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Background: Perturbation of lipid metabolism is associated with Alzheimer’s

disease (AD). Heart fatty acid-binding protein (HFABP) is an adipokine playing

an important role in lipid metabolism regulation.

Materials and methods: Two datasets separately enrolled 303 and 197

participants. First, we examine the associations of cerebrospinal fluid

(CSF) HFABP levels with cognitive measures [including Mini-Mental State

Examination (MMSE), Clinical Dementia Rating sum of boxes (CDRSB), and the

cognitive section of Alzheimer’s Disease Assessment Scale] and AD biomarkers

(CSF amyloid beta and tau levels). Second, we examine the longitudinal

associations of baseline CSF HFABP levels and the variability of HFABP with

cognitive measures and AD biomarkers. Structural equation models explored

the mediation effects of AD pathologies on cognition.

Results: We found a significant relationship between CSF HFABP level and

P-tau (dataset 1: β = 2.04, p < 0.001; dataset 2: β = 1.51, p < 0.001). We found

significant associations of CSF HFABP with longitudinal cognitive measures

(dataset 1: ADAS13, β = 0.09, p = 0.008; CDRSB, β = 0.10, p = 0.003; MMSE,

β = −0.15, p < 0.001; dataset 2: ADAS13, β = 0.07, p = 0.004; CDRSB, β = 0.07,

p = 0.005; MMSE, β = −0.09, p < 0.001) in longitudinal analysis. The variability

of HFABP was associated with CSF P-tau (dataset 2: β = 3.62, p = 0.003).

Structural equation modeling indicated that tau pathology mediated the

relationship between HFABP and cognition.

Conclusion: Our findings demonstrated that HFABP was significantly

associated with longitudinal cognitive changes, which might be partially

mediated by tau pathology.
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Introduction

Alzheimer’s disease (AD) is the primary cause of dementia
in the elderly worldwide, and its prevalence is projected to
triple over the next 20 years (Alzheimer’s Association, 2011;
Prince et al., 2013). AD is characterized by neuropathological
markers of neurofibrillary tangles made of filamentous
hyperphosphorylated tau and neuritic amyloid-β plaques
(Kirkitadze et al., 2002; Selkoe and Hardy, 2016). The underlying
mechanisms of extensive and considerable neuropathology
of AD are still unclear. Genome-wide association studies
implicated lipid metabolism in several neurodegenerative
diseases, including AD, and several studies demonstrated the
association between lipid/lipoprotein metabolism and AD
pathology (Hamilton et al., 2015; Marschallinger et al., 2020).

Changes in lipid metabolism during aging are crucial
for a variety of biological processes (Papsdorf and Brunet,
2019). Dysfunction of lipid metabolism affects membrane lipid
composition and fluidity, thus contributing to age-related
neuronal cell dysfunction and neurologic disease (Mori et al.,
2001; Siino et al., 2018). Therefore, lipid-binding proteins seem
to be involved in the pathogenesis of AD. Recent studies
suggested that heart fatty acid-binding protein (HFABP or
FABP3), a lipid-binding protein facilitating the intracellular
transport of fatty acids, may contribute to AD diagnosis and
prognosis in the earliest stages (Rosén et al., 2011). A study
found that the association between elevated levels of HFABP and
longitudinal atrophy of crucial brain structures was significant
among amyloid positive individuals and occurred irrespective of
tau pathology (Chiasserini et al., 2017). However, other studies
found that increased cerebrospinal fluid (CSF) HFABP was
related to tau pathology and neurodegeneration (Chiasserini
et al., 2010, 2017). There is a dearth of research investigating the
longitudinal association of HFABP with cognition functioning
and AD biomarkers and the mediational role of AD pathology
in the relationship between lipid metabolism and cognition.

Here, in this investigation, we examined the association of
AD biomarkers and cognition with HFABP from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset. We evaluated
whether CSF HFABP is associated with CSF AD biomarkers and
cognition at baseline and follow-up and whether CSF HFABP
change is associated with AD biomarkers and cognition over
time. We also examined whether AD pathology is a potential
mediator of the relationship between HFABP and cognition.

Materials and methods

Data description

The data used in the preparation of this were downloaded
from the ADNI dataset1 (Weiner et al., 2010, 2012). The

1 https://adni.loni.usc.edu/

ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies,
and non-profit organizations, as a $60 million, 5-year
public-private partnership. For up-to-date information,
see text footnote 1. Written consent was obtained at
enrollment from all participants and the study was
approved by each participating site’s institutional review
board.

Alzheimer’s disease neuroimaging
initiative participants

Our study population consisted of all patients, including
cognitively healthy control (CN), patients with mild cognitive
impairment (MCI), and patients with AD dementia, with
available CSF HFABP data from the ADNI cohort. Inclusion
and exclusion criteria are described in detail online (see text
footnote 1) (Petersen et al., 2010). Finally, participants 55–
90 years of age have been included, among whom individuals
had available follow-up information. CN participants had a
MMSE score of >24 and a clinical dementia rating score of
0. Patients with early MCI had a MMSE score of ≥24, a
clinical dementia rating score of 0.5, preserved activities of daily
living, and absence of dementia. Patients with AD dementia
fulfilled the National Institute of Neurological Communicative
Disorders and Stroke–Alzheimer Disease and Related Disorders
Association criteria for probable AD (McKhann et al., 1984),
had MMSE scores of 20–26, and had CDR scores of 0.5–
1.0.

Measurements of cerebrospinal fluid
biomarkers analysis

We download the first data set of participants whose
CSF HFABP protein levels were evaluated using a Myriad
Rules Based Medicine platform (Human Discovery
MAP, v1.0; see ADNI “Materials and methods” Section).
A second data set from the Foundation for the National
Institutes of Health (FNIH) Biomarker Consortium
CSF Proteomics Project included 197 participants
with CSF HFABP protein concentrations which were
evaluated with the multiple Multi Reaction Monitoring
(MRM) targeted mass spectroscopy at baseline and
during follow-up.

Alzheimer’s Disease Neuroimaging Initiative CSF protocols,
including Aβ1–42, tau, and p-tau181, have previously been
described in detail (Shaw et al., 2009). The CSF Aβ1–42,
tau, and p-tau181 levels were measured with the multiplex
xMAP Luminex platform and Innogenetics INNO-BIA AlzBio3
(Innogenetics-Fujirebio, Ghent, Belgium) immunoassay
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reagents. The intra-assay coefficient of variation (CV) of
duplicate determinations for concentration ranged from 2.5
to 5.9% for Aβ1–42, 2.2–6.3% for tau, and the inter-assay CV
for CSF pool samples ranged from 5.1 to 14% for Aβ1–42,
2.7–11.2% for tau. Further information on standard operation
procedures was described in previous publications (Shaw et al.,
2009, 2011) and online (see text footnote 1).

Cognitive measures

In ADNI, all participants received detailed cognitive
evaluations, including the global cognition by Mini-Mental State
Examination (MMSE), Clinical Dementia Rating sum of boxes
(CDRSB), and the cognitive section of Alzheimer’s Disease
Assessment Scale (ADAS13).

Statistical analyses

All data management and analyses were conducted using
R version 4.0.1 using the data. Table package version 1.14.0,
the dplyr package version 1.0.2, the lme4 package version
1.1.29, the lmerTest package version 3.1.3, and the car package
version 3.0.10. Figures were plotted using ggplot2 version 3.2.1.
Additionally, stringr package version 1.4.0 and fst package
version 0.9.4 were used for data management. All variables were
log-transformed to improve normality.

First, multiple linear regression models were used to
examine the cross-sectional relationship among CSF HFABP
and cognition after adjusting for age, sex, education, and
Apolipoprotein E (APOE) ε4 status, and AD core biomarkers
after adjusting for age, sex, education, APOE ε4 status, and
diagnosis. Second, to assess the association of baseline CSF
HFABP levels with the longitudinal cognitive measures and
AD core biomarkers. Linear mixed-effect models were used for
the analysis, adjusting for the same covariables as the baseline
models and additionally including time as an interacting
variable with CSF HFABP levels. Third, estimated slopes for
changes in the CSF HFABP concentrations were calculated for
each individual using linear mixed-effect models for repeated
measures. After that, the HFABP change rate was included
in the linear mixed-effect models as independent variables to
investigate the association between longitudinal CSF HFABP
changes and longitudinal cognitive and AD core biomarkers
changes. Finally, mediation models were conducted in the
current study to investigate whether the association of HFABP
with cognition was mediated by AD pathology. These models
were adjusted for age, sex, education, and APOE ε4 status.
Two other mediation analyses were used to determine whether
the association of baseline and longitudinal CSF HFABP with
longitudinal clinical outcomes were mediated respectively by

baseline and longitudinal AD biomarkers. The same covariates
as in the first model were used in two other models.

Results

Characteristics of participants

As for the ADNI dataset 1, 303 participants aged 56–89 years
(mean age 75.14 years) were included in the present study at
baseline. The mean education years of the study sample were
15.66, 39.4% were female, and 48.0% were APOE4 carriers
(Table 1). As for ADNI dataset 2, 197 participants aged 55–
89 years (mean age 72.69 years) were included in the present
study at baseline. The mean education years of the study sample
were 16.16, 44.4% were female, and 39.3% were APOE4 carriers
(Table 1).

The cross-section association of heart
fatty acid-binding protein with
cognition measures and Alzheimer’s
disease biomarkers

In dataset 1, multivariate analyses showed the strong
association of CSF HFABP with cognition measures and AD
biomarkers. Individuals with higher HFABP levels had lower
cognition measures, as indicated by higher ADAS13 score
(β = 0.68, p < 0.001), higher CDRSB score (β = 0.69, p < 0.001),
and lower MMSE score (β = −0.60, p = 0.002), and had higher
concentration of P-tau (β = 2.04, p< 0.001). In dataset 2, similar
results were observed in the relationship between HFABP and
P-tau (β = 1.51, p < 0.001). However, there were no significant

TABLE 1 Baseline characteristics of participants.

Characteristic ADNI data 1 ADNI data 2

N 303 197

Age [mean (SD)] 75.14 (6.73) 72.69 (7.05)

Female (%) 129 (39.4) 87 (44.4)

Education [mean (SD)] 15.66 (3.04) 16.16 (2.81)

APOE carrier (%) 157 (48.0) 77 (39.3)

MMSE score [mean (SD)] 26.76 (2.56) 28.26 (1.86)

CDRSB score [mean (SD)] 1.71 (1.77) 0.88 (1.04)

ADAS13 score [mean (SD)] 18.54 (9.14) 13.05 (7.09)

CSF AD biomarkers [mean (SD)]

Aβ42 905.26 (562.07) 1,162.69 (635.32)

Tau 307.76 (118.97) 281.17 (116.08)

P-tau 30.22 (13.63) 26.64 (13.07)

ADAS13, Alzheimer’s Disease Assessment Scale; ADNI, Alzheimer’s Disease
Neuroimaging Initiative; CSF, cerebrospinal fluid; MMSE, Mini-Mental State
Examination; CDRSB, clinical Dementia Rating sum of boxes; P-tau, phosphorylated
tau; Aβ, Amyloid beta.

Frontiers in Aging Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnagi.2022.1008780
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-1008780 October 3, 2022 Time: 17:44 # 4

Fu et al. 10.3389/fnagi.2022.1008780

FIGURE 1

Linear associations between fatty acid binding protein and
Mini-Mental State Examination (MMSE), Clinical Dementia Rating
sum of boxes (CDRSB), ADAS13, Amyloid beta (ABETA), TAU, and
PTAU. The size of the bubble represents the correlation levels.
The color of the bubble represents the beta coefficient levels.
Red: positive correlation. Blue: negative correlation. MMSE,
Mini-Mental State Examination; CDRSB, Clinical Dementia
Rating sum of boxes; ADAS13, the cognitive section of
Alzheimer’s Disease Assessment Scale; ABETA, Amyloid beta;
P-tau, phosphorylated tau.

relationships between cognition measures, except ADAS13
score (β = 0.39, p = 0.021). This demonstrated the positive
association of HFABP with P-tau and the negative association
with cognition (Figure 1 and Supplementary Table 1).

The longitudinal association of heart
fatty acid-binding protein with
cognition measures and Alzheimer’s
disease biomarkers

To examine the association of baseline HFABP with
cognitive measures and AD biomarkers, we constructed mixed

effects models of these measures and biomarkers and observed
that HFABP was associated with rate of cognitive change
(interacted with time) in both datasets (dataset 1: ADAS13,
β = 0.09, p = 0.008; CDRSB, β = 0.10, p = 0.003; MMSE,
β = −0.15, p < 0.001; dataset 2: ADAS13, β = 0.07, p = 0.004;
CDRSB, β = 0.07, p = 0.005; MMSE, β = −0.09, p < 0.001).
However, the results for the association between HFABP
and AD biomarkers were inconsistent of both dataset 1 and
dataset 2. Baseline HFABP level was associated with P-tau
(β = −0.06, p = 0.015) on dataset 1 and Aβ42 (β = −0.04,
p = 0.008) on dataset 2 in a longitudinal model. To determine
whether HFABP variability is associated with cognitive measures
and AD biomarkers, we calculated the difference in CSF
HFABP levels between baseline and follow-up and associated
this difference with cognitive measures and AD biomarkers.
HFABP variability was associated with increased CSF protein
level of P-tau (β = 3.62, p = 0.003). This is consistent with
the association between baseline HFABP and P-tau in cross-
section and longitudinal models (Figure 2 and Supplementary
Table 2).

Causal mediation analyses

Considering the association of HFABP with cognition and
tau pathology shown above, HFABP was associated with not
only cognitive impairment but also CSF P-tau concentration.
We investigate whether high HFABP levels contribute to
cognitive impairment via tau pathology. In dataset 1, we found
that the relationship between HFABP and cognition (MMSE:
IE = −0.36, p = 0.038; ADAS13: IE = 4.64, p = 0.002;
CDRSB: IE = 0.73, p = 0.028) and longitudinal cognition
change (MMSE change: IE = −0.09, p = 0.000; ADAS13
change: IE = 0.08, p = 0.000; CDRSB change: IE = 0.09,
p = 0.000) was mediated by tau pathology (Figures 3, 4 and
Supplementary Tables 3, 4). However, in dataset 2, we only
found tau pathology mediated the relationship between HFABP
and longitudinal cognition change (MMSE change: IE = −0.05,
p = 0.001; ADAS13 change: IE = 0.05, p = 0.000; CDRSB
change: IE = 0.05, p = 0.001) (Figures 3, 4 and Supplementary
Tables 3, 4).

Discussion

The present study found that (1) HFABP was associated
with baseline tau pathology; (2) HFABP was associated with
longitudinal cognition change; (3) HFABP variability was
associated with an increased CSF protein level of P-tau; and
(4) the influence of HFABP on cognition was mediated by tau
pathology. These findings consolidated the close relationships
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FIGURE 2

Longitudinal association between fatty acid binding protein and Mini-Mental State Examination (MMSE), Clinical Dementia Rating sum of boxes
(CDRSB), ADAS13, Amyloid beta (ABETA), TAU, and PTAU. (A) Scatter plots of the association of heart fatty acid-binding protein (HFABP) and
HFABP change with cognition and AD biomarkers changes; (B) standardized coefficients for the association of HFABP and HFABP change with
cognitive measures and AD biomarkers. The size of the bubble represents the correlation levels. The color of the bubble represents the beta
coefficient levels (interacted with time). Red: positive correlation. Blue: negative correlation. MMSE, Mini-Mental State Examination; CDRSB,
Clinical Dementia Rating sum of boxes; ADAS13, the cognitive section of Alzheimer’s Disease Assessment Scale; ABETA, Amyloid beta; P-tau,
phosphorylated tau.

of HFABP with AD pathology and cognition, supporting the
validity of the biomarker-based diagnosis of preclinical AD.

Previous studies found that CSF levels of HFABP in
AD patients were higher than in MCI subjects and older
people without cognition impairment (Chiasserini et al., 2017;
Höglund et al., 2017; Dulewicz et al., 2021). Furthermore,
other studies found significantly elevated CSF HFABP levels
have been described in MCI subjects compared with the
cognitively healthy group, but no difference between the

dementia group and the progressive MCI subgroup (Guo et al.,
2013). These results demonstrated that CSF levels of HFABP
are already increased in the early stages of AD and increased
with the progress of AD. This is in line with our studies,
as we observed the association between baseline CSF HFABP
and longitudinal cognition change. These findings suggested
that changes in the CSF levels of HFABP may reflect the
roles of lipid-related metabolism in the development of AD.
High HFABP levels might result from increasing pathological
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FIGURE 3

Mediation analyses showed that the relationship between heart fatty acid-binding protein (HFABP) and cognitive measures were mediated by
tau pathology. (A) Global cognition measured by Mini-Mental State Examination (MMSE); (B) global cognition measured by ADAS13; (C) global
cognition measured by CDRSB. MMSE, Mini-Mental State Examination; CDRSB, Clinical Dementia Rating sum of boxes; ADAS13, the cognitive
section of Alzheimer’s Disease Assessment Scale; ABETA, Amyloid beta; P-tau, phosphorylated tau; IE, Indirect effects; DE, Direct effects.

processes and associate with the neurodegeneration process.
Previous studies found that HFABP was significantly correlated
with tau pathology (Chiasserini et al., 2010, 2017). The results
of these studies are consistent with our research. We also
found the longitudinal link between HFABP and tau pathology.
Additionally, a study suggested a relationship between HFABP
and neurodegeneration-related amyloid pathology and brain
atrophy, while we failed to identify the association in the present
study (Desikan et al., 2013).

The mechanisms underlying the association between
HFABP and cognition remain unknown. Several possible
mechanisms might be implicated. First, HFABP in the brain
may regulate the lipids components of neuronal cell membranes,
thereby affecting synaptic degeneration and regeneration
and involving in a number of neurodegeneration diseases
(Sellner et al., 1995; Mauch et al., 2001; Shioda et al.,
2010; Yamamoto et al., 2018). Second, lipid rafts might
mediate pathogenesis-related proteins, including α-synuclein
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FIGURE 4

Mediation analyses showed that the relationship between heart fatty acid-binding protein (HFABP) and longitudinal cognition change was
mediated by tau pathology. (A) Global cognition measured by Mini-Mental State Examination (MMSE); (B) global cognition measured by
ADAS13; (C) global cognition measured by Clinical Dementia Rating sum of boxes (CDRSB). MMSE, Mini-Mental State Examination; CDRSB,
Clinical Dementia Rating sum of boxes; ADAS13, the cognitive section of Alzheimer’s Disease Assessment Scale; ABETA, Amyloid beta; P-tau,
phosphorylated tau; IE, Indirect effects; DE, Direct effects.

(Fortin et al., 2004; Yabuki et al., 2020) and prions (Hooper,
2005; Taylor and Hooper, 2007), in a number of protein-
misfolding neurodegenerative disorders. Thus, we speculated
that HFABP and tau pathology have synergistic effects on
AD development. Third, HFABP may also regulate dopamine
D2R (dopamine receptor 2) function in the striatum and
anterior cingulate cortex and mediates αSyn neurotoxicity in
septal GABAergic neurons to affect cognitive function and
emotional behavior (Yamamoto et al., 2018; Matsuo et al.,
2021). Finally, recent studies suggested HFABP was associated
with specific features of brain atrophy and white matter

Hyperintensities burden, independently of amyloid and tau
pathology biomarkers (Clark et al., 2022; Vidal-Piñeiro et al.,
2022).

There are several limitations to this work. First, our
study was limited by sample size. The sample size was too
small for performing subgroup analyses to detect significant
differences. Second, our study included patients with and
without dementia to maximize the sample size, which might
introduce heterogeneity and slight bias. Finally, we did not
determine the plasma levels of HFABP, which will likely
influence the CSF levels of HFABP.
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Conclusion

In summary, the present study demonstrated that HFABP
was associated with tau pathology and longitudinal cognitive
function. Tau pathology might partially mediate the association
between HFABP and cognition. Further analyses in large cohorts
are needed to validate such findings. Our findings suggested
that tau pathology may mediate the role of lipid metabolism
in AD development.
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