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Manual acupuncture benignly
regulates blood-brain barrier
disruption and reduces
lipopolysaccharide loading and
systemic inflammation, possibly
by adjusting the gut microbiota
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Yiran Li3 and Zhigang Li1*
1School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing,
China, 2Department of Acupuncture, Guang’anmen Hospital, China Academy of Chinese Medical
Sciences, Beijing, China, 3School of International, Beijing University of Chinese Medicine, Beijing,
China

Background: Blood-brain barrier (BBB) disruption and gut microbiota

dysbiosis play crucial roles in Alzheimer’s disease (AD). Lipopolysaccharide

(LPS) stimulation triggered by gut microbial dysbiosis is an important

factor in BBB disruption and systemic inflammation, but the mechanism of

acupuncture regulation of BBB disruption via the gut microbiota in AD is

not clear.

Objective: The current study evaluated the effect of manual acupuncture (MA)

on BBB dysfunction in APP/PS1 mice and examined the mechanism of gut

microbiota by acupuncture in AD.

Methods: Acupoints were applied to Baihui (GV20), Yintang (GV29), and

Zusanli (ST36) in the MA group. Mice in the manual acupuncture plus

antibiotics (MAa) group received antibiotics and acupuncture, while mice in

the probiotics (P) group received probiotics. Alterations in spatial learning and

memory, the gut microbiota, tightly connected structure and permeability

of BBB, and the expression of LPS and inflammatory factors in each

group were assessed.

Results: Compared to the normal (N) group, cognitive ability was significantly

impaired, the gut microbiota composition was markedly altered, the BBB was

significantly disrupted, and the expression of LPS in serum and brain, serum

TNF-α, and IL-1β were significantly increased in the AD group (p < 0.01). These

changes were inhibited in the MA and P groups (p < 0.01 or p < 0.05), and

antibiotics reversed the benign regulatory effects of MA (p < 0.01 or p < 0.05).
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Conclusion: Manual acupuncture benignly modulated the gut microbiota

and BBB dysfunction, reduced LPS, TNF-α, and IL-1β. These effects

were comparable to probiotics. The decrease in LPS load and systemic

inflammation may play important roles in the regulation of BBB dysfunction by

acupuncture, and the gut microbiota may be a potential target for the benign

regulation of BBB disruption by acupuncture.

KEYWORDS

Alzheimer’s disease, gut microbiota, lipopolysaccharide, blood-brain barrier,
acupuncture

Introduction

Alzheimer’s disease (AD) is a form of dementia and a
neurodegenerative disease that is characterized by progressive
cognitive decline, specific neuronal apoptosis, and synaptic loss
(Ozben and Ozben, 2019). There are currently more than 44
million AD patients worldwide, and this number is expected
to triple by 2050 (Scheltens et al., 2021; Collaborators, 2022).
The number of deaths from AD has increased 71% during this
decade (Hodson, 2018). Because the aging of the population
continues to accelerate, the economic burden imposed by AD is
becoming heavier. This disease has become a worldwide public
health problem that must be addressed (Marešová et al., 2015;
Alzheimer’s Association Organization, 2021).

The main pathological features of AD are amyloid plaque
deposition and neurofibrillary tangle formation (Mahaman
et al., 2022), but an increasing number of studies found that
these two pathologies are not the only causes of cognitive
decline (Kobayashi et al., 2017; Pluta et al., 2020). BBB
dysfunction occurs throughout AD onset and progression,
and this alteration precedes the onset of AD pathology
and clinical symptoms (Erickson and Banks, 2013). The
BBB is composed of the vascular endothelium, basement
membrane, and the surrounding peduncles of pericytes and
astrocytes (Abbott et al., 2010; Yamazaki and Kanekiyo, 2017).
Neuroinflammation, oxidative stress, and glucose transport
disorder trigger alterations in endothelial function and tight
junction structures. These changes directly or indirectly
accelerate AD-related neurodegenerative changes (Aliev et al.,
2011; Shah et al., 2012; Chen and Zhong, 2013). Recent studies
found that BBB dysfunction in AD was closely related to
intestinal flora dysbiosis (Braniste et al., 2014; Fung et al.,
2017). Some gut microbial metabolites, such as short-chain
fatty acids (SCFA) (MacFabe, 2015; Colombo et al., 2021),
gamma-aminobutyric acid (GABA) (de J R De-Paula et al.,
2018), and neurotrophic factors (GDNFs) (Caraci et al., 2012),
are neurotransmitters that directly affected BBB integrity.
The expression of these transmitters are contributes to the
upregulation of brain endothelial tight junction proteins

(Hoyles et al., 2018). Aging disrupts the balance of the intestinal
microbiota, and harmful bacterial metabolites break through
the intestinal epithelium and activate peripheral immune cells
(De Maeyer and Chambers, 2021). BBB permeability ultimately
decreases via the upregulation of adhesion molecules and matrix
metalloproteinases (Parker et al., 2020). Peripheral macrophages
and immune cells infiltrate into the brain, which aggravates
neuroinflammation (Mark and Miller, 1999). Inflammation and
BBB dysfunction inhibit the metabolic activity of the brain,
which leads to the accumulation of neurotoxins (Bone, 2007).
It is worth affirming that the BBB plays an important role as a
mediator of communication between the gut microbiome and
the brain.

A previous study found that LPS stimulation caused by
gut microbial dysbiosis led to BBB dysfunction. The diversity
and composition of the gut microbiota are altered in AD
(Harach et al., 2017; Bäuerl et al., 2018). At the phylum level,
Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota
were increased. At the genus level, Helicobacter and Escherichia
were decreased (Cattaneo et al., 2017; Vogt et al., 2017; Wu
et al., 2021). Gut microbes affect central nervous system
(CNS) function via complex and diverse pathways, but the
most important pathway, is the gut-brain axis (Kowalski
and Mulak, 2019; Rutsch et al., 2020). LPS produced by
Gram-negative bacteria is closely associated with AD-related
neuroinflammation (Zhan et al., 2016; Zhao et al., 2017). LPS is
a potent proinflammatory mediator that disrupts the intestinal
epithelium, damages the intestinal mucosal barrier, and enters
the periphery to activate the immune system and induce the
release of proinflammatory factors, such as IL-1β and TNF-
α, which cause systemic inflammation (Varatharaj and Galea,
2017; Haruwaka et al., 2019). This inflammatory state rapidly
destabilizes endothelial structures (Huang et al., 2020; Wang
et al., 2021b) and leads to the translocation of proteins associated
with tightly connected structures, which greatly increases BBB
permeability (Montagne et al., 2015; Liang et al., 2020; Nehra
et al., 2022). These pathological alterations exacerbate the
infiltration of peripheral inflammatory substances into the CNS
and induce a series of cascade reactions that lead to progressive
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neurodegeneration and neuronal apoptosis (Zhao et al., 2015b;
Janyou et al., 2017).

Our previous work demonstrated that acupuncture
significantly improved spatial learning and memory in AD
model animals (Tang et al., 2020; Xu et al., 2020), exerted
anti-inflammatory effects (Jiang et al., 2018), modulated glucose
metabolism (Cao et al., 2017), and improved cerebral blood
flow by downregulating the astrocytic phospholipase A2
(PLA2)-arachidonic acid (AA) pathway (Ding et al., 2019a,b).
Our team also confirmed that acupuncture upregulated the
expression of microRNA-181a, which is closely related to the
BBB (Wu et al., 2019), and cleared amyloid β-peptide (Aβ)
via low-density lipoprotein receptor-related protein-1 (LRP1)
in the BBB (Wang et al., 2016). These results suggest that the
BBB is a key target of acupuncture in the treatment of AD.
Previous studies have confirmed that the gut microbiota was an
important target of acupuncture in the modulation of related
diseases (Jang et al., 2020; Jiang et al., 2021). However, the
effects of MA in modulating the BBB in APP/PS1 mice have
not been clarified, and the gut microbiota-related mechanisms
have not been elucidated. Therefore, changes in gut microbiota
composition, LPS levels and BBB dysfunction in APP/PS1
mice were observed to elucidate the gut microbiota-related
mechanism of MA regulation of the BBB. The current study
provides a foundation for further in-depth investigation of the
mechanism of AD and reveals the role of the gut microbiota in
the alleviating effect of MA in AD.

Materials and methods

Experimental animals

Male APP/PS1 and male C57BL/6 mice were purchased
from the Cavens Biogle Academy of Model Animal Research
(Suzhou) (animal lot: SCXK-Su-2018-0002). The mice weighed
30.0 ± 2.0 g and were 6 months old. Water and food were
provided ad libitum. All experimental procedures and animal
welfare were approved by the Animal Ethics Committee of
Beijing University of Chinese Medicine (ethics number: BUCM-
4-2021102602-4031).

Animal grouping and intervention

Eighty APP/PS1 mice were divided into four groups: the
Alzheimer’s disease group (AD), the manual acupuncture group
(MA), the manual acupuncture plus antibiotics group (MAa),
and the probiotics group (P). Twenty C57BL/6 mice were used
as the normal group (N). Based on our previous studies (Ding
et al., 2019b), the acupoints included Baihui (GV20), Yintang
(GV29), and Zusanli (ST36).

From days 1 to 7, mice in MAa group received
antibiotics by oral gavage consisting of Clindamycin

(150 mg/kg), Metronidazole (60 mg/kg), Vancomycin
(25 mg/kg), Neomycin (60 mg/kg), and Ampicillin (50 mg/kg)
(Hintze et al., 2014; Staley et al., 2017; Guida et al., 2018; Zeng
et al., 2020). Then, from days 8 to 45, mice were given ad libitum
access to water containing antibiotics (0.5 mg/ml Clindamycin,
1.0 mg/ml Metronidazole, 0.5 mg/ml Vancomycin, 0.5 mg/ml
Neomycin, and 1.0 mg/ml Ampicillin) (Lamousé-Smith et al.,
2011) and simultaneously treated with MA.

From days 8 to 45, in the MA group, disposable
sterile acupuncture needles (Beijing Zhongyan Taihe Medicine
Company, Ltd., China) were used in the acupoints for 20 min.
GV20 and GV29 were adopted the transverse puncturing at a
depth of 2–3 mm, ST36 was used the vertical puncturing at
a depth of 4 mm. During the puncturing process, needle was
twisted bidirectionally within 90◦ at a speed of 180◦/s within 90◦.
Rotating manipulation was applied every 5 min for 15 s. The
P group received probiotics (8.7 × 108 CFU/g/day, containing
Bifidobacterium animalis ssp. lactis HN019, Bifidobacterium
bifidum Bb06, Bifidobacterium animalis ssp. lactis BB-12,
Bifidobacterium animalis ssp. lactis Bi07, Bifidobacterium
longum R175, Bifidobacterium animalis B94, Lactobacillus
rhamnosus GG, L. casei Lc11, Lactobacillus helveticus R52,
Lactobacillus paracasei Lpe37, Lactobacillus plantarum R1012,
Lactobacillus reuteri HA188, Lactobacillus rhamnosus R11,
Lactobacillus acidophilus NCFM, and Streptococcus thermophiles
St21) (Beijing Zhongke Yikang Biotechnology Company Ltd.,
China) by oral gavage. The N, AD, and P groups received a
restriction of 20 min.

Animals handling and sample
collection

On the first and seventh day of the experiment, eight
mice in the MAa group were randomly selected for fresh
feces collection. Fresh feces were collected from eight mice
per group on day 46. Ten mice in each group were selected
for the Morris water maze (MWM) test from days 40 to
45. Six mice in each group were assessed using Evans blue
(EB) staining, and six mice per each group were used for
enzyme-linked immunosorbent assays (ELISA) and Western
blotting (WB). Six mice in each group were subjected to
immunofluorescent (IF) staining, and two mice in each
group were chosen for transmission electron microscope
(TEM) assays. All animals were anesthetized using sodium
pentobarbital (80 mg/kg).

Morris water maze test

Mice were subjected to the hidden platform trials for 5 days.
The platform was located in the middle of the southwest (SW)
quadrant. Each mouse had 60 s to search for the underwater
platform. If the platform was not found within 60 s, the mice
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were guided to swim up to the platform and stayed on it for
15 s. The escape latency and swimming speed were recorded
using analysis system. The platform was removed after the
hidden platform trials. Each mouse was subjected to the probe
trial for 1 day. The mouse was placed in the northeast (NE)
quadrant and the swimming path was recorded within 60 s.
The percentage of time spent and distance swam in the target
quadrant were analyzed.

16S rRNA

Fecal samples were collected and microbial DNA
was extracted. The hypervariable region V3-V4 of the
bacterial 16S rRNA was amplified by PCR using the
341F (5′CCTACGGGNGGCWGCAG-3′) and 805R (5′-
GACTACHVGGGTATCTAATCC-3′). Purified amplicons were
pooled in equimolar and paired-end sequenced on an Illumina
MiSeq PE300 platform/NovaSeq PE250 platform (Illumina,
San Diego, CA, USA) according to the standard protocols by
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China)
(Magoè and Salzberg, 2011; Edgar, 2013). The raw 16S rRNA
gene sequencing reads were demultiplexed, quality-filtered
by fastp version 0.20.0 and merged by FLASH version 1.2.7
(Chen et al., 2018). Operational taxonomic units (OTUs) with
97% similarity cutoff were clustered using UPARSE version
7.1, and chimeric sequences were identified and removed
(Edgar, 2013).

Transmission electron microscope
assay

The cortical tissues (1 mm3) were fixed in 2.5%
glutaraldehyde for 6 h. The tissue was rinsed in phosphate buffer
and fixed in 1% osmium fixative for 2 h. After dehydration in
an ethanol gradient, acetone embedding solution was added.
Samples were placed in an oven for curing, sectioned at 50 nm
on an ultrathin sectioning machine, and stained with 3% uranyl
acetate-lead citrate. Ultrathin sections were obtained and
stained with uranyl acetate (Ceafalan et al., 2019). Then, the
tightly connected structure of the BBB was observed by TEM
(FEI Tecnai Spirit, United States).

Evans blue extravasation

After anesthetization, mice were perfused with 50 mL of
4% paraformaldehyde and fixed with 1% EB (Del Valle et al.,
2008, 2009). The brains were dissected and dehydrated with
30% sucrose for 24 h. Frozen 10 µm sections were obtained
using a freezing microtome (Leica, Germany) and observed
at 40 × magnification under a laser confocal microscope

(Olympus, Japan). The following regions of interest were
analyzed: the CA1, CA2, CA3, and DG regions of the
hippocampus and vascular endothelium. The mean optical
intensity was analyzed by ImageJ.

Immunofluorescent staining

The brains were dissected, fixed in 4% paraformaldehyde for
3 h, and dehydrated in 20 and 30% sucrose for 24 h each. Frozen
6 µm sections were sliced. The primary antibodies included
rabbit polyclonal ZO-1 (1:100, Invitrogen, United States), rabbit
polyclonal occludin (1:100, Invitrogen, United States), and
mouse polyclonal LPS (1:100, Hycult Biotech, United States).
Donkey anti-rabbit IgG Alexa Fluor 488 (1:200, Abcam,
United States) and donkey anti-mouse IgG Alexa Fluor 594
(1:200, Abcam, United States) were used as the corresponding
secondary antibodies. DAPI (Abcam, United States) was added
to the sections for counterstaining. Samples were observed at
63 × magnification under laser confocal microscope (Leica,
Germany). These sections were used to analyze the mean
optical intensity of ZO-1, occludin, and LPS (Ahn et al., 2018;
Liu et al., 2021).

Western blotting

Hippocampal tissues were isolated from the brain and
samples were centrifuged. After protein concentration was
determined, samples were loaded into 8% SDS-PAGE gel
wells for electrophoresis. Separated proteins were transferred
to polyvinylidene difluoride (PVDF) membranes. After
washing, bovine serum albumin (BSA) was added for 1 h
at room temperature. Primary antibodies against ZO-1
(1:500, Invitrogen, United States), occludin (1:500, Invitrogen,
United States), and β-actin (1:500, Bioss, United States) were
added and incubated overnight at 4◦C. Secondary antibodies
conjugated to horseradish peroxidase (HRP) was added for
1 h at room temperature, and protein was detected using an
ECL luminescent solution. The density of all WB bands was
compared with that of the β-actin band, and β-actin was used as
the internal control.

Enzyme-linked immunosorbent assays

Blood samples were incubated at room temperature for
1 h and centrifuged, and the supernatant was collected. The
antigen was diluted in an coating solution and the samples
were incubated overnight at 4◦C. The wells were washed, and
a closure solution was added. The serum was diluted and added
to the well plates. Horseradish peroxidase anti-mouse IgG was
added for incubation for 2 h at room temperature. TMB reaction
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solution was added, and termination solution was mixed after
reaction in a dark room. The concentration of LPS, TNF-α, and
IL-1β were recorded.

Statistical analysis

Statistical analysis was performed using SPSS26.0 (SPSS,
Inc., Chicago, IL, United States). Data are expressed as the
mean ± SD deviation. Hidden platform trial results and
swimming speed results were analyzed by repeated-measures
analysis. A one-way ANOVA followed by the LSD multiple-
range test was used to compare normal distribution data and
the homogeneity of variance. For the non-normally distributed
data or data with heterogeneous variance, the Kruskal–Wallis
test was used. The level of significance was set at p < 0.05.

Results

Effect of manual acupuncture on
spatial learning and memory

The results of the MWM test are presented in Figure 1. The
escape latency of the N, MA, and P groups showed a decreasing
trend from days 2 to 5, but there was no significant change in
the escape latency of the AD or MAa group. The escape latency
of the AD group was significantly higher than that of the N
group from days 2 to 5 (p < 0.01). Compared to the AD group,
the escape latency of the MA and P groups was significantly
lower on days 3 to 5 (p < 0.01 or p < 0.05). Compared to the
MAa group, the escape latency of the MA and P groups were
decreased on days 3 to 5 (p < 0.01 or p < 0.05). No significant
difference in swimming speed was observed between the groups.

The percentage of time spent and distance traveled in the
target quadrant were significantly lower in the AD and MAa
groups than the N group (p < 0.01). The percentage of time
spent and distance traveled in the target quadrant in the MA
and P groups were significantly higher than the AD and MAa
groups (p < 0.01) but were lower than the Nr group (p < 0.01).
There was no significant difference in these measures between
the AD and MAa groups.

Effect of manual acupuncture on the
gut microbiota

Species diversity and composition data are shown in
Figure 2. The phyla in the MAa group before antibiotic
pretreatment primarily included Bacteroidota, Firmicutes,
Patescibacteria, Actinobacteriota, Campyiobacterota, and
Desulfobacterota, but only Proteobacteria was detected after
antibiotic administration. The Sobs index was lower in the

AD group and MAa groups than the N group (p < 0.01).
Compared to the AD group and MAa groups, the Sobs index
of the MA group and the Pr group was obviously increased
(p < 0.01). Principal coordinate analysis (PCoA) indicated
that the bacterial composition was distinct between the AD
and MAa groups and the N, MA, and P groups. The bacterial
composition was more similar between the MA group and
the P group. The heatmap of abundance at the phylum
level showed that the five phyla with high abundance were
Bacteroidota, Firmicutes, Proteobacteria, Campilobacterota,
and Actinobacteriota. The bacterial community was dominated
by Bacteroidota, Firmicutes, and Proteobacteria in the AD
group, with Firmicutes showing the highest abundance.
Bacteroidota and Firmicutes were dominant in the MA, P, and
N groups, with Bacteroidota exhibiting the highest abundance.
The bacterial community was dominated by Proteobacteria
in the MAa group. The abundances of Proteobacteria,
Bacteroidota, and Firmicutes at the phylum level in each
group were compared. The abundances of Proteobacteria and
Firmicutes in the AD group were significantly higher than
the N group (p < 0.01 or p < 0.05), and the abundance of
Bacteroidota in the AD group was significantly lower than
that in the N group (p < 0.01). Compared to the AD group,
the abundances of Proteobacteria and Escherichia–Shigella in
the MA group and the P group were significantly decreased
(p < 0.01 or p < 0.05), and the abundance of Bacteroidota was
significantly increased (p < 0.01 or p < 0.05). The abundances
of Proteobacteria and Escherichia–Shigella in the MAa group
were significantly higher than those in the N, MA, and P groups
(p < 0.01 or p < 0.05), and the abundances of Bacteroidota and
Firmicutes in the MAa group were significantly lower than the
other groups (p < 0.01 or p < 0.05).

Effect of manual acupuncture on
blood-brain barrier disruption

The results of EB extravasation are shown in Figure 3. The
EB dye was primarily radiolucent or clumped, and there was
no obvious EB exudation in the hippocampi (CA1, CA2, CA3,
and DG) or cortices of mice in the Nr group. However, different
degrees of EB exudation were observed in the MA group, the
MAa group and the P group. Significant and widespread EB
exudation was observed in the CA1 and CA3 regions and
cortex in the AD and MAa groups, and the mean optical
intensity was significantly higher in the AD and MAa groups
than the N group (p < 0.01). The mean optical intensity
of EB in the CA1 and CA3 regions and cortex in the MA
group and the P group was significantly lower than the AD
group (p < 0.01) but it remained higher than the N group
(p < 0.01). The mean optical intensity of EB in the CA1 and
CA3 regions and cortex in the MA group and the P group
was significantly lower than the MAa group (p < 0.05). No
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FIGURE 1

Results of the MWM test for each group (n = 10, mean ± SD). (A,B) Comparison of the escape latency and swimming speed of each group in the
hidden platform trials. (C,D) Comparison between the percentage of time spent and swimming distances in the SW quadrant in each group.
Compared to the N group, �p < 0.01 or p < 0.05. Compared to the AD group, •p < 0.01 or p < 0.05. Compared to the MAa group, �p < 0.01 or
p < 0.05.

FIGURE 2

Results of 16S rRNA for each group (n = 8, mean ± SD). (A) Community barplot analysis in the MAa group. (B,C) Sobs index and PcoA analysis in
each group. (D) Heatmap at the phylum level in each group. (E,F) Comparison of the abundance of phylum and genus in each group. Compared
to the N group, �p < 0.01 or p < 0.05. Compared to the AD group, •p < 0.01 or p < 0.05. Compared to the MAa group, �p < 0.01 or p < 0.05.

significant EB exudation was seen in the CA2 or DG regions,
and fluorescent images of these two regions are shown in the
Supplementary material. No significant differences in mean
optical intensity were found in the CA2 and DG regions
between the groups. Unlike the N group, the AD group and

the MAa group exhibited a severely fractured capillary basement
membrane with blurred edges and loss of tight junction
structures. The MA group and the P group exhibited a clear
and complete basement membrane with uniform density and
improved tight junction structures.
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FIGURE 3

Results of EB extravasation and TEM analysis for each group (n = 6, mean ± SD). (A) Representative images of EB exudation and endothelial
structure in each group (CA1, CA3, and cortex). Representative images of EB exudation in the CA2 and DG regions are shown in the
Supplementary material. EB is labeled with red fluorescence. The nucleus is labeled with blue fluorescence. Scale bar is 20 µm. For endothelial
structures, scale bar is 1 µm. (B) Comparison of the mean optical density in each group (CA1, CA2, CA3, DG, and cortex). Compared to the N
group, �p < 0.01 or p < 0.05. Compared to the AD group, •p < 0.01 or p < 0.05. Compared to the MAa group, �p < 0.01 or p < 0.05.

Effect of manual acupuncture on the
expression of the blood-brain
barrier-associated proteins

The results of BBB-related proteins are shown in Figure 4.
The tightly bound proteins ZO-1 and occludin were mainly
distributed in the cerebrovascular endothelium in the Nr
group and exhibited a ring-shaped distribution and tight
intercellular connections. ZO-1 and occludin expression was
more disorganized in the AD and MAa groups, a complete
ring was not observed, and the staining intensity was decreased.
However, the structure of ZO-1 and occludin was more
complete in the MA group and the P group, and the fluorescence
intensity was increased. The mean optical density and relative
expression of occludin and ZO-1 in the AD and MAa groups
were significantly lower than the N group (p < 0.01). The mean
optical density and relative expression of ZO-1 and occludin in

the MA and P groups were significantly higher than the AD and
MAa groups (p < 0.01 or p < 0.05) but lower than the N group
(p < 0.01). There were no differences in these measures between
the AD and MAa groups.

Effect of manual acupuncture on the
levels of lipopolysaccharide and
inflammatory factors

The results of fluorescence staining of LPS in each group are
shown in Figure 5. LPS was visible as an oval shape in the brain.
No LPS was observed in the N group, but a large amount of
LPS was present in the AD and MAa groups. The optical density
in the AD and MAa groups was obviously higher than the Nr
group (p < 0.01). The LPS content was decreased in the MA and
P groups, and the optical density values were also significantly
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FIGURE 4

Results of the BBB-associated proteins in each group (n = 6, mean ± SD). (A) Representative images of IF staining of Occludin and ZO-1.
Occludin and ZO-1 are labeled with green fluorescence. Scale bar is 50 µm. (B) Comparison of the mean optical density of Occludin and ZO-1
in each group. (C,D) Comparison of the relative expression of Occludin and ZO-1 in each group. Compared to the N group, �p < 0.01 or
p < 0.05. Compared to the AD group, •p < 0.01 or p < 0.05. Compared to the MAa group, �p < 0.01 or p < 0.05.

decreased compared to the AD and MAa groups (p < 0.01).
The intracerebral LPS load and serum LPS load were higher
in the AD and MAa groups than the N group (p < 0.01). The
intracerebral and serum levels of LPS were significantly lower
in the MA and P groups than the AD group and MAa group
(p < 0.01). There was no significant difference between the AD
and MAa groups. Pearson correlation analysis showed that a
significant positive correlation between brain LPS and serum
LPS levels (r = 0.872, p < 0.0001).

The concentrations of TNF-α and IL-1β in the serum were
significantly higher in the AD and MAa groups than the Nr
group (p < 0.01). The concentrations of these two inflammatory
factors were significantly lower in the MA and P groups than the
AD and MAa groups (p < 0.01 or p < 0.05).

Discussion

The MWM test is an important tool for the evaluation
of cognitive ability, and it is widely used to assess spatial
learning and memory (Tian et al., 2019). The results of the
MWM test indicated that the mice in the AD group exhibited

a significant decrease in spatial learning and memory, which is
consistent with previous studies (Ding et al., 2019a,b; Xu et al.,
2020). Acupuncture and probiotics restored spatial cognition
in APP/PS1 mice, and the effects of the two interventions
were comparable. Previous work by our team found that
acupuncture induced rapid and efficient improvement in
cognitive ability in SAMP8 mice compared to donepezil
(Ding et al., 2019b). However, acupuncture did not show
better efficacy than probiotics in the current study. We
hypothesized that this result was associated with different
modulatory mechanisms of probiotics and donepezil. Unlike
the modulation of acetylcholinesterase by donepezil, probiotics
improve cognitive ability by promoting the production
of neurotransmitters, such as GABA and brain-derived
neurotrophic factor (BNDF), which is related to learning
abilities (Athari Nik Azm et al., 2018; Kim et al., 2020; Goyal
et al., 2021), alter the balance of pro-and anti-inflammatory
cytokines to produce multitarget modulatory effects (Kesika
et al., 2021). Previous studies found that acupuncture
also exhibited multitargeting characteristics, such as anti-
inflammation (Jiang et al., 2018; Cai et al., 2019), antagonism of
amyloid Aβ (Wang et al., 2016; Zheng et al., 2021), modulation
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FIGURE 5

Results of LPS and inflammatory factor levels in each group (n = 6, mean ± SD). (A) Representative images of IF staining of LPS in each group.
LPS is labeled with red fluorescence. The nucleus is labeled with blue fluorescence. Scale bar is 50 µm. (B) Comparison of the mean optical
density of LPS in each group. (C,D) Comparison of LPS in serum and brain of all groups. (E) Pearson correlation analysis of LPS between brain
and serum. (F,G) Comparison of serum TNF-α and IL-1β in all groups. Compared to the N group, �p < 0.01 or p < 0.05. Compared to the AD
group, •p < 0.01 or p < 0.05. Compared to the MAa group, �p < 0.01 or p < 0.05.

of oxidative stress (Liu et al., 2013; Chang et al., 2019),
inhibition of apoptosis (Wang et al., 2009), and regulation
of glucose metabolism (Huang et al., 2007; Cao et al., 2017;
Xu et al., 2020). We believe the equal effects of acupuncture
and probiotics on the modulation of cognitive ability may be
associated with these multitarget characteristics. The current
study reconfirmed that the intervention protocol is effectively
improved cognitive ability, and the selection of acupoints
and experimental protocol provide a reference for subsequent
research.

The results of gut microbiota analysis showed that species
diversity and composition were more altered in the AD group
than the N group. This result suggested that gut microbiota
dysbiosis occured in APP/PS1 mice by 6 months of age, which
is consistent with the results of previous studies (Shen et al.,
2017; Bäuerl et al., 2018). Compared to the AD group, the
Sobs index and the abundance of the abovementioned phyla
in the MA and P groups showed an opposite trend. This
result showed that MA significantly regulated gut microbiota
diversity and species composition in APP/PS1 mice, which

was evidenced by a significant increase in the Sobs index
and the abundance of Bacteroidota, and a decrease in the
abundances of Firmicutes, Proteobacteria, and Escherichia–
Shigella. Our subsequent studies will expand the sample and
introduce macro-genomics to explore the specific connotation
of acupuncture regulating gut microbiome disorders in AD
and identify the targeted bacteria. Previous studies found that
acupuncture decreased the abundance of Bacteroides fragilis
and Streptococcus in Parkinson’s disease and knee osteoarthritis
(Jang et al., 2020; Wang et al., 2021a). However, the regulatory
effect of acupuncture on the abundances of different species
observed in our study differed from that reported in other
studies. We speculated that this difference may be due to
specific gut microbiota changes in specific diseases. These results
suggest that the regulatory effect of acupuncture on the gut
microbiota is not limited to a certain phylum or genus, but may
exhibit holistic and multitarget characteristics. Studies found
that acupuncture enhanced 5-hydroxytriptamin (5-HT), which
regulated gastrointestinal secretion and peristalsis (Zhan et al.,
2014; Millan et al., 2020), and vasoactive intestinal peptide (VIP)
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FIGURE 6

The hypothesis diagram about the relationship between acupuncture, gut microbiota, and BBB. Acupuncture modulated the diversity and
species composition of gut microbiota. Intestinal LPS leakage diminished with the decrease in proinflammatory bacteria. This process may
improve BBB dysfunction, which was evidenced by an increase in tight junction proteins and lower permeability. Cognitive ability improved with
the recovery of BBB dysfunction. One possible mechanism of acupuncture regulation of BBB dysfunction via the gut microbiome is the
reduction of LPS, TNF-α, and IL-1β.

which related to the gut sensitivity (Zhenzhong et al., 2015).
Acupuncture also modulated intestinal microbial metabolites,
such as glutamate and alanine metabolism (Yang et al., 2022).
We speculated that the extensive non-specific regulatory effects
of acupuncture on the gut microbiome were related to
improvement of the local microenvironment, which deserves
further investigation.

Blood-brain barrier dysfunction occurs in the early stage
of AD (Zenaro et al., 2017). BBB dysfunction is characterized
by a decrease in the expression of tight junction proteins
(ZO-1 and occludin), leakage of fibrinogen from the brain
parenchyma (Alvarez et al., 2011; Carrano et al., 2012), and
the development of inflammation around the microvasculature
(van de Haar et al., 2017; Yamazaki and Kanekiyo, 2017;
Nandini et al., 2022). We observed significant EB exudation
(CA1, CA3, and cortex), a significant reduction in the
expression of tight junction proteins and basement membrane
disruption in the AD group, which indicated that the BBB
was significantly disrupted in APP/PS1 mice. EB exudation
in the CA1 and CA3 regions and cortex was significantly

reduced and tight junction structures were improved in the
MA and P groups compared to the AD group. This finding
indicated that MA significantly improved BBB disruption
in APP/PS1 mice, and the effect of MA was comparable
to probiotics. This study is the first report of the benign
regulatory effect of acupuncture on structural and functional
disruption of the BBB in AD, and results indicate that
the BBB is an important target of acupuncture in the
treatment of AD.

Previous studies found that BBB dysfunction was closely
related to gut microbiota dysbiosis, specifically an increase in
the levels of Gram-negative bacteria and LPS (Zhan et al.,
2016; Zhao and Lukiw, 2018; Marizzoni et al., 2020). LPS
is an important pathological factor that leads to endothelial
structure damage, and it is a potent proinflammatory mediator
(Hauss-Wegrzyniak et al., 1998; Skelly et al., 2013; Asti and
Gioglio, 2014; Mohammad and Thiemermann, 2020). LPS in
the brains of AD patients is associated with Gram-negative
bacteria (Zhan et al., 2018). LPS is released into the extracellular
space when gut bacteria are destroyed (Brown, 2019). Serum
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LPS levels in AD patients were tripled compared to healthy
individuals (Zhang et al., 2009). Our results showed that the
levels of LPS and inflammatory factors (TNF-α and IL-1β) were
significantly increased in the AD group. Pearson correlation
analysis also demonstrated that LPS in serum and brain showed
a positive correlation. Our results showed that MA reduced
LPS and inflammatory factor levels, and the effect of MA
was comparable to probiotics. Studies have shown that Gram-
negative bacteria, especially Enterobacter–Shigella, are related
to LPS (Cattaneo et al., 2017). Based on these gut microbiota
result, we speculated that the modulation of LPS by acupuncture
was related to the benign regulation of specific genera, such
as Proteobacteria and Enterobacter–Shigella. previous study
found that LPS containing Escherichia coli (E. coli) produced
extracellular amyloid (Zhao et al., 2015a), and high levels of
E. coli LPS were observed in hippocampal and temporal lobe
neocortices from AD brains (Zhao et al., 2017). E. coli LPS
was bound to brain endothelial cell receptors and produced
inducible nitric oxide synthase (iNOS), which disrupted tight
junctions to exacerbate BBB destruction (Al-Obaidi and Desa,
2018). In addition, E. coli LPS exerted a highly proinflammatory
effect on neurons (Zhao et al., 2017). We inferred that the benign
regulation of BBB dysfunction by acupuncture may be based on
the modulation of LPS. Intestinal LPS may be a key molecule for
acupuncture to regulate BBB disruption, which deserves further
study. The relationship between acupuncture, gut microbiota,
and BBB is shown in Figure 6.

To further explore the relationship between acupuncture-
mediated regulation of the BBB and the gut microbiota, we
used the MAa group as a negative control for the MA group.
After antibiotic pretreatment, the gut microbiota of the MAa
group was disrupted, and this change persisted until the end
of the intervention. This dysbiosis primarily manifested as
a decrease in species diversity and a significant increase in
the abundances of Proteobacteria and Escherichia–Shigella.
Antibiotics inhibited the benign regulatory effects of MA on
cognitive ability, BBB disruption, LPS levels, and systemic
inflammation. This result suggested that the gut microbiota
may played an important role in the ability of acupuncture to
improve cognition and alleviate BBB disruption, and the gut
microbiota may be an important target for BBB modulation
by acupuncture. Recent studies indicated that antibiotics, such
as cephalosporin (Payne et al., 2017), streptozotocin (Ravelli
et al., 2017), and ampicillin (Wang et al., 2015), increased
the neuroinflammatory state and impaired cognitive function
(Minter et al., 2016), which is consistent with the findings
of this study. A number of studies also showed that some
antibiotics were beneficial for cognitive function, by reducing
neuroinflammation due to the dysbiosis of the gut microbiome.
Rifampin and minocycline reduced inflammatory cytokines in
the brain (Budni et al., 2016; Yulug et al., 2018). Rapamycin
regulated cognitive deficits (Wang et al., 2014). We inferred that
antibiotics were beneficial or detrimental in AD may depending

on the type of antibiotic, animal strain, or the specific role
of gut microbes. On the one hand, the specific effects of the
antibiotic intervention on cognitive ability and BBB disruption
in this study may be clarified by establishing an antibiotic group.
Behavioral tests may also be added at the beginning and end of
antibiotic gavage. On the other hand, sterile mice may also be
introduced to more clearly show acupuncture adjustments of the
BBB and gut microbiome.

Our study reconfirmed that MA improved the cognitive
ability of APP/PS1 mice, and the effect of MA was similar
to probiotics. We reported that MA had a benign regulatory
effect on the gut microbiota in APP/PS1 mice. At the phylum
level, Bacteroidota was upregulated, and Proteobacteria and
Firmicutes were downregulated. At the genus level, Escherichia–
Shigella was downregulated. We reported the benign regulatory
effect of acupuncture on BBB disruption, LPS load and
systemic inflammation. The decrease in LPS load and systemic
inflammation play an important role in the regulation of
BBB dysfunction. We speculated that the benign regulation
of the BBB by acupuncture was may achieved via the gut
microbiota. Escherichia–Shigella may be the target genus, but
further studies are needed.
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