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The APOE ε2, ε3, and ε4 alleles differentially impact various complex diseases

and traits. We examined whether these alleles modulated associations of 94

single-nucleotide polymorphisms (SNPs) harbored by 26 genes in 19q13.3

region with 217 plasma metabolites using Framingham Heart Study data.

The analyses were performed in the E2 (ε2ε2 or ε2ε3 genotype), E3 (ε3ε3

genotype), and E4 (ε3ε4 or ε4ε4 genotype) groups separately. We identified 31,

17, and 22 polymorphism-metabolite associations in the E2, E3, and E4 groups,

respectively, at a false discovery rate PFDR < 0.05. These entailed 51 and 19

associations with 20 lipid and 12 polar analytes. Contrasting the effect sizes

between the analyzed groups showed 20 associations with group-specific

effects at Bonferroni-adjusted P < 7.14E−04. Three associations with glutamic

acid or dimethylglycine had significantly larger effects in the E2 than E3 group

and 12 associations with triacylglycerol 56:5, lysophosphatidylethanolamines

16:0, 18:0, 20:4, or phosphatidylcholine 38:6 had significantly larger effects in

the E2 than E4 group. Two associations with isocitrate or propionate and three

associations with phosphatidylcholines 32:0, 32:1, or 34:0 had significantly

larger effects in the E4 than E3 group. Nine of 70 SNP-metabolite associations

identified in either E2, E3, or E4 groups attained PFDR < 0.05 in the pooled

sample of these groups. However, none of them were among the 20 group-

specific associations. Consistent with the evolutionary history of the APOE

alleles, plasma metabolites showed higher APOE-cluster-related variations in

the E4 than E2 and E3 groups. Pathway enrichment mainly highlighted lipids

and amino acids metabolism and citrate cycle, which can be differentially
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impacted by the APOE alleles. These novel findings expand insights into the

genetic heterogeneity of plasma metabolites and highlight the importance

of the APOE-allele-stratified genetic analyses of the APOE-related diseases

and traits.

KEYWORDS

metabolomics, genetic heterogeneity, APOE ε2 allele, APOE ε3 allele, APOE ε4 allele,
pleiotropy

Introduction

The chromosome 19q13.3 harboring genes, such as APOE
(apolipoprotein E), NECTIN2 (nectin cell adhesion molecule
2), TOMM40 (translocase of outer mitochondrial membrane
40), and APOC1 (apolipoprotein C1) is involved in important
physiological and pathological processes. The polymorphisms in
this region have been implicated in Alzheimer’s disease (AD),
cardiovascular and cerebrovascular pathologies, serum lipids,
blood cells count, blood proteins, diabetes, obesity, longevity,
etc. (MacArthur et al., 2017). In particular, the ε2, ε3, and ε4
alleles of APOE gene differentially impact the risk of various
complex diseases and traits. AD, coronary artery disease (CAD),
and lifespan are the most prominent examples, on which the ε4
allele has adverse effects whereas the ε2 allele confers beneficial
effects compared with the ε3 allele (Belloy et al., 2019; Wolters
et al., 2019). APOE encodes a lipoprotein, which plays key roles
in lipid metabolism peripherally and in the central nervous
system (CNS) (Stelzer et al., 2016). APOE alleles were found to
differentially impact lipid metabolism (Wolters et al., 2019). The
ε4 allele is considered as an atherogenic allele, which may be
associated with increased risk of CAD and ischemic stroke via
elevated serum levels of total cholesterol (TC) and low-density
lipoprotein cholesterol (LDL-C), while ε2-carriers have lower
plasma levels of TC and LDL-C and decreased risks of CAD and
carotid artery atherosclerosis (Lehtimäki et al., 1990; Ilveskoski
et al., 2000; Natarajan et al., 2016; Belloy et al., 2019; Karjalainen
et al., 2019; Loika et al., 2021). In CNS, APOE is mainly involved
in cholesterol homeostasis required for myelinization, neuronal
membranes integrity and survival, and synaptogenesis. The ε4-
encoded protein is maladaptive leading to changes in lipid
metabolism and β-amyloid (Aβ) aggregation in brain due to
its increased production and decreased clearance (Barberger-
Gateau et al., 2011; Liu et al., 2013; Yamazaki et al., 2019).

In recent years, metabolomics analysis has emerged
as a powerful strategy to identify molecular signatures of
complex diseases and traits. The identified disease-metabolite
associations can serve as novel disease biomarkers, which
are important particularly for early diagnosis of late-onset
diseases (Bäckström et al., 2003; Sabatine et al., 2005; Lewis
et al., 2008; Gueli and Taibi, 2013; Laaksonen, 2016; Yanai,

2017; McGarrah et al., 2018; Socha et al., 2020; Piubelli et al.,
2021). In addition, metabolites, as intermediate phenotypes,
may mediate the genetic bases of complex disorders (Andreou
et al., 2015). Interestingly, the differential impacts of APOE
alleles have been reported in metabolomics studies as well.
For instance, the healthy ε4 carriers were found to have
significantly higher myoinositol-to-creatine and choline-
to-creatine ratios compared to ε3ε3 subjects (Gomar et al.,
2014). In a study of patients with early stages AD, eight
metabolites, mostly glycerophospholipids (e.g., cardiolipins,
lysophosphatidylcholines, and lysophosphatidylethanolamines)
involved in lipid metabolism, could reliably discriminate
ε4-carriers from non-carriers. All eight metabolites had
lower serum levels in the ε4-carriers (Peña-Bautista
et al., 2020). The differential impacts of ε2 and ε4 alleles
on serum lipid metabolites have been also emphasized
elsewhere (Karjalainen et al., 2019). As another example,
while cortical Aβ aggregation was nominally associated
with arachidonic acid, an ω-6 polyunsaturated fatty
acid (PUFA), in ε4 non-carriers (P < 0.03), the similar
association was non-significant in the ε4 carriers (P < 0.57)
(Hooper et al., 2017). Randomized controlled trials have
suggested that ε4 allele may alter the fate of ω-3 both
in the brain (Arellanes et al., 2020) and in the periphery
(Tomaszewski et al., 2020). For Instance, by examining the
brain responses to high-dose supplementation (2.1 g/day
over a 6-month period) with docosahexaenoic acid, Arellanes
et al. (2020) found that the ε4 negative subjects had higher
cerebrospinal fluid (CSF) levels of ω-3 docosahexaenoic
acid and eicosapentaenoic acid compared to the ε4 positive
subjects.

The APOE 19q13.3 locus is a genetically heterogenous
region within which complex haplotype structures, interactions,
and compound genotypes have been identified (Templeton
et al., 2005; Yu et al., 2007; Lescai et al., 2011; Lutz et al.,
2016; Babenko et al., 2018; Kulminski et al., 2018, 2020a,b,
2021; Zhou et al., 2019; Nazarian et al., 2022a,b). For
instance, linkage disequilibrium (LD) and association studies
have highlighted complex genetic structure in this locus that
are statistically different between AD-affected and unaffected
subjects (Kulminski et al., 2018, 2020a,b). In addition, stratified
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analyses have identified sets of interactions and compound
genotypes in the APOE locus of the ε2- and ε4-carriers, which
may modify the effects of these alleles on AD risk and, to
some extent, justify their incomplete penetrance (Nazarian et al.,
2022a,b).

While previous studies have provided valuable insights into
the genetic associations of the plasma metabolites (Mittelstrass
et al., 2011; Rhee et al., 2013; Shin et al., 2014; Demirkan
et al., 2015; Draisma et al., 2015; Krumsiek et al., 2015; Long
et al., 2017; Lotta et al., 2021), little attention has been devoted
to their genetic heterogeneity in the APOE 19q13.3 locus.
Given the genetic complexity of this locus, we hypothesized
that the APOE alleles may modulate associations of the
regional single-nucleotide polymorphisms (SNPs) with plasma
metabolites. Therefore, stratified analyses of SNP-metabolite
associations in distinct groups of subjects carrying different
APOE alleles/genotypes may reveal group-specific associations,
which have not been identified in the non-stratified analyses. We
examined associations between SNPs within theAPOE locus and
217 plasma metabolites using data from the Framingham Heart
Study (FHS) in three groups of subjects (i.e., E2: ε2ε2 and ε2ε3;
E3: ε3ε3; and E4: ε3ε4 and ε4ε4). Our analyses revealed novel
associations with plasma metabolites, mostly with lipid analytes.
Two subsets of associations identified in ε2- or ε4-carriers were
group-specific with significantly different effects between the
groups under consideration.

Materials and methods

Study participants

We used the metabolite profiling data collected in the
FHS Offspring cohort (Feinleib et al., 1975) and the genetic
data from the FHS Candidate Gene Association Resource
(CARe). The metabolite profiling data provides information on
blood concentrations of 217 polar [e.g., amino acids, biogenic
amines, carnitine, carbohydrates (e.g., pentose, hexoses, and
disaccharides), nucleosides, etc.] and lipid [e.g., diacylglycerols
(DAGs), triacylglycerols (TAGs), cholesterol esters (CEs),
phosphatidylcholines (PCs), lysophosphatidylcholine (LPC),
lysophosphatidylethanolamines (LPEs), and sphingomyelins
(SMs)] analytes measured by a liquid chromatography/mass
spectrometry (LC/MS) platform. The measured metabolites
have been reported as normalized unit-free values (Feinleib
et al., 1975; Rhee et al., 2013). To analyze the genetic
heterogeneity at the APOE 19q13.3 locus, study participants
were divided into three groups based on their APOE genotypes:
(1) E2: subjects with ε2ε2 or ε2ε3 genotype, (2) E3: subjects with
ε3ε3 genotype, and (3) E4: subjects with ε3ε4 or ε4ε4 genotype.
The FHS study designated APOE genotypes of participants and
their cognitive status based on the neurologic exam criteria
(McKhann et al., 1984, 2011). Table 1 summarizes the basic T
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demographic and clinical information about these 1798 subjects.
The study participants were of Caucasian ancestry.

Genotype data quality control

The low-quality genetic data including SNPs with minor
allele frequencies less than 1%; SNPs with P-values less than
1E−06 in Hardy-Weinberg equilibrium test; SNPs or subjects
with missing rates larger than 5%; and SNPs, subjects, or families
with Mendel error rates larger than 2% were first filtered out
using PLINK package (Purcell et al., 2007). All SNPs in the
APOE 19q13.3 locus (within 1 Mb up-/downstream of the APOE
gene) available on the FHS CARe array were included. After
quality control (QC) process, 94 SNPs (mapped to 26 genes from
CEACAM22P to RSPH6A) were retained for our analyses.

Association analysis

Stage one: Association study
Additive genetic models were fitted to identify the

associations between the log-transformed concentrations of
each of the 217 metabolites and the 94 SNPs in the APOE
19q13.3 locus using GCTA package (Yang et al., 2011). Following
(Rhee et al., 2013; Huang et al., 2020), the fitted linear regression
models were adjusted for sex, birth year, smoking history, body
mass index (BMI), diastolic blood pressure (DBP), systolic
blood pressure (SBP), fasting blood glucose (FBG), TC, LDL-
C, high-density lipoprotein cholesterol (HDL-C), triglycerides
(TG), estimated glomerular filtration rate (eGFR), and AD status
of subjects, as well as the top five principal components of
genetic data [obtained by the GENESIS R package (Conomos
et al., 2015)] as fixed-effects covariates. Since the FHS dataset
has a family-based design, the family structure was included
as a random-effects covariate. Significant associations were
identified at a false discovery rate (FDR) adjusted PFDR < 0.05
(Benjamini and Hochberg, 1995; Storey et al., 2022). Stage one
analyses were separately performed in each of the three APOE-
stratified groups of participants (i.e., E2, E3, and E4 sub-groups).

Stage two: Group-specific associations
For any SNP significantly associated with a given metabolite

in each of the E2, E3, and E4 groups, the effects (i.e., beta
coefficients) of the SNP were contrasted between E2 and E3
groups, E4 and E3 groups, and E2 and E4 groups using a
Chi-square test (Allison, 1999):

χ2
=

(
b1 − b2

)2

SE2
1 + SE2

2

where, b1 (SE1) and b2 (SE2) are the beta coefficients (their
standard errors) for a given SNP in the two contrasted groups.

Any SNP with significantly different effects between the
two contrasted groups was considered to have a group-specific
association. Significant findings from the chi-square tests were
determined at a Bonferroni-adjusted threshold considering the
number of tested SNPs.

Since the E2, E3, and E4 groups had different sample sizes,
which would impact the statistical power of corresponding
association analyses, the group-specific associations were
further evaluated by fitting interaction models (Gogarten et al.,
2019) in which the APOE status, SNP, and SNP-by-APOE status
were included as fixed-effects variables along with the covariates
mentioned in stage one analyses. A significant interaction term
for any SNP corroborated its group-specific association.

Pathway enrichment

MetaboAnalyst (v5.0) webtool (Pang et al., 2021) was used
to identify KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways (Kanehisa and Goto, 2000) enriched by metabolites
that had significant associations in stage one of genetic analyses.

Results

Association analysis

Despite the importance of controlling for confounding
effects of the cardiovascular and metabolic syndrome-related
risk factors on genetic associations of plasma metabolites
(Rhee et al., 2013; Huang et al., 2020), the inclusion of
several covariates in the fitted model may increase the risk
of multicollinearity. That is, if the variables of interest (here
94 SNPs in the APOE 19q13.3 locus) have high collinearity
with other covariates, their estimated parameters would be
unstable due to a potential decrease in the effective sample
sizes (and statistical powers) and inflated standard errors
(Johnston et al., 2018; Tomaschek et al., 2018). By examining
potential multicollinearity, we found that these SNPs were
weakly correlated with the other covariates (Pearson squared
correlation coefficient r2 ranged from 1.30E−40 to 5.36E−02)
and had small variance inflation factors (VIFs) of 1.01 to 1.36.
These results implied minor impacts from multicollinearity on
the estimated parameters, which can be safely ignored (Johnston
et al., 2018; Tomaschek et al., 2018).

Our analyses identified 70 SNP-metabolite associations
(with 20 lipid metabolites and 12 polar analytes) at PFDR < 0.05
in the E2, E3, and E4 groups (Supplementary Tables 1–
3). Most (51) of the identified associations were with lipid
analytes, such as TAGs, LPEs, PCs, CEs, and SMs, many
of which contained PUFAs [i.e., fatty acids (FAs) with two
or more double bonds]. Several associations were also with
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non-lipid soluble analytes (e.g., amino acids, disaccharide,
nucleosides, etc.).

Analyzing the E2 group, we found 31 SNP-metabolite
associations (Supplementary Table 1). 27 of them were with
lipid analytes including associations of SNPs mapped to BCL3
and APOE with multiple TAGs (i.e., 54:4, 54:5, 54:6, 56:3, 56:4,
and 56:5); mapped to APOC2, APOC4, and CLPTM1 with three
LPEs (i.e., 16:0, 18:0, 20:4); and mapped to CKM with PC 38:6.
In addition, 4 SNP-metabolite associations were identified for
non-lipid analytes including associations of rs10402271 (BCAM
variant) with disaccharide sucrose (containing one glucose
and one fructose molecules), rs10413089 (APOC2 variant)
and rs10421404 (CLPTM1 variant) with amino acid glutamic
acid, and rs16979759 (CKM variant) with dimethylglycine, a
derivative of the amino acid glycine.

A total of 17 SNP-metabolite associations were identified
in the E3 group (Supplementary Table 2), most (14) of which
were with lipid analytes including associations of SNPs mapped
to APOC2, APOC4, and CLPTM1 with CE 20:3, PC 32:0,
and mapped to APOC4/APOC4-APOC2 with TAG 56:4. In
addition, rs4884 (CKM variant) and rs11083777 (EML2 variant)
were associated with amino acids aspartate and asparagine,
respectively, and rs16939 (DMPK variant) was associated with
xanthosine, a purine nucleoside.

Our analyses identified 22 SNP-metabolite associations in
the E4 group (Supplementary Table 3). 10 of them were
with lipid analytes including associations of SNPs mapped to
NECTIN2 with three PCs (i.e., 32:0, 32:1, and 34:0); mapped
to NECTIN2 and CKM with two SMs (i.e., 18:0 and 22:0,
respectively); and mapped to NECTIN2, CKM, DMPK, and
DMWD with various TAGs (i.e., 50:2, 52:1, 56:6, and 58:11).
Several associations with amino acids derivatives were also
identified including associations of five SNPs (i.e., rs1871046,
rs12610605, rs8106922, rs440446, and rs769450) mapped to
NECTIN2, TOMM40, and APOE with ADMA (asymmetric
dimethylarginine), a derivative of the amino acid L-arginine;
and the association of rs12709889 (APOC2/APOC4-APOC2
variant) with the thyroid gland hormone thyroxin, a derivative
of the amino acid tyrosine. Also, three SNPs mapped to
NECTIN2 (i.e., rs519113, rs2075642, and rs387976) were
associated with two intermediates of the tricarboxylic acid
(TCA) cycle, i.e., aconitate and isocitrate. Finally, rs12609547
(RELB variant) was associated with uridine, a pyrimidine
nucleoside and rs1064725 (APOC1 variant) was associated with
propionate, a conjugate base of a short-chain FA.

Most of the lipid metabolites with significant associations in
the E2, E3, and E4 groups contained ω-3 (e.g., eicosatetraenoic
acid and docosahexaenoic acid) or ω-6 (e.g., arachidonic acid)
PUFAs in their structures (Wishart et al., 2007). These were
more abundant in the E2 group than in the other two groups
[i.e., TAGs 54:4, 54:5, 54:6, 56:3, 56:4, 56:5, LPE 20:4, PC 38:6
(E2 group); TAG 56:4, CE 20:3 (E3 group); and TAGs 50:2, 56:6,
58:11 (E4 group)].

APOE SNPs
The ε2-encoding SNP, rs7412, was associated with TAGs

54:5, 54:6, 56:3, and 56:4 in the E2 group. In contrast, no
associations were identified for the ε4-encoding SNP, rs429358,
in the E4 group at PFDR < 0.05.

SNPs overlaps between groups
Several SNP associations were significant in both E2 and

E3 groups (i.e., rs5157, rs2288912, rs7257468, rs3760627, and
rs2239375), although their associations were with different lipid
analytes. These SNPs were associated with LPEs 16:0, 18:0, and
20:4 in the E2 group but with CE 20:3 and PC 32:0 in the E3
group. Also, rs12709889 was associated with PC 32:0 in the E3
group and with thyroxine in the E4 group.

Linkage disequilibrium
In each group there are metabolites associated with multiple

SNPs. Such associations may not be merely attributed to
the potential LD between SNPs. For instance, while rs7412,
rs17728272, and rs2965174 are associated with TAGs 54:5 and
54:6 in the E2 group, rs7412 is not in noticeable LD with
these two SNPs (r2

= 0.01, P < 0.1595 and r2
= 0.0365,

P < 0.0072, respectively). As another example, rs1871046 and
rs2075642, which are among significant SNPs in the E4 group,
are in significant LD (r2

= 0.1281, P < 0.0001), however, the
former is associated with ADMA and the latter is associated with
isocitrate. Supplementary Tables 4–6 display the LD measures
(r2 in lower-left triangle and D′ in upper-right triangle) among
the identified SNPs in the three analyzed groups. The SNP-pairs
with r2 > 0.1 are in significant LD at P < 0.0001 in the CEU
population (i.e., Utah Residents with Northern and Western
European Ancestry) (Machiela and Chanock, 2015).

Group-specific associations
The Chi-square test to compare the effect sizes (i.e., beta

coefficients) of SNPs between the three analyzed groups revealed
that among associations identified in the E2 group, three SNPs-
amino acids associations [i.e., the associations of rs10421404
(APOC2/APOC4-APOC2 variant) and rs10413089 (CLPTM1
variant) with glutamic acid, and rs16979759 (CKM variant)
with dimethylglycine] were significantly different between the
E2 and E3 groups at the Bonferroni-adjusted significance level
of 7.14E−04 (i.e., 0.05/70). The effect directions of these three
SNPs were opposite in the two groups, indicating opposite
patterns of associations between their minor/major alleles
and metabolites concentrations in the E2 and E3 groups. In
addition, the effects of these SNPs were nominally different
between the E2 and E4 groups. Also, 12 associations with
lipid analytes, comprising of 6 SNPs [i.e., the association of
rs2965101 and rs17728272 (BCL3 variants) with TAG 56:5;
rs7257468 (APOC2/APOC4-APOC2 variant), rs3760627, and
rs2239375 (CLPTM1 variants) with LPEs 16:0, 18:0, and 20:4;
and rs123187 (CKM variant) with PC 38:6] were significantly
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TABLE 2 Group-specific associations identified in the E2 group.

Phenotype Gene SNP LOC EA E2 E3 E4 E2 vs. E3 E2 vs. E4

Beta SE P-value Beta SE P-value Beta SE P-value χ2 P-value χ2 P-value

TAG 56:5 BCL3 rs2965101 19:44734556 C 0.096 0.028 7.27E−04 −0.002 0.015 9.14E−01 −0.068 0.028 1.57E−02 9.274 2.32E−03 16.786 4.18E−05

TAG 56:5 BCL3 rs17728272 19:44737114 T 0.094 0.028 7.15E−04 −0.009 0.015 5.76E−01 −0.055 0.030 6.41E−02 10.455 1.22E−03 13.404 2.51E−04

Glutamic acid APOC2,
APOC4-
APOC2

rs10421404 19:44949588 A −0.271 0.079 6.03E−04 0.029 0.039 4.47E−01 0.026 0.064 6.88E−01 11.653 6.41E−04 8.472 3.61E−03

LPE 16:0 APOC2,
APOC4-
APOC2

rs7257468 19:44949887 T −0.143 0.041 4.17E−04 −0.027 0.019 1.53E−01 0.046 0.029 1.17E−01 6.760 9.32E−03 14.270 1.58E−04

LPE 18:0 APOC2,
APOC4-
APOC2

rs7257468 19:44949887 T −0.144 0.043 8.17E−04 0.000 0.017 9.90E−01 0.063 0.032 4.93E−02 9.615 1.93E−03 14.890 1.14E−04

LPE 20:4 APOC2,
APOC4-
APOC2

rs7257468 19:44949887 T −0.131 0.036 2.97E−04 −0.022 0.015 1.46E−01 0.041 0.023 7.78E−02 7.648 5.68E−03 15.999 6.34E−05

Glutamic acid CLPTM1 rs10413089 19:44952331 C −0.271 0.079 6.03E−04 0.030 0.039 4.44E−01 0.026 0.064 6.88E−01 11.670 6.35E−04 8.472 3.61E−03

LPE 16:0 CLPTM1 rs3760627 19:44953923 C −0.136 0.040 7.30E−04 −0.027 0.019 1.48E−01 0.047 0.029 1.10E−01 5.995 1.43E−02 13.469 2.43E−04

LPE 18:0 CLPTM1 rs3760627 19:44953923 C −0.136 0.043 1.45E−03 −0.001 0.017 9.76E−01 0.063 0.032 4.78E−02 8.648 3.27E−03 13.954 1.87E−04

LPE 20:4 CLPTM1 rs3760627 19:44953923 C −0.127 0.036 4.05E−04 −0.021 0.015 1.69E−01 0.040 0.023 8.21E−02 7.366 6.65E−03 15.344 8.96E−05

LPE 16:0 CLPTM1 rs2239375 19:44956594 C −0.136 0.040 7.30E−04 −0.027 0.019 1.50E−01 0.040 0.029 1.71E−01 6.020 1.41E−02 12.508 4.05E−04

LPE 18:0 CLPTM1 rs2239375 19:44956594 C −0.136 0.043 1.45E−03 −0.001 0.017 9.52E−01 0.062 0.032 5.34E−02 8.583 3.39E−03 13.746 2.09E−04

LPE 20:4 CLPTM1 rs2239375 19:44956594 C −0.127 0.036 4.05E−04 −0.020 0.015 1.82E−01 0.034 0.023 1.43E−01 7.459 6.31E−03 14.215 1.63E−04

PC 38:6 CKM rs123187 19:45327689 A 0.101 0.029 5.23E−04 0.000 0.011 9.91E−01 −0.029 0.021 1.67E−01 10.509 1.19E−03 13.090 2.97E−04

Dimethylglycine CKM rs16979759 19:45327876 G 0.813 0.196 3.36E−05 −0.102 0.058 8.06E−02 0.148 0.082 7.14E−02 20.013 7.69E−06 9.778 1.77E−03

E2, ε2ε2 and ε2ε3 subjects; E3, ε3ε3 subjects; E4, ε3ε4 and ε4ε4 subjects; SNP, single-nucleotide polymorphism; LOC, location of SNP in the chromosome:base-pair format based on Human Genome version 38 (hg38); EA, effect allele; EAF, effect
allele frequency; Beta and SE, effect size and its standard error; χ2 , Chi-square statistic corresponding to the comparison of effect sizes; TAG, triacylglycerol; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine. More details are given in
Supplementary Table 1. Bold p-values indicate significant findings.
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different between the E2 and E4 groups at P < 7.14E−04. Again,
the effect directions of these SNPs were opposite in the two
groups. Also, the effects of these SNPs were different between the
E2 and E3 groups at nominal significance. The magnitudes of the
estimated effects for these 15 SNPs were larger in the E2 group
than the E3 or E4 group (Table 2 and Supplementary Table 1).

None of the SNP-metabolite associations identified in
the E3 had group-specific effects in the chi-square test
(Supplementary Table 2).

Among the SNP-metabolite associations identified in the E4
group, the associations of rs8105340 (NECTIN2 variant) with
PCs 32:0, 32:1, and 34:0; rs519113 (NECTIN2 variant) with
isocitrate; and rs1064725 (APOC1 variant) with propionate were
significantly different between the E4 and E3 groups at the
Bonferroni-adjusted level of P < 7.14E−04. The directions of
effects for the associations of rs8105340 with the aforementioned
three PCs were opposite in the E3 and E4 groups, however,
the two other SNPs had the same directions of effects in the
two groups. In addition, the effects of SNPs in the latter two
associations were different between the E2 and E4 groups at
nominal significance. The magnitudes of the estimated effects
for these five SNPs were larger in the E4 group than the E3 group
(Table 3 and Supplementary Table 3).

The interaction analyses corroborated the group-specific
associations as all 20 interaction terms (i.e., SNP-by-APOE
status terms) were significant (Supplementary Table 7). Of
note, the interaction of 18 SNPs with APOE status attained the
Bonferroni-adjusted P < 7.14E−04. Two exceptions were the
associations of rs123187 with PC 38:6 (significantly different
between E2 and E4 groups) and rs519113 with isocitrate
(significantly different between E3 and E4 groups) whose
interactions with the APOE status attained P < 8.49E−04 and
P < 1.13E−03, respectively.

None of the effects of the group-specific SNPs were
significantly different between males and females in chi-square
tests (P > 0.05), indicating minimal impacts of biological sex on
the identified associations.

Supplementary Table 8 and Supplementary Figure 1
summarizes information on the statistical distributions of
metabolites with group-specific associations. The means of these
12 metabolites were significantly different from zero indicating
that the identified associations were not pointing to the technical
measurement variability, which may particularly be important
in the case of low-abundance metabolites. Also, their means
were not different among the E2, E3, and E4 groups (except
TAG 56:5), as indicated by overlapping confidence intervals for
a given metabolite in these groups.

Association analysis in the pooled E2, E3, and
E4 sample

Among 70 SNP-metabolite associations identified in the E2,
E3, or E4 group, only 9 associations attained PFDR < 0.05 in
the pooled sample of these groups (Supplementary Table 9). T
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They included associations of rs7412 with TAGs 56:3 and
56:4 (primarily identified in the E2 group), rs5157, rs5167,
rs2288912, rs7257468, rs3760627, and rs2239375 with CE
20:3, and rs12721109 with TAG 56:4 (primarily identified in
the E3 group). None of them were among the 20 group-
specific associations.

The pooled sample analyses (Supplementary Table 10)
showed that the APOE SNPs (rs429358 and rs7412)
were not associated with 32 metabolites of interest at
PFDR < 0.05, except for the associations of rs7412 with
TAGs 56:3 and 56:4.

APOE-allele-specific clustering of the
identified associations

SNPs associated with plasma metabolites were mapped to
8, 6, and 10 genes in the E2, E3, and E4 groups, respectively.
Of them, 2, 1, and 4 genes were uniquely linked to these
groups, respectively Figure 1 [plotted using Gviz R package
(Hahne and Ivanek, 2016)] and Supplementary Table 11. The
clustering analysis of associations of lipid and polar metabolites
separately showed that 6, 3, and 4 genes from the APOE region
were associated with lipid metabolites in the E2, E3, and E4
groups, respectively. Of them, 2 and 3 genes were exclusively
linked to the E2 and E4 groups, respectively. In addition,
SNPs mapped to 6, 3, and 7 genes were associated with polar
analytes in the E2, E3, and E4 groups, respectively, of which the
associations of 2, 2, and 4 genes were unique in these groups,
respectively.

Pathway enrichment

The KEGG pathways enriched by lipid and polar
metabolites, which were associated with APOE region
SNPs in the E2, E3, or E4 groups, are displayed in
Supplementary Figures 2–7. Most of the identified
genetic associations (Supplementary Tables 1–3) were with
lipid metabolites containing saturated and unsaturated
FAs in their structures (Wishart et al., 2007) involved
in lipid metabolism pathways, such as biosynthesis of
unsaturated fatty acids, fatty acid elongation, and fatty acid
degradation pathways (Supplementary Figures 2, 4, 6).
Due to small number of polar metabolites with significant
associations (3, 3, and 6 metabolites in the E2, E3, and
E4 groups, respectively), most of pathways enriched by
them (Supplementary Figures 3, 5, 7) contained only one
metabolite. The top enriched pathways containing two or
more polar analytes included D-glutamine and D-glutamate
metabolism (E2 group); alanine, aspartate and glutamate
metabolism, and aminoacyl-tRNA biosynthesis (E3 group);
tricarboxylic acid cycle (TCA, also known as citrate cycle),
and glyoxylate and dicarboxylate metabolism (E4 group)
(Table 4).

Discussion

The APOE alleles differentially contribute to several
complex diseases and traits. We performed stratified univariate
analysis on the associations of 94 SNPs in the APOE gene
cluster with 217 available plasma metabolites, to understand
how APOE alleles may modify these associations. Our analyses
revealed 31, 17, and 22 SNP-metabolite associations in the E2,
E3, and E4 groups, respectively (Supplementary Tables 1–3).
Of these 70 associations, 51 were with 20 lipid metabolites
and 19 with 12 polar analytes. None of these associations
were previously reported in samples not stratified by APOE
alleles at the genome-wide (P < 5E−08) or suggestive-effect
(5E−08 ≤ P < 5E−06) significance levels (Mittelstrass et al.,
2011; Rhee et al., 2013; Shin et al., 2014; Demirkan et al., 2015;
Draisma et al., 2015; Krumsiek et al., 2015; Long et al., 2017;
Lotta et al., 2021).

We reviewed the GWAS catalog to identify links between
metabolite-associated SNPs and other phenotypes (MacArthur
et al., 2017). In addition to AD, we uncovered extensive
associations with lipid traits. In the E2 group, rs10402271
was previously associated with TC, LDL-C, and HDL-C and
rs10421404 was linked to LDL-C. Additionally, the ε2 encoding
rs7412 showed extensive pleiotropy with TC, LDL-C, HDL-C,
TG, apolipoprotein B (Apo-B), apolipoprotein A1 (Apo-A1),
and lipoprotein (a). In the E3 group, we found rs12721109 was
previously associated with TC, LDL-C, TG, Apo-B, Apo-A1,
and lipoprotein (a). Furthermore, rs5167 showed associations
with HDL-C and TG. In the E4 group, GWAS have identified
associations of rs12610605 and rs1064725 with TG, rs519113
with HDL-C, rs8106922 with TC and LDL-C, and rs769450 with
TC, LDL-C, Apo-B, and lipoprotein (a).

Interestingly, we found the effects of 15 SNP-metabolite
associations for nine SNPs in the E2 group were significantly
different between the E2 and E3 groups (3 associations) or the
E2 and E4 groups (12 associations) (Table 2 and Supplementary
Tables 1, 7). The former three associations were linked to two
polar analytes (glutamic acid and dimethylglycine), whereas the
latter 12 were linked to lipid analytes. Of these 12 associations,
six were with LPE 20:4, PC 38:6, and TAG 56:5, which included
ω-3 or ω-6 PUFAs in their structures (Wishart et al., 2007).
In the E4 group, we found five SNP-metabolite associations for
three SNPs with significantly different effects between the E4 and
E3 groups (Table 3 and Supplementary Tables 3, 7). Three SNP-
metabolite associations were with phosphatidylcholines, and the
other two were with isocitrate and propionate polar analytes.
None of these group-specific SNP-metabolite associations were
significant in the pooled sample of the E2, E3, and E4 groups.
The group-specific associations indicate genetic heterogeneity
of plasma metabolites in the APOE 19q13.3 locus, which is in
line with our previous studies that demonstrated complex LD
structure differentially affects AD risk in this locus (Kulminski
et al., 2018, 2020a,b; Nazarian et al., 2022a,b). Therefore, we
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FIGURE 1

APOE-allele-specific clustering of genes identified for all metabolites, lipid metabolites, and polar metabolites. Panel (A) shows the distribution of –log (p-value) of Alzheimer’s disease-associated
SNPs at genome-wide (i.e., P < 5E–08) and suggestive-effect (i.e., 5E–08 ≤ P < 5E–06) significance levels in the 19q13.3 region [chromosomal positions are based on Human Genome version 38
(hg38) and shown in mega base-pair format]. Panel (B) shows the location of genes in this locus. Panels (C–E) show metabolite-by-gene associations for polar, lipid, and all metabolites in the E2 (ε2ε2
and ε2ε3 subjects), E3 (ε3ε3 subjects), and E4 (ε3ε4 and ε4ε4 subjects) groups.
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TABLE 4 Top pathways enriched by non-lipid metabolites in the E2, E3, and E4 groups.

Metabolite set Total Hits P-value q-value

E2

D-Glutamine and D-glutamate metabolism 6 2 3.88E−05 3.26E−03

E3

Alanine, aspartate, and glutamate metabolism 28 2 9.69E−04 8.14E−02

Aminoacyl-tRNA biosynthesis 48 2 2.86E−03 1.20E−01

E4

Citrate cycle (TCA cycle) 20 2 2.39E−03 2.00E−01

Glyoxylate and dicarboxylate metabolism 32 2 6.10E−03 2.56E−01

E2, ε2ε2 and ε2ε3 subjects; E3, ε3ε3 subjects; E4, ε3ε4 and ε4ε4 subjects; TCA, tricarboxylic acid.

suggest APOE-stratified analyses are essential for dissecting the
genetic architecture of complex diseases and traits sensitive to
APOE ε2/ε3/ε4 polymorphism.

Allele-specific clustering of the identified associations
showed higher genetic variation of plasma metabolites in the
E4 group compared to the E2 and E3 groups (Figure 1
and Supplementary Table 11), which may reflect evolutionary
adaptation. Indeed, it is hypothesized that the ε3 allele evolved
from the ancestral ε4 allele about 0.266 million years ago due
to adaptation to meet consumption (Finch, 2012), followed by
the ε2 allele (McIntosh et al., 2012; Huebbe and Rimbach, 2017).
Consequently, more genetic variability and less robustness are
expected in genetic networks linked to the ε4 allele compared
to the other two alleles. Interestingly, the E4-associated genetic
variations did not overlap with that of the E3 group in lipid
and polar metabolites. This observation may suggest diverging
molecular mechanisms in evolution of the ε3 allele.

Most of the identified genetic associations in our study
were with lipid metabolites, many of which contained PUFAs
(Wishart et al., 2007). Altered lipid metabolism has been
implicated in the pathogenesis of diseases whose risks are
modified by APOE ε2/ε3/ε4 polymorphism, such as AD
(Zhu et al., 2019; Castor et al., 2020; Yin, 2022) and CAD
(Freeman, 2006; Park et al., 2015; Cohain et al., 2021).
Associations with PUFA-containing metabolites were more
abundant in the E2 group than in the other two groups. PUFAs
and their derivatives mediate FA signaling and are essential for
neuron survival and function (Bazinet and Layé, 2014), and are
involved in cellular immunity and neuroinflammation (Bazinet
and Layé, 2014; Panda et al., 2022). Multiple studies have
suggested ω-3 PUFA intake or supplementation can attenuate
cognitive decline and dementia, particularly in people with sub-
optimal plasma levels (Tully et al., 2003; Schaefer et al., 2006;
Cherubini et al., 2007; Lopez et al., 2011; Yamagishi et al., 2017;
Yanai, 2017; Hooper et al., 2018). Additionally, ω-3 PUFAs may
be cardioprotective (Siscovick et al., 2017; Pizzini et al., 2018).

In addition, polar metabolites associated with APOE region
SNPs in the E2, E3, and E4 groups have been implicated in
AD (Jiménez-Jiménez et al., 1998; Selley, 2003; Dobolyi et al.,

2011; Gueli and Taibi, 2013; Kaddurah-Daouk et al., 2013; Wang
et al., 2014; Ansoleaga et al., 2015; González-Domínguez et al.,
2015; Luo et al., 2015; Syeda et al., 2018; Baumel et al., 2021)
and CAD (Valkonen et al., 2001; Bäckström et al., 2003; Lewis
et al., 2008; Tveitevåg Svingen et al., 2013; Bartolomaeus et al.,
2019; Cappola et al., 2019). For instance, AD patients had
higher CSF levels (Jiménez-Jiménez et al., 1998) and a decreased
cortical (temporal cortex) concentration (Gueli and Taibi, 2013)
of glutamate. AD was also associated with lower plasma and CSF
asparagine levels (Jiménez-Jiménez et al., 1998), as well as higher
aspartate concentration in plasma (Jiménez-Jiménez et al.,
1998) and lower aspartate concentration in the temporal cortex
(Gueli and Taibi, 2013). Furthermore, AD was associated with
increased plasma ADMA levels (Selley, 2003; Luo et al., 2015), as
well as higher xanthosine in CSF (Kaddurah-Daouk et al., 2013)
and lower xanthosine concentration in the entorhinal cortex
(Ansoleaga et al., 2015). Also, AD mouse models had elevated
propionate concentrations in the prefrontal cortex (Syeda et al.,
2018) and hippocampus (González-Domínguez et al., 2015).
In contrast, uridine dietary supplementation may slow brain
atrophy and improve cognition in early AD stages (Dobolyi
et al., 2011; Baumel et al., 2021).

Differential pathways enrichment of polar metabolite
between APOE allele groups, such as enrichment of D-glutamine
and D-glutamate metabolism in the E2 group and TCA cycle
and glyoxylate and dicarboxylate metabolism in the E4 group
(Table 4), is in line with previous reports that APOE alleles
differentially impact the efficiency of various cellular metabolic
processes (Konttinen et al., 2019; Williams et al., 2020). The
ε4 allele is associated with decreased glucose uptake, and
increased processes like lactate production from anaerobic
glycolysis, glucose flux into the pentose phosphate pathway,
gluconeogenesis (Williams et al., 2020), and utilization of PUFAs
for energy production through calcium-dependent activation
of phospholipase A2 signaling (Wang et al., 2022). Different
brain regions of cognitively normal ε4 carriers have shown
glucose hypometabolism, similar to AD patients (Reiman et al.,
1996, 2004). In addition, the ε4 allele contributes to a higher
pyruvate carboxylase to pyruvate dehydrogenase activity ratio
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and enrichment of glucose-derived carbon in TCA cycle. In
contrast, the ε2 allele, and to some extent the ε3 allele, is
associated with more efficient glucose uptake, increased glucose
flux into glycolysis and oxidative TCA metabolism, decreased
pyruvate carboxylase to pyruvate dehydrogenase activity
ratio, and increased glutaminase enzyme levels which affect
utilization of glutamine in TCA cycle (Williams et al., 2020).
These metabolic differences are critical because disruption of
mitochondrial glucose metabolism increases FAs metabolism,
which can expose neurons to oxidative damage from PUFAs
and monounsaturated FAs catabolism and increase the levels of
oxidized dicarboxylic acids (DCAs) in urine. Indeed, elevated
urinary excretion of DCAs may be a biomarker for early AD
(Castor et al., 2020).

Despite the rigor, our study has limitations. The statistical
power of our association analyses in the E2 and E4 groups was
not optimal because the frequencies of the ε2 and ε4 alleles
are substantially smaller in the general population than the
frequency of the ε3 alleles. This disproportion may increase the
number of false negatives in the E2 and E4 groups compared
with the E3 group. However, this problem is partly offset
by the significant findings in the comparative analysis of the
group-specific effects. In addition, since we were interested in
the potential modulatory effects of the APOE alleles on SNP-
metabolite associations, the E2 and E4 groups included subjects
with 1 or 2 copies of the ε2 and ε4 alleles, respectively. Future
analyses may further refine these results by stratifying these
two groups into heterozygotes and minor-allele homozygotes.
Data with substantially larger sample sizes, however, is required
for this analysis due to the small frequency of the ε2 and
ε4 homozygotes in the general population. The analysis of
independent studies will also help to replicate our findings and
generalize them to other populations. Finally, the statistical
power of our pathway enrichment analyses is not optimal
due to the small number of metabolites having significant
genetic associations.

Conclusion

Our APOE-stratified analyses of the genetic heterogeneity
of plasma metabolites identified 70 novel SNP-metabolite
associations in the APOE 19q13.3 locus. Most of these
associations were with lipid metabolites. The non-lipid
metabolites were mainly enriched in pathways related to amino
acid metabolism and the TCA cycle, which are differentially
impacted by the APOE alleles. Consistent with the evolutionary
history of the APOE alleles, the genetic architecture of plasma
metabolites in the ε4 carriers entailed higher variation in the
APOE genes cluster compared to the ε2 and ε3ε3 carriers.
Importantly, twenty of these associations were found to be
group-specific as the SNP effects were statistically different
between subjects with different APOE alleles. These findings

provide novel insights into the genetic heterogeneity of plasma
metabolites at this locus and highlight the importance of the
APOE-stratified analyses of diseases and traits differentially
impacted by APOE alleles.
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