward neural network architecture, 
and the output of the previous layer is incorporated into the 
prediction of the subsequent layer, introducing the idea of 
short-term memory (Figure 1C; Rumelhart et al., 1986). An 
extension of the RNN architecture is the long short-term 
memory (LSTM) unit, which stores salient features in a 
separate memory state that can encode for temporally 
extended patterns (Figure 1C; Hochreiter and Schmidhuber, 
1997). There are two intuitive advantages of RNNs over 
CNNs. With short- and long-term memory, RNNs should in 
theory be able to remember pertinent features and apply them 
to relevant sequence elements anywhere along a chromosome. 
Because the identical core model segment is applied to every 
input element, RNNs are also robust against translational 
shifts in the indexing of an input DNA sequence. In practice, 
however, complex CNN architectures have been able to match 
or outperform RNN models with general sequence modeling 
(Bai et al., 2018). Moreover, because RNNs rely on sequential 
operations in training and prediction, they struggle to take 

advantage of modern GPU parallelization capabilities and are 
slow to train. Nevertheless, they have found moderate use in 
genomics, especially with aggregating outputs from 
convolutional layers (Quang and Xie, 2016; Atak et al., 2021).

Transformers are one of the newest and most powerful model 
architectures in current literature. First described in 2017, 
transformer models use multi-head attention layers with self-
attention mechanisms that compute global dependencies between 
every pairwise interaction of input elements (Figure 1D; Vaswani 
et  al., 2017). Unlike convolutional filters or RNN and LSTM 
memory mechanisms that integrate neighboring input values 
before more distant elements, these attention weights enable direct 
information flow between any set of inputs while maintaining 
distance context through positional encoding, where relative 
distances are appended into each input’s vector representation. 
Given such improvements in learning how distant data elements 
influence and interact with each other, transformers have vast 
potential for integrating information from much longer input 
DNA sequences to better capture enhancer-promoter interactions 

A B C

D

FIGURE. 1

Model and layer architectures. (A) Diagram of the fully-connected architecture present in ANNs. Every node is connected with all nodes of the 
previous layer and all nodes of the following layer. (B) Diagram of a single convolutional filter within a single convolutional layer. Every element in 
the shaded input matrix is multiplied by the corresponding weight in the convolutional filter and combined to form one output value in the shaded 
output square. (C) Depiction of the recurrent neural network architecture, where the primary ANN block takes the current input along with 
memory information stored over short or long distances. (D) Flowchart of the transformer multi-head attention layer, which first takes a list of 
inputs and passes them through three ANN blocks. Together, the query and key matrix outputs form attention filters, which when multiplied with 
the outputs of the value matrix, generates a list of filtered output matrices. Each attention filter may highlight a different part of the input. The final 
output ANN is used to reduce the number of dimensions back to the original input size.
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and other gene regulatory patterns. With the increased training 
parallelization enabled by the attention layers that replace 
sequential memory, transformer models can be trained faster and 
with many more parameters than earlier architectures, leading 
some to argue that transformers are the starting point for another 
paradigm shift in the field of DL (Bommasani et  al., 2022). 
Transformers have already revolutionized the field of natural 
language processing (Acheampong et al., 2021) and are quickly 
gaining traction in genomics research, with multi-head attention 
layers exhibiting vast performance improvements in modeling 
chromatin features (Ji et al., 2021) and gene expression (Avsec 
et al., 2021a; Vaishnav et al., 2022).

Complex models and transfer learning

In most traditional ML contexts, models are concerned with 
solving a single prediction task given a single input data type. 
However, a single-task approach’s performance may be hindered 
by the lack of available training data that fits the exact purpose. 

For instance, despite large amounts of genomic data profiling 
chromatin accessibility or TF binding, this data may come from 
different approaches (such as ATAC-seq, ChIP-seq, and 
DNase-seq) and correspond to different cell types. Instead of 
training a separate single-task model for each data type or cell 
type instance, multi-task learning can harness the shared 
features extracted by a single model to jointly predict 
accessibility scores across multiple outputs (such as genome 
tracks) (Thung and Wee, 2018). In multi-task learning, it is 
important to optimize the amount of parameter sharing used by 
the model, and this is often achieved with a shared ‘trunk’ of 
convolutional layers for feature extraction followed by 
individual output ANN branches for each task (Crawshaw, 
2020). Multi-task learning has been successfully applied in 
genomics research to predict chromatin accessibility, gene 
expression, and TF binding from sequence across data types 
and cell types (Zhou and Troyanskaya, 2015; Kelley et al., 2016).

Similarly, multimodal models leverage multiple input data 
modalities to capture a more complete understanding of natural 
phenomena. This type of architecture first processes each modality 

FIGURE 2

Sample genomics DL model with convolutional, attention, and intermediate layers. This model representation captures the most basic 
architecture used by most genomics DL models. The input DNA sequence is first one-hot encoded into the 4-by-N matrix shown on the left, then 
a convolutional layer extracts certain patterns by traversing the input sequence with multiple filters, whose weights are learned during training. 
Both standard and diluted convolutional layers are shown. Along with more convolutional or attention layers, model designers often use 
intermediate layers to simplify computation, consolidate data representations, or learn more patterns. Examples of intermediate layers include 
fully-connected, RNN, cropping, flatten, or pooling layers. Lastly, the model outputs either a predicted genomic track as shown or a single label 
representing the amount of enriched signal for the entire sequence.
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using a dedicated submodel then merges the resulting 
representations through concatenation and relies on a shared 
model to make the final prediction. Some of the primary 
challenges for multimodal model research involve data 
representation and the fusion of modalities before prediction. For 
an extensive review of these challenges as well as recent advances 
in multimodal ML, we refer readers to (Baltrušaitis et al., 2019). 
As an example of a multimodal model, the FactorNet approach 
concatenated DNase cleavage signal and other optional features 
such as mapability and gene annotation data as extra rows on the 
one-hot-encoded DNA sequence to predict cell type-specific TF 
binding (Quang and Xie, 2019). Another model, PrimateAI, 
integrated amino acid sequences and position-weight matrix 
(PWM) conservation scores from both humans and primates to 
predict the functional effect of missense variants (Sundaram et al., 
2018). Data integration strategies for biological data in ML have 
been reviewed extensively in existing literature (Zitnik et al., 2019).

Transfer learning describes the process by which a new model, 
due to data scarcity or other limitation, partially reuses another 
model’s parameters that were trained on a separate but similar 
domain. Therefore, a model previously trained with a more 
general purpose and larger available dataset can be adapted to a 
more specific purpose and refined with a lesser amount of training 
data due to the inherent shared characteristics between the two 
tasks (Weiss et  al., 2016). One successful implementation in 
genomics used transfer learning to improve performance of 
single-task models trained to predict chromatin accessibility in 
specific cell types by using weights from a separate multitask 
model (Kelley et al., 2016). Other models use pretrained weights 
either from existing TF PWMs (Atak et al., 2021) or previously 
trained models of chromatin accessibility (Schwessinger 
et al., 2020).

Model interpretability

On top of making accurate and robust predictions, DL 
applications in genomics research are used to gain insight into the 
molecular mechanisms driving a model’s prediction to check for 
correlation with real-world biology. However, DL model 
predictions are notoriously challenging to interpret due to the 
“black box” problem, where the highly-complex weights of a DL 
model are opaque to human-interpretability because training 
algorithms update hidden weights and extract salient features 
without human intervention. In recent years, methods for 
post-hoc interpretability that enable prediction analysis after 
training have been developed and popularized to address this 
issue and are largely classified into perturbation-based methods 
and backpropagation-based methods. Here, we discuss the model 
interpretation methods relevant for the models discussed later in 
this review (Table  1). Interpretability methods for many key 
models released prior to 2019 have been reviewed previously 
(Talukder et al., 2021).

The most easily applicable and commonly used model 
interpretation approach for sequence-based DL models is in silico 
mutagenesis (ISM). The name “in silico mutagenesis” comes from 
the initial approach of perturbing bases of a DNA sequence input 
and observing changes to the model output, such as the level of 
transcription factor binding predicted from chromatin 
accessibility data. Using ISM, researchers systematically identify 
which elements within the input DNA sequence elicit the most 
significant changes to the model prediction and are thus most 
“important” to the genomic interactions learned by the model. 
Basic variant prioritization is often conducted using a simplified 
version of ISM where individual variant SNPs are perturbed and 
the change to the prediction is assessed and scored, with higher 

TABLE 1 Interpretation methods used by deep learning models of genomic data.

In silico mutagenesis Kernel analysis Saliency maps or 
Gradient × Input

DeepLIFT or 
DeepSHAP

TF binding and chromatin 

accessibility

DeepBind (Alipanahi et al., 2015) DeepBind (Alipanahi et al., 

2015)

FactorNet (Quang and Xie, 2019) BPNet (Avsec et al., 2021b)

DeepSEA (Zhou and Troyanskaya, 

2015)

Basset (Kelley et al., 2016) ChromBPNet (Trevino et al., 

2021)

Basset (Kelley et al., 2016) FactorNet (Quang and Xie, 

2019)

DeepMEL2 (Atak et al., 2021)

DeepFIGV (Hoffman et al., 2019) DeepFIGV (Hoffman et al., 

2019)

MPRA-DragoNN (Movva et al., 

2019)

DeepMEL2 (Atak et al., 2021) DeepFun (Pei et al., 2021)

DNABERT (Ji et al., 2021)

Gene expression Basenji (Kelley et al., 2018) Enformer (Avsec et al., 2021a) Basenji (Kelley et al., 2018) Xpresso (Agarwal and Shendure, 

2020)ExPecto (Zhou et al., 2018) Xpresso (Agarwal and Shendure, 

2020)

Enformer (Avsec et al., 2021a) Enformer (Avsec et al., 2021a)

Chromatin conformation Akita (Fudenberg et al., 2020) DeepC (Schwessinger et al., 2020)

Orca (Zhou, 2022)
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values interpreted as greater putative functional effects. ISM, as 
the most straightforward method of model evaluation, was the 
primary interpretation approach in earlier models (Alipanahi 
et al., 2015; Zhou and Troyanskaya, 2015; Kelley et al., 2016) and 
continues to find use in newer models, especially when paired 
with other more specialized interpretability methods (Avsec et al., 
2021a; Zhou, 2022). However, complete ISM is a very 
computationally expensive process — to assess the effect of every 
SNP in a N-bp DNA sequence, a model must make 3 N 
predictions, a value that becomes prohibitively large in the 
evaluation of long input sequences or many genomic loci.

An alternative simple interpretation method is kernel analysis, 
where researchers dissect model weights for salient information. 
Using kernel analysis in CNNs, researchers can investigate the 
patterns stored in the convolutional filters that traverse the 
previous layer. Specifically in bioinformatics, CNN kernel analysis 
is often used to discover sequence motifs that represent biological 
phenomena such as TF binding patterns. In transformers, kernel 
analysis can reveal which other regions of the input sequence the 
model paid the most attention to in making a prediction for the 
current region. However, as models become more complex and 
contain a greater number of layers, kernel analysis becomes 
increasingly obsolete, where sequence motifs or attention 
interactions may be dispersed across distinct convolutional or 
attention filters on multiple layers.

To address the drawbacks of ISM and kernel analysis, many 
backpropagation-based approaches have been developed that 
more efficiently and accurately interpret model predictions. As 
described above, backpropagation is the algorithm that updates 
model weights by measuring the gradient with respect to the loss 
function, which can be  interpreted as a particular input’s 
importance to the final prediction. Using backpropagated 
gradients, saliency maps calculate contribution scores for every 
value in the input matrix, highlighting the input values that can 
most strongly alter the model’s classification prediction (Simonyan 
et al., 2014). As an extension to this, the gradient x input method 
multiplies corresponding elements in the saliency map and input 
matrix to achieve slightly greater accuracy. ISM only evaluates 
changes to the final prediction, while kernel analysis only 
interprets patterns from the model’s internal weights. These two 
backpropagation-based algorithms incorporate both of those 
features to capture a more complete picture of the significant input 
elements within the computed importance scores.

These early backpropagation interpretation approaches 
struggle with a specific scenario called model saturation. The 
model saturation phenomenon occurs when the activation of any 
one or more inputs exhibits a constant output. In this scenario, the 
gradient for those inputs will be zero in instances where two or 
more inputs are active, because altering any of those inputs will 
not affect the output. Therefore, traditional gradient approaches 
would determine that a change to a single input will negligibly 
affect the output value and lose this subtle, yet valuable 
information. More recently, the DeepLIFT algorithm was 
developed and calculates attribution scores by interpreting 

predictions within the context of a ‘reference’ value, often 
dinucleotide-shuffled sequences in genomics (Shrikumar et al., 
2019). DeepLIFT avoids the saturation issue by explaining the 
difference between the actual and reference outputs through the 
difference between the actual and reference inputs. DeepSHAP 
builds on the DeepLIFT method by using game-theoretic Shapley 
values that optimize credit allocation and make local explanations 
(Lundberg and Lee, 2017). Although these methods have gained 
some popularity in recent years, they are less straightforward to 
implement compared to simpler methods and thus will likely see 
further improvements in the near future.

Instead of input-sequence-specific methods, other 
interpretability approaches aim to identify global patterns that the 
model has learned that are not unique to individual test instances. 
The TF-MoDISco method (Shrikumar et al., 2020) aggregates the 
outputs of base-resolution contribution scores (from methods 
such as DeepLIFT and DeepSHAP) into a set of summarized TF 
motifs that captures regions of heightened importance. Global 
importance analysis (Koo et al., 2021) fills a similar role and can 
be used to test the generalizability of user-specified hypotheses 
against randomized sequence context with controlled 
ISM methods.

Genomic applications of deep 
learning

This section discusses the applications of DL in genomics 
research, with a particular emphasis on understanding the impact 
of genetic variants in neurodegenerative diseases. We focus on the 
key architectural innovations, development directions, and 
downstream analytical techniques in DL genomics research by 
first introducing three seminal studies (DeepBind, DeepSEA, and 
Basset) then highlighting the significant publications from the last 
5 years.

As outlined above, noncoding genetic variants represent the 
vast majority (>90%) of variants associated with diseases through 
GWASs. As such, understanding and predicting the impacts of 
noncoding variants on gene regulation and gene expression 
remains a problem of critical importance to the field of disease 
genetics. Deep learning models have been widely employed to 
solve this problem, predicting variant-specific impacts at multiple 
levels of this complex process. Here, we organize these models into 
three categories based on the aspect of the gene regulatory 
landscape that the model is built to predict: (1) transcription 
factor binding / chromatin accessibility, (2) gene expression 
output, and (3) 3D chromatin interaction.

Traditionally, DL models in genomics consist of a series of 
convolutional or multi-head attention layers followed by a series 
of intermediate layers (including fully connected, RNN, cropping, 
or flattening layers) that learn the relationship between a one-hot 
encoded DNA sequence and a region of genomic data (Figure 2). 
Despite predicting different types of information, all of these 
model categories have been affected by three broader shifts in the 
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trajectory of model development, including the emergence of cell 
type-specific models, the increase of model input information, 
and the shift to quantitative rather than categorical model outputs. 
Perhaps most important to the prediction of activity of noncoding 
variants, the gene regulatory landscape is highly cell type-specific, 
implying that models trained to predict aspects of gene regulation 
should similarly be trained on data derived from well-defined cell 
types. The human brain is composed of a heterogeneous collection 
of different cell types, including excitatory neurons, inhibitory 
neurons, microglia, astrocytes, oligodendrocyte precursors, 
oligodendrocytes, and endothelial cells. In fact, single-nucleus 
RNA-seq has been used to define at least 75 distinct classes of 
brain cells (Hodge et  al., 2019). As genetic variants can have 
divergent effects on different cell types (Nott et al., 2019; Corces 
et  al., 2020), the use of cell type-specific genomic data is an 
important determinant of a model’s accuracy to real world biology 
and thus its applicability to disease research.

In addition to accounting for cell type-specificity, model 
inputs have diversified in two directions, increasing either in 
input context or resolution. Considerations for the input design 
vary by purpose, as increasing the input length may, for example, 
better model the long-range relationships impacting gene 
regulation and chromosome structure. On the other hand, 
increasing input resolution may make the model more accurate, 
interpretable, and robust at a local scale. Early DL models in 
genomics were trained to predict a singular binary label 
describing the presence or absence of a peak region in the 
genomic data. However, given the great importance of continuous 
data in the interpretation of biological phenomena, more recent 
DL models of TF binding or gene expression were developed to 
make quantitative predictions that preserve shape, magnitude, 
context, and other nuanced features of genomic tracks. These 
quantitative predictions can be made in different resolutions, 
with base-resolution models outputting real value predictions at 
every location on the input sequence and lower resolution models 
making binned predictions that summarize binding or expression 
in larger sequence blocks.

Early implementations

DeepBind (Alipanahi et al., 2015), DeepSEA (Zhou and 
Troyanskaya, 2015), and Basset (Kelley et al., 2016) were three 
of the most influential early implementations of CNNs in 
genomics and all primarily focused on predicting 
transcription factor (TF) binding. The DeepBind approach 
demonstrated the applicability of CNN models for predicting 
binding affinities of TFs and RNA binding proteins (RBPs) 
using a single convolutional layer as a motif detector. 
Hundreds of single-task models were trained on one-hot-
encoded DNA sequences up to 101 bp in length, enabling 
DeepBind to outperform existing non-DL algorithms. In 
DeepSEA, CNNs were trained to predict the presence or 
absence of TF binding in 919 ChIP-seq or DNase-seq 

experiments using a 1,000-bp input DNA sequence. The 
wider input sequence length compared to DeepBind gives the 
DeepSEA model more information from which to learn, and 
the three-layered convolutional architecture enables better 
recognition of complex patterns. DeepSEA has a multi-task 
architecture, meaning it predicts TF binding simultaneously 
for all 919 tracks given one input sequence. This model 
configuration shares the same core layers across distinct 
predictions and cell types, facilitating better feature extraction 
and improving performance. With similar features to 
DeepSEA, the Basset model makes binarized predictions of 
chromatin accessibility simultaneously in 164 cell types from 
600-bp input sequences. Basset’s architecture, constructed 
with three convolutional layers and two fully connected 
layers, was one of the first to explicitly leverage cell type-
specific data to identify functional variants that may only 
have an effect in particular cell types. ISM was employed in 
all three studies to identify important sequence features and 
nominate functional variants for disease.

All three of these studies implemented kernel analysis 
methods to study the larger sequence motif patterns learned by 
the models. Specifically, researchers matched the weights of 
convolutional filters with TF position weight matrices (PWMs) 
that represent the sequence patterns with which a TF prefers to 
bind. The CNN filters from DeepBind and Basset were shown to 
correspond to known TF motifs, revealing that the models 
captured genuine biological properties of TF binding in the CNN’s 
extracted features. However, the patterns discovered through this 
method become less viable as more layers are added in deeper 
neural networks because larger genomic patterns may 
be represented across weights in multiple layers.

To affirm the utility of DL in genomics, these new models 
must be  compared to the previous leading architecture for 
modeling cell type-specific gene regulatory patterns, the gapped 
k-mer support vector machine (gkm-SVM) models (Ghandi 
et  al., 2014). SVMs are a subclass of ML algorithms that are 
trained on support vectors (data points on the boundary of a 
classification task) to determine the best hyperplane to separate 
classes in multidimensional space. K-mers are sequence patterns 
of length k, while gapped k-mers are an optimized version of 
k-mers that allow for spaces between included nucleotides and 
better overall modeling of the loose syntax exhibited by TF 
binding. Given a set of input sequences, gkm-SVM models have 
been used to accurately distinguish between sequences in peak 
and nonpeak regions. The deltaSVM method enables 
interpretation of gkm-SVM models to evaluate the effect that 
SNPs have on chromatin accessibility and has been used to 
accurately identify functional variants potentially relevant to 
disease (Lee et al., 2015).

When benchmarked against gkm-SVM models, DeepSEA and 
Basset both substantially improved in terms of classification 
accuracy. As mentioned above, despite this improvement in 
performance, these first CNN models only output a singular 
binary or real-value label that collapses the characteristics of a 
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peak into a much less informative and interpretable form. We refer 
readers to previous reviews (Angermueller et al., 2016; Eraslan 
et  al., 2019; Zou et  al., 2019) for more information regarding 
earlier implementations of DL in genomics.

Transcription factor binding and 
chromatin accessibility

The modeling of TF binding and chromatin accessibility 
continues to be a focal point of DL research in genomics with 
important applications in understanding disease. The 
popularization of sequencing technologies such as DNase-seq, 
ATAC-seq, and ChIP-seq have enabled the genome-wide analysis 
of gene regulation, and sequence-based DL models have sought to 
harness the vast amount of generated data to learn the cell type-
specific gene regulatory grammar or “cis-regulatory code” that 
governs the binding of TFs and the activity of regulatory elements. 
After models have been trained with such genomic data, 
researchers can predict the effect of a genetic variant by testing 
both alleles of a SNP separately and identifying any differences in 
the models prediction based on that single-base change. Large 
variant effects are presumed to correlate with functional alterations 
of TF binding, which can theoretically influence gene expression 
and downstream cellular phenotypes.

As the field matures, approaches for improving model 
performance and applicability to disease have inevitably diverged. 
The most straightforward path for further model development has 
been to refine previous methodologies, and many newer studies 
built off of the groundwork laid by the three aforementioned early 
studies. In the context of disease variants, the multitask DeepSEA 
architecture was extended to investigate the impact of noncoding 
mutations in autism spectrum disorder (ASD) (Zhou et al., 2019), 
while an extended version of Basset outperformed the original 
model and successfully predicted causal variants in the Clinvar 
archive and the Simons Simplex Collection (SSC) cohort (Pei 
et al., 2021).

The same research group that produced Basset developed 
Basenji, an optimized version of the previous architecture that 
further expanded the input sequence length from 1,000 bp to 
~131 kb and makes a ~ 32-kb-long qualitative prediction of the 
epigenomic profile with a 128-bp resolution rather than a simple 
binary value (Kelley et al., 2018). This improvement was achieved 
with dilated convolutional layers that could better capture long-
range dependencies, and although the two models cannot 
be directly compared, Basenji outperformed Basset on binarized 
chromatin accessibility predictions. Similarly, the authors behind 
DeepSEA recently published an expanded version of the original 
multitask model in the form of Sei (Chen et al., 2022), which 
increased the input context from 1,000 bp to 4 kb and predicts 
probabilities for 21,907 cis-regulatory profiles instead of 919. With 
regard to the downstream applications, Sei was used to map 
sequences into clusters of particular regulatory roles defined as 
sequence classes. This classification method successfully associated 

disease mutations with cell type-specific regulatory mechanisms, 
presenting a more organized and inherently interpretable picture 
of the gene regulatory landscape than other DL methods.

An alternative philosophy appeared in 2021 with the 
publication of the BPNet model (Avsec et al., 2021b). Instead 
of trying to capture more distal elements with a longer input 
DNA sequence, a CNN was designed to make base-resolution 
(nucleotide-level) predictions of TF binding. The 
computational tradeoff of limiting the input DNA sequence 
allows BPNet to learn the subtle effects on TF binding that 
can only be captured at a per-base-pair output, such as the 
precise set of base pairs bound by a given TF. Trained on 
chromatin immunoprecipitation (ChIP)-nexus data of 
pluripotency-related TFs in mouse embryonic stem cells, 
BPNet was used to uncover more nuanced rules of the motif 
syntax, including the influence of TF binding motifs and their 
arrangement on TF binding. Using DeepLIFT (Shrikumar 
et  al., 2019), backpropagated importance scores were 
generated to explain which bases were most important in the 
model’s prediction. Although this research did not focus on 
the disease applicability of BPNet, the highly accurate and 
interpretable modeling of TF binding enabled by BPNet has 
the potential to be applied to the prioritization of causative 
variants for diseases such as AD. For instance, the 
ChromBPNet model was adapted from the BPNet protocol to 
train with scATAC-seq chromatin accessibility data and used 
to prioritize functional variants for ASD (Trevino et  al., 
2021). In this ASD study, DeepSHAP (Lundberg and Lee, 
2017), a method similar to DeepLIFT, was used to calculate 
feature attribution scores for each base in the input DNA 
sequence and identify the disrupted TF motif responsible for 
the change in chromatin accessibility.

Cell type-specific predictions have always been important for 
disease research, as seen in DeepSEA and Basset, and continued 
research in this direction is crucial for a better understanding of 
disease etiology in different cell states. To address the issue of data 
scarcity in cell type-specific TF binding profiles, transfer learning 
techniques have been employed to incorporate reference cell type 
chromatin features in training (Quang and Xie, 2019) or augment 
pre-trained models using gene expression data from a target cell 
type (Nair et  al., 2019). To extract the maximum amount of 
information from scarce cell type-specific genomic data, instead 
of just using the reference sequence during training, studies have 
integrated whole genome sequencing techniques to train models 
on the actual personalized genetic sequence, exposing the model 
directly to experimentally accurate variant effects (Hoffman et al., 
2019). Combining both of these ideas for disease-specific research, 
the DeepMEL2 architecture (Atak et al., 2021), which includes a 
convolutional layer with weights initialized to the JASPAR 
database’s TF PWMs and a bidirectional LSTM layer, was trained 
to learn the relationship between whole genomes and matched 
chromatin and gene expression data in melanoma cell lines. 
DeepMEL2 outperformed DeepSEA and Basset with robust 
predictions of functional variant effect in melanocytic samples, 
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confirming the importance of developing “matched” epigenomic 
models with disease-relevant data to achieve greater 
predictive power.

As an orthogonal method of predicting regulatory element 
activity, MPRA-DragoNN (Movva et al., 2019) is trained using 
massively parallel reporter assay (MPRA) data instead of the more 
traditional approach using ATAC-seq, DNase-seq, or ChIP-seq. 
MPRA experiments measure the expression output of candidate 
cis-regulatory sequences that, with the help of a minimal 
promoter, control the expression of a barcoded transcript. MPRAs 
were originally designed to estimate the gene regulatory activity 
of a given sequence but it has become increasingly common to use 
these assays to test the differential regulatory activity between 
reference and variant sequences. This makes MPRAs especially 
useful tools for variant effect prediction because researchers can 
test the impact of thousands of SNPs simultaneously in vitro. 
Because the MPRA-DragoNN model is exposed directly to variant 
sequences during training, the relationships it learns should 
be more robust and sensitive to variant effects. MPRA-DragoNN 
is a multi-task CNN architecture with performance on par with 
the replicate concordance of the MPRA datasets used in training. 
Model performance was validated using independent MPRA 
datasets, and the DeepLIFT interpretation algorithm was used to 
generate importance scores that identified putative TF binding 
sites. As next-generation sequencing technologies continue to 
improve and diversify, their incorporation into training pipelines 
as new input or output data modalities will increase the predictive 
power and performance of new DL models.

Other researchers have experimented with implementing 
entirely new model architectures to model TF binding. 
Transformer models were recently developed for the task of 
predicting the presence or absence of promoter regions, 
transcription factor binding sites (TFBSs), and splice sites from 
short 512-bp sequences (Ji et al., 2021). After tokenizing input 
sequences into k-mers, the DNABERT model self-supervises a 
pre-training paradigm that develops attention networks and can 
then be fine-tuned to specific downstream genomic tasks (such as 
predicting TF binding, identifying promoter regions, or predicting 
splice sites), showing promise with functional variant 
effect prediction.

Gene expression

Many aspects of cellular state and activity are encoded in the 
gene expression landscape. By understanding which genes are 
expressed and at what levels, one can make predictions about what 
a cell is doing and how it might respond to a given stimulus. 
Therefore, developing a better fundamental understanding of the 
mechanisms controlling gene expression can provide key insights 
into cellular and disease physiology. More specifically, using DL 
models to study the effects of noncoding variants on gene 
expression has the power to unveil biological pathways causing 
cell state disruptions in neurodegenerative diseases. However, 

gene expression is not solely reliant on the gene’s coding sequence 
and is still driven by gene regulatory elements that may 
be hundreds of kilobases away. Thus, while models of TF binding 
primarily evaluate the ability of TFs to bind at a certain location 
within the genome, models of gene expression are challenged with 
incorporating more input information and context to capture the 
many regulatory interactions associated with a given loci. The 
rapid adoption of sequencing technologies such as RNA-seq and 
cap analysis of gene expression (CAGE-seq) has enabled the 
proliferation of diverse DL applications for predicting gene 
expression. The optimization of these DL models has required a 
particular focus on expanding input context, innovating with 
multi-modal or multi-task architectures, using diverse data 
representations, and improving distal information flow. Just as 
previously described with chromatin accessibility models, variant 
effect prediction can be conducted with gene expression models 
using sequence perturbations or backpropagation-based 
interpretation methods.

As a result of the similarities between genomic data for 
chromatin accessibility and gene expression, some model 
architectures can be  used interchangeably between the two 
applications. For instance, the Basenji model was also applied to 
cell type-specific CAGE gene expression profiles, and when 
interpreted with saliency maps, was able to identify enhancer and 
promoter regions driving gene expression predictions (Kelley 
et al., 2018). Basenji2 refined the training paradigm implemented 
in Basenji by incorporating both human and mouse genomic data 
in a multi-task framework, improving model performance on 
unseen and variant sequences (Kelley, 2020). Apart from Basenji, 
ExPecto (Zhou et al., 2018) is another popular DL approach used 
for predicting gene expression. The three-part framework of 
Expecto consists of a CNN extended from the DeepSEA 
architecture, a spatial transformation module for dimensionality 
reduction of the CNN’s output features, and a linear regression 
model to make the final tissue-specific gene expression prediction. 
Expecto captures a similar input range as Basenji, with 20 kb to 
either side of the center, successfully identifies causal variants 
associated with disease, and is interpretable with ISM. Though not 
outperforming ExPecto, Xpresso (Agarwal and Shendure, 2020) is 
another CNN-based framework that predicts mRNA abundance 
using only DNA sequence information after training on only 
RNA-seq data. Xpresso vastly outperforms other models in its 
class and is well-suited for the development of accurate cell type-
specific models in the context of limited data availability.

The most recent landmark study in DL genomics research 
came with the publication of the Enformer model (Avsec et al., 
2021a), an advanced CNN-transformer architecture used to 
model sequence-to-expression relationships with the potential to 
replace the current state-of-the-art CNN models. Enformer’s 
attention layers capture the importance of every pairwise 
comparison between the 128-bp resolution bins of the input and 
enable it to increase information flow between distal regulatory 
elements up to 100 kb away (compared to CNN model receptive 
fields of only 20 kb). Whereas convolutional filters and RNN 
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memory rely on neighboring input elements, the multi-head 
attention layers in Enformer uniquely enable information flow 
independent of sequence proximity, thus significantly improving 
feature prioritization of regulatory networks such as enhancer-
promoter interactions over long distances. Enformer consistently 
outperformed state-of-the-art CNN models Basenji2 (Kelley, 
2020) and ExPecto (Zhou et al., 2018) with predictions of gene 
expression, chromatin accessibility, TF binding, and histone 
modifications as well as variant effect prediction on eQTLs and 
MPRA data and the interpretation of enhancer-gene association. 
By leveraging attention layers to enable greater input lengths and 
information flow, Enformer sets a new standard for DL in 
genomics. As sequencing data and computational power increase, 
Enformer-inspired models will only continue to grow. Pairing the 
Enformer model architecture with potential optimizations for 
increased resolution, transfer learning for cell type-specific tasks, 
and 3D chromatin conformation will be key to further improving 
DL-based variant effect prediction.

3D chromatin interactions

While the aforementioned methods try to model the activity 
of gene regulatory elements or the levels of gene expression using 
the DNA sequence alone, the genome exists within the 3D space 
of the nucleus where regulatory elements and target genes that are 
separated by thousands of base pairs can be brought into close 
proximity by the formation of chromatin loops. Three-
dimensional chromatin conformation plays a critical role in the 
establishment and maintenance of proper gene expression and 
thus cell identity. The dysregulation of enhancer-promoter loops 
can lead to disease-specific alterations in gene expression (Krijger 
and de Laat, 2016) and has been observed in the context of aging 
and in AD (Winick-Ng and Rylett, 2018). Specifically, it has been 
shown that noncoding SNPs can either alter enhancer activity 
within enhancer-promoter loops (Kikuchi et  al., 2019) or the 
contact frequency of chromatin loops altogether (Greenwald et al., 
2019), both impacting downstream gene expression. For instance, 
the variant rs636317, previously nominated by ML algorithms for 
variant prioritization (Corces et al., 2020), has been identified as 
a CTCF binding QTL that disrupts one CTCF anchor of a 
chromatin loop and upregulates the MS4A6A gene implicated in 
AD (Novikova et  al., 2021b). More broadly, the disruption of 
CTCF binding and chromatin conformation by alteration of the 
CTCF binding motif has been widely observed in cancer 
(Katainen et al., 2015; Guo et al., 2018; Liu et al., 2019), suggesting 
that similar mechanisms may be at play for non-somatic variants 
affecting other diseases. Moreover, the recent discovery of the 
MGMT risk gene for AD in women was made possible through 
the use of Hi-C data which enabled the discovery of relevant SNPs 
and DNA methylation sites (Chung et  al., 2022). Many DL 
approaches have been used in recent years to predict 3D genome 
interactions from DNA sequence with CNN or CNN-LSTM 
architectures, including enhancer-promoter relationships (Singh 

et al., 2019), CTCF/cohesin insulator loops (Trieu et al., 2020), and 
probabilities of chromatin interaction between pairs of open 
chromatin regions (Cao et al., 2021). However, these models rely 
only on local sequence regions and lose broader chromosome 
context. A new style of DL framework has emerged that instead 
predicts the qualitative contact map that represents degrees of 3D 
chromatin interaction between genome regions of a continuous 
sequence collected by Hi-C and micro-C experiments. This 
approach appears to have a greater applicability to disease 
genomics research because chromatin interactions and effects can 
be  analyzed and perturbed in the actual genome location 
and context.

The Akita model (Fudenberg et  al., 2020) consists of a 
two-part architecture to learn the relationship between a DNA 
sequence and Hi-C or Micro-C contact frequency maps. A “trunk” 
derived from the Basenji CNN architecture first processes a 1-Mb 
input sequence into a profile of 2048-bp bins. Then, a “head” block 
transforms those 1D representations into a 2D matrix that is 
passed through 2D convolutional layers and maps to a matrix of 
its 3D contact points. Using ISM, the authors were able to verify 
the importance of CTCF and other motifs for 3D chromatin 
conformation and predict the effects of genetic variants on 3D 
chromatin interactions.

The authors of DeepC (Schwessinger et al., 2020) harnessed 
the power of transfer learning by first training a CNN on 
chromatin accessibility data and attaching those same 
convolutional weights to more dilated convolutional and fully 
connected layers to predict chromatin interactions from Hi-C 
data. In this study, the pairwise interaction Hi-C data were 
encoded as matrices where the columns were 5-kb bins and the 
rows were distances from the given bin up to 1 Mb. Using saliency 
maps, the authors of this study similarly found that CTCF sites 
and active promoters were most important for the 
model’s prediction.

Most recently, the Orca framework (Zhou, 2022) proposed a 
new CNN-based architecture with a multi-resolution encoder and 
cascading decoder that makes predictions at nine resolutions 
ranging from 4 to 1,024 kb on window sizes from 1 to 256 Mb. This 
unique architecture captures an input range of up to 256 Mb (more 
than the largest human chromosome), which enables multi-
resolution predictions that capture various features from 
chromatin compartment formation at the chromosome scale to 
topologically associating domains at the sub-1-Mb scale to TF 
binding motifs at the nucleotide scale. Orca successfully 
reproduced variant effect predictions of structural variants that 
agreed with experimental results and nominated CTCF and cell 
type-specific TF motifs as primary contributors to local structural 
remodeling (<1 Mb). It also significantly outperformed Akita on 
the Micro-C dataset that was used to train both models. From this 
diverse set of DL methods modeling TF binding, gene expression, 
and chromatin conformation, neurodegenerative disease 
researchers can effectively model the genomic landscape of 
disease-implicated cell types and evaluate GWAS risk loci to 
nominate candidate causal variants for AD.
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Noncoding variant prediction

Although these DL models are not necessarily optimized for 
the task of variant effect prediction, post-hoc interpretability 
methods are used to derive variant annotations and impact 
scores. To validate that the candidate causal SNPs nominated by 
these DL models accurately represent real variant effects and are 
suitable for the task at hand, model predictions are compared 
with a form of “ground truth” generally derived from sequencing 
or other genomic data. The most common method of assessing 
the real-world compatibility of DL predictions is by testing a 
model’s ability to reproduce quantitative trait loci (QTLs), which 
are statistical representations of differential activity between the 
two alleles of a variant at specific locations within the genome. 
This approach is observed in many of the aforementioned 
studies, including Enformer, Expecto, Basenji, DeepMEL2, 
Akita, Sei, and DeepSEA just to name a few. Strong prediction 
accuracies observed with respect to QTLs demonstrate the 
capabilities of these DL approaches to indirectly but accurately 
model functional variant effects. Alternatively, researchers can 
also compare their model’s predictions against MPRA data that 
directly test sequence perturbation effects in vitro, as seen in 
Enformer, Expecto, and MPRA-DragoNN. However, as MPRAs 
do not test the effects of variants within the correct genomic 
context, the use of MPRA data as a ground truth may not 
be  ideal. Given the high accuracies achieved through these 
validation methods, it has become clear that DL models of 
genomic relationships are highly capable of understanding 
differential regulatory activity between alternate and reference 
sequences in genetic variants.

Machine learning in 
neurodegenerative disease 
genomics research

This section discusses the implementation of machine 
learning techniques within neurodegenerative disease research. 
We first give a brief background on clinical ML implementations, 
which dominate the vast majority of AD-related ML research. 
Next, we discuss the current studies at the intersection of ML, 
genomics, and AD research that are applicable to variant effect 
prediction and prioritization, a domain still in its infancy. 
Although we primarily center our discussion around AD, we also 
demonstrate that the same methodologies are transferrable to 
other neurodegenerative disease contexts such as Parkinson’s 
disease or ALS. Lastly, we elaborate on the current state of AD 
genomics research, with a particular focus on using the available 
data to study neurodegeneration using the aforementioned 
general DL genomics methods.

In current neurodegeneration research, ML has been 
primarily used for clinical applications, namely the stratification 
of patients and the development of new treatments. DL approaches 
have been used to facilitate AD diagnosis using inputs consisting 

of (i) patient gene expression and DNA methylation data (Park 
et al., 2020), (ii) blood gene expression data (Lee and Lee, 2020), 
(iii) MRI neuroimaging data, clinical test results, and genetic SNP 
profiles (Venugopalan et al., 2021), and (iv) clinical, demographic, 
and MRI data (Hashemifar et al., 2022). Many of these ML studies 
in AD attempt to distinguish between disease cases and controls 
and are trained using data derived from the Alzheimer’s Disease 
Neuroimaging Initiative (Mueller et  al., 2005) or the publicly 
available data sets (Clough and Barrett, 2016). Apart from earlier 
AD diagnosis, ML has also been used to identify biomarkers and 
causative variants that increase risk of disease (Jo et al., 2022), 
classify potential AD risk genes (Huang et al., 2021), and nominate 
existing therapeutics that could potentially be repurposed for AD 
given a list of disease-relevant molecular mechanisms (Rodriguez 
et al., 2021). However, our focus in this review remains on the use 
of ML/DL methods to predict the functional effects of genetic 
variants. We refer readers to a recent review (Myszczynska et al., 
2020) for a more extensive coverage of clinical-focused 
applications of ML in AD research.

Sequence-based ML genomics techniques applicable to 
variant effect prediction are slowly being adopted into the field of 
neurodegeneration and AD research. In a recent study that sought 
to profile the epigenomic landscape of brain cell types for 
Alzheimer’s and Parkinson’s disease research, gkm-SVM machine 
learning classifiers were trained on each of the 24 single-nucleus 
ATAC-seq clusters to distinguish between transposase-accessible 
and inaccessible chromatin (Corces et al., 2020). When used to 
predict the functional effects of candidate Alzheimer’s and 
Parkinson’s disease SNPs in GWAS loci that had passed a tiered 
multi-omic analysis process, the gkm-SVM classifiers were able to 
nominate new functional noncoding variants and associated genes 
for further investigation. GkmExplain importance scores were 
used to interpret model predictions and discover motifs 
responsible for the allelic impact of the SNPs. Replacing the 
gkm-SVMs with more complex and historically more accurate DL 
models may unlock greater predictive power for the discovery of 
functional disease variants. Nevertheless, variants identified by 
this study (such as rs636317, rs6733839, and rs13025717) and 
their associated molecular pathways have been further analyzed 
and functionally validated using myeloid QTL data (Novikova 
et al., 2021b), CRISPR/Cas9-mediated deletion of an enhancer 
region (Nott et al., 2019), and MPRAs (Cooper et al., 2022). This 
biological validation of ML-nominated SNPs demonstrates the 
value of ML as a powerful method for variant prioritization with 
real-world applicability.

Many fine-mapping studies have also used DL models as part 
of their scoring paradigm to rank candidate GWAS variants by 
their likelihood of causing neurodegenerative disease. In a meta-
analysis of noncoding variants from recent AD GWASs, DeepSEA 
and SpliceAI prediction scores of differential TF binding and 
splicing were incorporated as one of many metrics for variant 
prioritization (Schwartzentruber et al., 2021). DeepSEA scores 
were influential in the identification of many top variants 
nominated by this study, such as rs268120 in the SPRED2 locus, 
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rs6733839 in the BIN1 locus, rs7920721 in the ECHDC3 locus, 
and rs1870137 in the TSPAN14 locus, making determinations of 
gene regulatory changes such as decreased DNase 1 
hypersensitivity or reduced TF binding of USF, HNF4, FOXA1, 
and SP1 factors. The SpliceAI DL model (Jaganathan et al., 2019) 
was also used to detect splicing changes and nominated rs4311 in 
the ACE locus and rs4147918 in the ABCA7 locus. A similar fine-
mapping study on Parkinson’s disease GWAS loci (Schilder and 
Raj, 2022) used the DeepSEA, Basenji, and IMPACT (Amariuta 
et al., 2019) DL models to functionally annotate consensus SNPs. 
For instance, Basenji and IMPACT functional effect scores were 
able to differentiate between rs11088398 and rs2835757 at the 
DYRK1A locus and determine the causal variant, supporting the 
observations from enhancer-promoter and peak analysis 
methods. Another recent study that sought to identify risk 
variants in amyotrophic lateral sclerosis (ALS) used a CNN 
model trained on annotated epigenetic features (DHS mapping 
data, histone modifications, target gene functions, and TF 
binding sites) to prioritize variants by their functional effect 
(Yousefian-Jazi et  al., 2020). The CNN models were used to 
prioritize over 8 million SNPs from an ALS rare variants dataset 
and identified 1,326 putative risk variants for disease. The 
subsequent fine-mapping analysis nominated two noncoding 
variants along with their gene targets. The variant rs2370964 was 
a positively predicted CNN SNP that disrupts CTCF binding in 
the enhancer site of CX3CL1, a gene associated with microglial 
toxicity in ALS. Another CNN-nominated variant, rs3093720, 
decreases the expression of the TNFAIP1 gene and affects the 
NR3C1 TF associated with heightened stress signaling 
in neurodegeneration.

These early implementations demonstrate the increasing 
importance of DL methods for variant prioritization in 
neurodegenerative disease research (Novikova et  al., 2021a). 
Working orthogonal to the statistical methods and traditional 
analytical methods for noncoding variant prioritization, DL has 
the potential to assist the variant fine-mapping process on a large 
scale, particularly with the influx of new risk loci from recently 
conducted GWASs.

More specifically, although the field of neurodegeneration 
research still largely relies on non-ML techniques to analyze 
genomics data, the eventual integration of DL methods will 
be crucial for studying the effect of noncoding variants without 
being hindered by resource or time limitations of biological 
experiments. Large consortia aimed at mapping out the 
transcriptional and gene regulatory landscapes of the human 
genome have generated vast amounts of sequencing data for 
brain cell types implicated in neurodegenerative diseases. These 
consortia projects include the ENCODE Project (Moore et al., 
2020), the Roadmap Epigenomics Consortium (Kundaje et al., 
2015), the Human Cell Atlas (Regev et al., 2017), the Human 
BioMolecular Atlas Program (Snyder et al., 2019), the Allen 
Brain Atlas (Sunkin et  al., 2013), and Tabula Sapiens (The 
Tabula Sapiens Consortium, 2022), just to name a few. At the 
same time, recent AD GWASs continue to discover new genetic 

loci associated with the disease (de Rojas et al., 2021; Wightman 
et al., 2021; Bellenguez et al., 2022), showing the continued need 
for accurate methods for variant effect prediction and candidate 
variant prioritization. All of the lessons learned from the 
disease-independent DL genomics methods developed in the 
last few years can be applied to AD-specific data and use cases. 
By training those models on relevant cell type-specific 
sequencing data, researchers can implement appropriate 
downstream model interpretation algorithms and conduct 
functional variant effect prediction to identify candidate causal 
variants from a larger list of GWAS variants and nominate 
potential biological pathways for neurodegenerative diseases. 
This paradigm has recently been applied to many other diseases 
and conditions, including autism spectrum disorder (Trevino 
et  al., 2021), coronary artery disease (Turner et  al., 2022), 
congenital heart disease (Ameen et  al., 2022), and ocular 
diseases (Wang et al., 2022). All of these studies successfully 
used sequence-based ML models to model genomic 
characteristics and prioritize functional noncoding variants, 
indicating that similar methods have strong potential in the 
field of neurodegeneration.

We believe that as the field continues to grow, it is important 
to dedicate efforts toward not just clinical ML implementations 
that focus on diagnosing patients and developing therapeutics but 
also a more fundamental understanding of the genetic and 
epigenetic drivers of neurodegenerative diseases. We reiterate that 
DL models are uniquely positioned to synthesize patterns and 
salient information from the growing amounts of next-generation 
sequencing data to conduct variant analysis on the new risk loci 
nominated by GWASs. The continued development of new 
optimized model architectures, data processing techniques, and 
model interpretability methods will likely improve our ability to 
investigate the genetic basis of AD and associated dementias from 
the perspective of noncoding variation and give us a better 
understanding of AD pathogenesis.

Current limitations and future 
directions

Challenges associated with DL in disease genomics can 
be split between data science and model engineering. Within the 
data science category, genomic data scarcity and data partitioning 
techniques remain the most pertinent obstacles. Next generation 
sequencing technologies simply have not been around long 
enough to collect sufficient data for all relevant cell types and 
genomic features. However, with the proliferation of large 
consortia projects, it seems likely that data scarcity issues will 
be  resolved within the next decade. Of course, new genomic 
technologies will continue to be developed and the state-of-the-art 
will continue to evolve but we believe that the current wave of 
single-cell and multi-omic focused data generation will provide 
an ideal foundation on which to build and train highly effective 
DL models. In the meantime, transfer, multi-task, and multimodal 
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learning approaches have shown the greatest potential to address 
data scarcity as addressed above. On the other hand, data 
preprocessing and partitioning are notoriously challenging with 
complex genomic data, and those issues are unlikely to be resolved 
with the advent of new sequencing technologies. The technical 
logic behind many of these difficulties, which lies outside the 
scope of this review, is explained in a guide on the common pitfalls 
with using ML in genomics (Whalen et al., 2022).

As model architectures and development methods continue to 
diversify, sustained growth in the field will require efficient 
frameworks for model creation, exchange, and comparison. For 
example, DL tools can assist genomic research by directing researchers 
to functional variants with which more specialized experiments can 
be  designed, saving both time and resources. To bridge the gap 
between disease genomics and DL research, bioinformaticians need 
tools to either (1) develop DL models themselves or (2) use 
pre-trained DL models to investigate biological phenomena such as 
the effect of genetic variants. For the first scenario, the AMBER 
framework is a fully-automated platform that trains CNNs to learn 
genomic regulatory features from sequence with accuracies on par 
with existing expert-designed models (Zhang et al., 2021). AMBER’s 
integrated downstream applications include prioritization of 
functional genetic variants and determination of disease enrichment, 
highly useful functions for the discovery of disease variants. For the 
second scenario, the Kipoi repository fills the need for a model 
sharing platform (Avsec et al., 2019). At the time of this publication, 
Kipoi contains over 2,200 models in 35 model types that users can 
easily access through a common API and apply to downstream tasks 
such as variant effect prediction and prediction interpretation. The 
standardized approach to using models in Kipoi holds great potential 
for comparing model performance, training new models through 
transfer learning, and developing compound models that sequentially 
incorporate predictive models of elementary biological phenomena 
(i.e., combining models of TF binding and 3D chromatin 
conformation). The sheer number of different model designs can 
quickly cloud what actually improves model performance in a 
specialized scenario and what development paths are worth exploring. 
To address this confusion, researchers developed the GOPHER 
model evaluation framework that provides a paradigm to isolate 
drivers of performance improvements (Toneyan et  al., 2022). 
GOPHER can benchmark the predictive performance of binary and 
quantitative models, assess the robustness of predictions to noise and 
minor input perturbations, compare interpretability protocols, and 
evaluate a model’s applicability to functional variant effect  
prediction.

Discussion

The current state-of-the-art DL variant effect prediction 
pipelines have relied on GWASs to nominate an initial superset of 
candidate SNPs. From there, variants are scored and prioritized by 
DL algorithms and associated interpretation methods that 
nominate a subset of SNPs that are predicted to have a functional 

effect. This functional effect ranking paradigm varies on a case-
by-case basis but generally derives a score from the predicted 
difference between both alleles of the variant. While successful, 
these methods have two major areas for improvement.

First, GWASs generally do not have the statistical power to 
identify rare or structural variants that may have equally important 
implications for disease (Auer and Lettre, 2015). For example, in AD, 
rare variants and structural variants account for an equal share of 
disease susceptibility as common variants (Ridge et al., 2013). Rare 
variants, defined arbitrarily as those variants occurring in less than 1% 
of a population, often have stronger effect sizes than common variants 
(Bomba et al., 2017), making research in this direction critical. Recent 
AD family-based studies have identified novel rare variants associated 
with AD (Prokopenko et al., 2021), but such statistical methods are 
limited to similar family-based studies where increased statistical 
power can be  obtained with a comparatively smaller number of 
individuals. Expanding such analyses to the broader AD population 
will require hundreds of thousands of whole genomes accompanied 
by in depth clinical and neuropathological assessments. In the interim, 
DL variant effect prediction methods are well-suited for prioritizing 
rare variants for downstream functional validation. Of course, without 
the statistical association of a variant with a disease, the primary 
challenge with functionalizing rare variants will be proving that they 
play an important role in disease pathogenesis. However, given the 
clear understudied role that rare variants play in disease susceptibility, 
we  view this as an ideal application of DL with a ripe future in 
identifying novel disease biology.

Critically, after DL methods are used to refine a list of 
potentially impactful variants, downstream functional validation 
of model predictions must be conducted to verify variant effects 
in real biological contexts. Such functional validation has taken 
many forms in the literature which range in the level of 
confidence they provide for the specific variant effects. Because 
noncoding gene regulatory elements are highly context- and cell 
type-specific, we argue that it is imperative to perform functional 
validation in as close to the correct in vivo context as possible. 
However, the lack of strong cross-species conservation of most 
noncoding regions (Yue et al., 2014) makes it nearly impossible 
to perform such validation experiments using rodent models of 
AD. Moreover, while DL methods are able to prioritize large 
numbers of variants, we are still often left with more variants 
than could be tested one-by-one. To this end, high-throughput 
MPRA experiments can be used to test both alleles of a variant 
in a relevant in vitro cell type context and can be applied to 
thousands of variants in a single experiment (Mulvey et  al., 
2021). Such MPRAs provide an orthogonal method for 
functional interpretation of noncoding variant effects. However, 
these assays are performed outside of the correct genomic 
context, either episomally or via random lentiviral integration, 
making such assays an imperfect but important proxy for 
understanding the effects of noncoding variants. With current 
technologies, perhaps the most rigorous and convincing 
validation of variant effects comes from scarless single-base 
editing, whereby a single base is genetically engineered to create 
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a fully isogenic system that can be  used to test downstream 
changes in gene regulation, gene expression, and cellular 
phenotypes caused by a specific variant. When performed in 
induced pluripotent stem cells which can be differentiated into 
many different disease-relevant cell types, such genetic 
engineering experiments can identify the sufficiency of 
noncoding variants in the correct genomic context. While DL 
holds great promise to nominate disease-relevant genetic 
variants, variant validation in realistic biological contexts is a 
crucial step before any genomics-derived research can arrive at 
clinical applications and a necessary process to resolve questions 
surrounding the disease applicability of DL models.

As genomic DL approaches all attempt to model slightly different 
aspects of one larger human biological system, combining models 
represents an attractive approach for defining the genomic features 
driving disease pathogenesis. For instance, the effect of a noncoding 
variant can first be predicted with a model of TF binding and then 
traced through models of 3D genome organization and gene 
expression to uncover the enhancer-promoter interactions and the 
associated downstream gene that might mediate the disease-relevant 
phenotype caused by the variant. Modeling complex biological 
phenomena in smaller steps and linking models post-development 
has the potential to greatly increase current model utility to disease  
research.

In the next decade, we envision that the field of neurodegeneration 
research will find it important to bridge the gap between genomics 
research and clinical treatments. At a time when neurodegenerative 
diseases still lack effective therapies, we  believe that pinpointing 
genomic pathways and targets driving disease phenotypes will 
be  crucial for accurate patient prognostication, sub-selection of 
patients most likely to respond to specific treatments or clinical trials, 
and the development of novel therapeutic approaches. With the 
advent of greater computational power and new algorithmic 
developments alongside the growth of next generation sequencing 
technologies, deep learning has the potential to revolutionize disease 
genomics research, not only with variant effect prediction but also 
broadly with predicting patient outcomes and prioritizing high 
potential clinical trials.
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