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Background: Metabolic brain imaging with 2-[18F]fluoro-2-deoxy-D-glucose 

positron emission tomography (FDG PET) is a supportive diagnostic and 

differential diagnostic tool for neurodegenerative dementias. In the clinic, 

scans are usually visually interpreted. However, computer-aided approaches 

can improve diagnostic accuracy. We aimed to build two machine learning 

classifiers, based on two sets of FDG PET-derived features, for differential 

diagnosis of common dementia syndromes.

Methods: We analyzed FDG PET scans from three dementia cohorts [63 

dementia due to Alzheimer’s disease (AD), 79 dementia with Lewy bodies (DLB) 

and 23 frontotemporal dementia (FTD)], and 41 normal controls (NCs). Patients’ 

clinical diagnosis at follow-up (25 ± 20 months after scanning) or cerebrospinal 

fluid biomarkers for Alzheimer’s disease was considered a gold standard. FDG 

PET scans were first visually evaluated. Scans were pre-processed, and two sets 

of features extracted: (1) the expressions of previously identified metabolic brain 

patterns, and (2) the mean uptake value in 95 regions of interest (ROIs). Two multi-

class support vector machine (SVM) classifiers were tested and their diagnostic 

performance assessed and compared to visual reading. Class-specific regional 

feature importance was assessed with Shapley Additive Explanations.

Results: Pattern- and ROI-based classifier achieved higher overall accuracy than 

expert readers (78% and 80% respectively, vs. 71%). Both SVM classifiers performed 

similarly to one another and to expert readers in AD (F1 = 0.74, 0.78, and 0.78) and 

DLB (F1 = 0.81, 0.81, and 0.78). SVM classifiers outperformed expert readers in FTD 

(F1 = 0.87, 0.83, and 0.63), but not in NC (F1 = 0.71, 0.75, and 0.92). Visualization of 

the SVM model showed bilateral temporal cortices and cerebellum to be the most 

important features for AD; occipital cortices, hippocampi and parahippocampi, 

amygdala, and middle temporal lobes for DLB; bilateral frontal cortices, middle 

and anterior cingulum for FTD; and bilateral angular gyri, pons, and vermis for NC.

Conclusion: Multi-class SVM classifiers based on the expression of 

characteristic metabolic brain patterns or ROI glucose uptake, performed 

better than experts in the differential diagnosis of common dementias using 

FDG PET scans. Experts performed better in the recognition of normal scans 

and a combined approach may yield optimal results in the clinical setting.
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Introduction

Neurodegenerative dementias are a group of chronic, 
progressive, and incurable diseases that affect cognition and are 
caused by the accumulation of abnormally folded proteins, 
resulting in subsequent neuronal dysfunction and death (Golde 
et al., 2013). In 2016 there were approximately 45 million people 
living with dementia. As the population ages, this number is 
expected to rise and further increase the societal burden (Nichols 
et al., 2019). The common neurodegenerative dementias include: 
dementia due to Alzheimer’s disease (AD), dementia with Lewy 
bodies (DLB), and frontotemporal dementia (FTD; Association, 
2018). AD is characterized by abnormal accumulation of amyloid 
β (Aβ) and hyperphosphorylated tau protein (p-Tau), the typical 
development of predominantly episodic memory-related 
symptoms, followed by impairment in other cognitive domains 
(Lane et  al., 2018). DLB is characterized by abnormal 
accumulation of α-synuclein and a clinical constellation of 
dementia accompanied by one or more core features of the 
disease (i.e., parkinsonism, visual hallucinations, fluctuating 
cognition, and rapid eye movement sleep behavior disorder; 
Arnaoutoglou et al., 2019). FTD has various underlying causes 
and presents with three main clinical variants: behavior-variant 
FTD, non-fluent aphasia, and semantic aphasia. Behavioral 
variant of FTD is the most common and is characterized by 
changes in personality and behavior (Bang et al., 2015). Despite 
differences in main pathology and symptoms among the three 
most common neurodegenerative dementias, there can be  a 
substantial overlap in concomitant pathology and clinical 
presentation, especially early in the disease course. Therefore, 
misdiagnosis is not uncommon even at specialized dementia 
clinics (Hansson, 2021). Further development and refinement of 
current biomarkers is therefore required.

Metabolic brain imaging with 2-[18F]fluoro-2-deoxy-D-
glucose positron emission tomography (FDG PET) is widely 
accessible, relatively affordable, and a non-invasive imaging 
technique that provides in vivo information about synaptic 
activity (Stoessl, 2017). It is considered a supportive biomarker 
for diagnosis of AD, DLB, and FTD (Rascovsky et  al., 2011; 
McKeith et  al., 2017; Jack et  al., 2018) and for differential 
diagnosis among them (Nestor et al., 2018). FDG PET scans are 
usually visually assessed in the clinical setting by an expert reader 
(either nuclear medicine or neurology specialist, or both). 
Current guidelines suggest using semi-quantitative techniques 
based on mass univariate testing to improve diagnostic utility 
(Varrone et al., 2009). Visual assessments are still prone to errors 
and inter-rater variability (Ng et al., 2007; Tolboom et al., 2010; 
Yamane et al., 2014), and therefore, fully automated tools for 
assessment of FDG PET scans are in development. However, 
before these tools are integrated into clinic, a head-to-head 
comparison with expert’s reading is warranted (Nobili 
et al., 2018).

Different approaches can be  used for computer-aided 
differential diagnosis. Multivariate analysis approaches, such as 

scaled subprofile model/principal component analysis (SSM/
PCA) applied to FDG PET images, can reveal characteristic 
metabolic brain patterns, which expressions can be prospectively 
quantified on a single case basis (Spetsieris and Eidelberg, 2011). 
AD-related pattern (ADRP; Perovnik et al., 2022a), DLB-related 
pattern (DLBRP; Perovnik et al., 2022b) and FTD-related pattern 
(FTDRP; Rus et al., 2021) have been identified and validated in 
different clinical cohorts in the past. Similarly, a pattern of default 
mode network (DMN)—a dominant resting-state network in 
healthy individuals, which is affected also in the pathogenesis of 
neurodegenerative dementias—has been characterized with FDG 
PET (Spetsieris et al., 2015). Based on the expression of metabolic 
brain patterns, we  can very accurately distinguish between 
patients with dementia and normal controls (NCs; Perovnik et al., 
2022a,b). However, it was also observed that the information of 
a single pattern’s expression score may not be  sufficient to 
distinguish between different neurodegenerative dementias 
accurately (Katako et al., 2018). While the advantage of using the 
information on multiple metabolic brain patterns’ expression in 
conjunction with a simple machine learning algorithm (i.e., 
logistic model regression) has been shown in neurodegenerative 
parkinsonisms (Tang et al., 2010; Tripathi et al., 2016; Rus et al., 
2020; Papathoma et  al., 2022), their utility remains to 
be  investigated for the differential diagnosis of 
neurodegenerative dementias.

In recent years, various machine learning algorithms, such as 
support vector machine (SVM) or deep neural networks have 
been developed and refined to aid in brain scan classification: 
where the features (e.g., regions) necessary to make a correct 
prediction are learned from the data (Myszczynska et al., 2020). 
However, many such studies focused only on Alzheimer’s disease, 
distinguishing between dementia and controls or mild cognitive 
impairment and controls (Borchert et al., 2021). In the clinical 
setting, the diagnostic dilemma is usually not limited to 
distinguishing between AD and healthy controls, but among the 
various neurodegenerative dementias. Before computer-aided 
systems can be successfully applied to the clinical setting, they 
need to be  adjusted to recognize different neurodegenerative 
dementia syndromes (Burgos and Colliot, 2020).

In this study, we aimed to build two multi-class machine 
learning classifiers based on two different sets of features for the 
differentiation of FDG PET scans of patients with the most 
common dementia syndromes (AD, DLB, and FTD) and NC, and 
to compare the algorithms’ classification accuracy to gold 
standard diagnosis and expert visual reading. We also explored 
the characteristic features of each disease type.

Materials and methods

Study design

In this study we analyzed 206 FDG PET scans from three 
dementia cohorts and healthy participants. Diagnosis at 
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follow-up (M = 25 months, SD = 20 months) or cerebrospinal 
fluid (CSF) biomarkers for Alzheimer’s disease was considered 
a gold standard. FDG PET scans were first visually evaluated by 
expert readers (nuclear medicine and neurology specialist) and 
diagnostic performance was assessed. Then, we built two multi-
class machine learning classifiers – one based on pattern 
expression values and the other on regions of interest (ROIs) 
uptake values – and assessed their diagnostic performance. The 
performance of the classifiers was compared to the one achieved 
by visual reading. Lastly, we  examined the most important 
features of the ROI-based classifier by identifying the most 
important regional features on the entire dataset and by 
visualizing class-specific regional importance. Study workflow 
is schematically illustrated in Figure 1.

Participants

We analyzed three dementia cohorts (63 AD, 79 DLB, and 
23 FTD) and 41 normal controls (NCs). All participants 
underwent FDG PET brain imaging between January 2010 and 
April 2019 at the University Medical Center Ljubljana (UMCL), 
Slovenia. Patients with AD fulfilled diagnostic criteria for 
probable AD dementia (amnestic presentation; McKhann et al., 
2011) and had the diagnosis confirmed by cerebrospinal fluid 
(CSF) analysis of Aβ42 or Aβ42/Aβ40, p-tau, and t-tau 

according to the recent National Institute of Aging-Alzheimer’s 
Association research framework (Jack et al., 2018). A detailed 
CSF procedure has been described previously (Perovnik et al., 
2022a). Patients with DLB were diagnosed according to the 4th 
Consensus report of the DLB Consortium (McKeith et  al., 
2017), followed by a diagnosis confirmation at an office visit 
conducted at least 12 months after the onset of symptoms. 
Patients with FTD were diagnosed with possible FTD according 
to the International Behavioral Variant FTD Consortium 
criteria (Rascovsky et  al., 2011) and had their diagnosis 
confirmed at a follow-up visit conducted at least 12 months after 
the onset of symptoms. AD and DLB cohorts and their FDG 
PET scans included in this study have appeared previously 
(Perovnik et  al., 2022a,b). NCs completed clinical, 
neuropsychological, and FDG PET brain imaging for purposes 
of an earlier research project (Tomše et al., 2017).

Image acquisition

FDG PET images were acquired at the Department of 
Nuclear Medicine, UMCL, with Siemens Biograph mCT PET/CT 
(Siemens Healthineers, Erlangen, Germany) according to 
European Association of Nuclear Medicine guidelines (Varrone 
et  al., 2009). The detailed procedure has been described 
previously (Tomše et al., 2017).

FIGURE 1

Flowchart of the general workflow. Top: 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) scans from three dementia 
cohorts and healthy participants underwent pre-processing, and two set of features [pattern expression scores and standard uptake value ratio 
(SUVR) in 95 regions of interest (ROIs)] were extracted. Two multi-class support vector machine (SVM) models were built to classify scans either as 
dementia due to Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD) or normal. Most common label after 
500 iterations was compared to gold standard, and performance metrics calculated. Bottom: FDG PET scans were visually evaluated by two 
expert readers. Scans could be read either as AD, DLB, FTD, normal or other (inconclusive or other neurodegenerative pattern). Labels were 
compared to gold standard and performance metrics were calculated. Clinical diagnosis at follow-up or cerebrospinal fluid (CSF) biomarker for 
Alzheimer’s disease was considered a gold standard. ADRP, Alzheimer’s disease-related pattern; DLBRP, dementia with Lewy bodies-related 
pattern; FTDRP, frontotemporal dementia-related pattern; DMN, default mode network pattern.
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Visual reading

All FDG PET images were assessed visually by a neurology 
and nuclear medicine specialist working in tandem. First, 
reconstructed images were visually evaluated, and then the 
physicians assessed the scans with semi-quantitative analysis 
using Scenium©, a Siemens software that is a part of Syngo.via 
Neurology package (Siemens CTI Molecular Imaging, Knoxville, 
TN, United States). The diagnosis was made by recognizing the 
typical topography of metabolic brain changes caused by 
neurodegenerative syndromes (Brown et al., 2014). The scans 
could be  read either as one of the three included dementia 
subtypes (AD, DLB, FTD), normal, inconclusive, or exhibiting a 
pattern of another neurodegenerative disease.

Image pre-processing

FDG PET scans were pre-processed with SPM12 (Wellcome 
Trust Centre for Neuroimaging, Institute of Neurology, London, 
United Kingdom) running on Matlab R2019a (Mathworks Inc., 
Natick, MA, United  States) using an in-house pipeline. 
We performed brain extraction by segmenting the skull based on 
a tissue probability map. Then we spatially normalized scans onto 
a PET template in the Montreal Neurological Institute brain 
space. Finally, the images were smoothed with an isotropic 3D 
Gaussian kernel of 10 mm FWHM.

Feature extraction

We calculated the expression of previously identified and 
validated specific metabolic patterns related to AD (Perovnik 
et al., 2022a), DLB (Perovnik et al., 2022b), and FTD (Rus et al., 
2021). We  also calculated expression levels for the normal 
metabolic DMN expression as described previously (Spetsieris 
et  al., 2015). The scores were obtained by calculating the dot 
product between logarithmically transformed and double 
centered patient’s scan and pattern vector using the topographic 
profile rating procedure described elsewhere (Eidelberg, 2009). 
The scores were Z-transformed based on the mean pattern 
expression, and standard deviation of subjects’ scores in the NC 
identification cohort were used to identify each pattern.

We extracted mean glucose metabolism scaled on the global 
uptake as the second set of features. It was shown previously that 
global normalization outperforms cerebellar normalization in the 
differential diagnosis of different types of dementia (Dukart et al., 
2010). We  used two different Automated Anatomic Labeling 
(AAL) atlases for value extraction. First, we used 95 regions of 
interest (ROIs; Tzourio-Mazoyer et al., 2002) with modifications 
as described previously (Ko et al., 2018). A complete list of names 
and abbreviations is provided in Spetsieris and Eidelberg (2021). 
Second, we used 166 ROIs as provided previously (Rolls et al., 
2020) with additional custom-made pons region and the mean 

uptake for anterior cingulate cortices and thalami were 
additionally calculated for a total of 171 ROIs.

Classification model

SVM analysis for multi-class classification with linear kernel 
was implemented in Matlab R2019a using fitcecoc function, and 
two different sets of features were used (pattern expression values 
and ROI glucose uptake). In each of the 500 iterations, the data 
were randomly split between training and testing sets (70,30) in 
a stratified fashion, retaining the original group balance. Each 
model was applied prospectively to the testing data in that 
iteration and the labels for each case in the testing were obtained. 
The final label was defined as the most common label across 500 
iterations assigned to a scan. Because some of the participants 
(20 AD, 20 DLB, 10 FTD, and 29 NC) were also used to identify 
respective patterns, these scans were only used in training sets in 
the pattern-based SVM model to avoid data leakage. For the sake 
of accurate comparison between the SVM models, we repeated 
the analyses for the ROI-based SVM model using just the 
reduced dataset.

Model explanations

We assessed feature importance using neighborhood 
component analysis (NCA) for classification. Initially, we used 
the entire dataset and Limited memory Broyden–Fletcher–
Goldfarb–Shanno (LBFGS) algorithm (Liu and Nocedal, 1989) 
to obtain the feature weights. The latter correspond to values 
that minimize an objective function measuring the average 
leave-one-out classification loss over the data. We explored the 
effect of the number of features included in the model on the 
final classification accuracy for each group by adding features 
to the model from most to least important. Then, we  also 
explored the training set’s effect on each run’s feature selection 
procedure by identifying the best non-zero lambda value 
corresponding to the minimum average loss and plotting a 
frequency histogram. Lambda value was optimized in 
each iteration.

Furthermore, we employed Shapley Additive Explanations 
(SHAP; Lundberg and Lee, 2017) to estimate individual-level 
explanations of ROI-based models using shapley function with 
an extension of the kernel SHAP algorithm to address feature 
dependency in our dataset (Aas et al., 2021). SHAP is a game-
theoretical concept used to assess the contribution of each feature 
to the final model decision in a particular case (Lundberg and 
Lee, 2017). We calculated Shapley values in the training set for 
each run and plotted group absolute mean values on the AAL 
template to visualize the class-specific regional importance.

Feature selection was done as a complementary exploration 
of the ROI-based SVM model and was not included in the final 
pipeline for which performance results are presented.
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Statistical analysis

One-way analysis of variance (ANOVA) with post-hoc 
Bonferroni corrected t-test was used to examine the differences 
in age, MMSE, and disease duration between groups. Fisher’s 
exact test for count data was used to examine differences in sex 
distribution between groups. Results were considered significant 
at p < 0.05 (two-tailed). Statistical analyses were conducted in 
RStudio version 1.3.1093 and R version 3.6.0 (R Core Team, 
2019). We also calculated overall accuracy, true positive (TP), 
false positive (FP), false negative (FN), and true negative (TN) 
cases based on the confusion matrix. Furthermore, we calculated 
specificity (TN/(TN + FP)), precision (TP/(TP + FP)), and 
sensitivity (TP/(TP + FN)); due to class imbalance the F1 score 
((2*(Precision*Sensitivity))/(Precision+Sensitivity)) was also 
calculated for each class. Receiver operating characteristic (ROC) 
curves were plotted for each class separately in one vs. all design, 
and the areas under the ROC curves (AUCs) were calculated.

Results

The subject’s demographics and clinical data are presented in 
Table 1, and the general workflow is presented in Figure 1. There was 
a significant age difference between groups [F(3, 202) = 18.45, 
p < 0.001]; post-hoc tests indicated that AD and DLB were significantly 
older from FTD (both p < 0.01) and NC (both p < 0.001). Age did not 
differ between AD and DLB (p = 0.50) or between FTD and NC 

(p = 1.00). Sex distribution differed between DLB and NC groups 
(p = 0.006) but not between any of the other pairwise comparisons (all 
p > 0.42). Disease duration did not differ significantly between the 
three dementia groups [F(2, 145) = 1.62, p = 0.20]. There was a 
significant difference in MMSE scores between groups [F(3, 
160) = 39.3, p < 0.001] and post-hoc tests indicated that DLB had higher 
scores than AD (p = 0.002), but there was no significant difference 
between DLB and FTD (p = 1.00) or AD and FTD (p = 0.055). NC had 
higher MMSE scores than the three dementia groups (all p < 0.001).

Visual reading

Expert readers correctly classified 161 out of 206 cases and 
achieved 78% overall accuracy (Table 2A; Figure 2). They had 

TABLE 1 Demographic and clinical data.

AD DLB FTD NC

N 63 79 23 41

Age (y) 72.9 (8.8) 75.2 (6.5) 66.5 (9.9) 65.3 (7.0)

Sex (f/m) 31/32 28/51 13/10 28/13

Disease 

duration (y)

3.6 (2.3) 

(n = 54)

3.9 (2.1) 

(n = 74)

3.0 (2.0) 

(n = 20)

/

MMSE 18.0 (5.1) 

(n = 59)

21.1 (5.0) 

(n = 54)

21.1 (5.5) 

(n = 20)

29.0 (1.0) 

(n = 32)

All the data are presented as mean (SD). AD, dementia due to Alzheimer’s disease; DLB, 
dementia with Lewy bodies; FTD, frontotemporal dementia; NC, normal control; 
MMSE, Mini-Mental State Examination.

TABLE 2 Performance metrics for visual reading and the three machine learning classifiers.

A Entire dataset

AD DLB FTD NC
Overall 

acc.N 63 79 23 41

F1 Sp Pr Se F1 Sp Pr Se F1 Sp Pr Se F1 Sp Pr Se

Visual read 0.83 94 86 79 0.79 97 93 68 0.82 100 100 70 0.98 99 95 100 78

Pattern-based classifier – – – – – – – – – – – – – – – – –

95 ROIs-based classifier 0.83 92 82 84 0.86 94 89 82 0.91 99 95 87 0.89 95 83 95 86

171 ROIs-based classifier 0.81 92 81 82 0.86 93 88 85 0.91 99 95 87 0.89 96 84 93 86

B Reduced dataset

AD DLB FTD NC
Overall 

acc.
N 43 59 13 12

F1 Sp Pr Se F1 Sp Pr Se F1 Sp Pr Se F1 Sp Pr Se

Visual read 0.78 92 82 74 0.78 94 91 68 0.63 100 100 46 0.92 98 86 100 71

Pattern-based classifier 0.74 87 74 74 0.81 87 84 78 0.87 100 100 77 0.71 93 58 82 78

95 ROIs-based classifier 0.78 88 77 79 0.81 90 86 77 0.83 99 91 77 0.75 93 60 100 80

171 ROIs-based classifier 0.78 89 79 81 0.84 91 89 80 0.92 99 92 92 0.77 84 63 100 83

Performance metrics are calculated on (A) the entire dataset and on (B) the reduced dataset, where we excluded patients used for pattern identification from the testing set. Specificity, 
precision, sensitivity, and overall accuracy are presented as %. AD, dementia due to Alzheimer’s disease; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; NC, normal 
control; ROI, a region of interest; Sp, specificity; Pr, precision; Se, sensitivity; Acc, accuracy.
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high specificity and precision but limited sensitivity in the three 
dementia groups: AD (specificity 94%, precision 86%, sensitivity 
79%), DLB (specificity 97%, precision 93%, sensitivity 68%), and 
FTD (specificity 100%, precision 100%, sensitivity 70%). Expert 
readers achieved high specificity, precision, and sensitivity in the 
NC group (specificity 99%, precision 95%, sensitivity 100%).

Pattern-based classifier

A classifier based on pattern expression values and multi-
class SVM correctly classified 99 out of 127 cases and achieved 
78% overall accuracy (Table 2B; Figure 3A). Note that 79 cases 
(20 AD, 20 DLB, 10 FTD, and 29 NC) were not included in the 
testing set to avoid data leakage, as those scans were used to 
derive the patterns. Pattern-based SVM had high specificity and 
precision but lower sensitivity in DLB (specificity 87%, precision 
84%, sensitivity 78%, AUC = 0.90) and FTD (specificity 100%, 
precision 100%, sensitivity 77%, AUC = 0.98) groups. It had high 
specificity and lower precision and sensitivity in AD (specificity 
87%, precision 74%, sensitivity 74%, AUC = 0.88) group, and high 
specificity and sensitivity with lower precision in NC (specificity 
93%, precision 58%, sensitivity 82%, AUC = 0.98) group. ROC 
curves for pattern-based classifier are plotted for each class 
separately (Figure 3B).

Regions of interest-based classifier

A classifier based on 95 ROIs and multi-class SVM correctly 
classified 177 out of 206 cases and achieved 86% overall accuracy 
(Table 2A; Figure 4A), and had high specificity, sensitivity, and 
precision in all four groups: AD (specificity 92%, precision 82%, 
sensitivity 84%, AUC = 0.94), DLB (specificity 94%, precision 
89%, sensitivity 82%, AUC = 0.93), FTD (specificity 99%, 
precision 95%, sensitivity 87%, AUC = 1.00), and NC (specificity 
95%, precision 83%, sensitivity 95%, AUC = 0.99). ROC curves 

A B

FIGURE 3

The classification results using a pattern-based support vector machine classifier. A classifier based on pattern expression values and multi-class 
support vector machine (SVM) correctly diagnosed 99 out of 127 cases and achieved 78% overall accuracy. (A) Confusion matrix of labels 
predicted by the SVM (Predicted Class) compared to gold standard (True Class). (B) One vs. all receiver operating characteristic (ROC) curves for 
the four possible labels. AD, dementia due to Alzheimer’s disease; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; NC, normal 
control; AUC, area under the curve; TPR, true positive rate; FPR, false positive rate.

FIGURE 2

Confusion matrix of the classification results using visual reading. 
Expert readers correctly diagnosed 161 out of 206 cases and 
achieved 78% overall accuracy. Scans were read (Predicted Class) 
either as dementia due to Alzheimer’s disease (AD), dementia with 
Lewy bodies (DLB), frontotemporal dementia (FTD), normal (NC) 
or other (inconclusive (inc.) or other (oth.) neurodegenerative 
pattern). The label was compared to gold standard (True Class).
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are plotted for each class separately (Figure 4B). A classifier based 
on 171 ROIs and multi-class SVM correctly diagnosed 176 out of 
206 cases and achieved 86% overall accuracy with similar 
specificity, sensitivity, and precision values across groups as a 
classifier based on 95 ROIs.

F1 scores for all four approaches are reported in Table 2. 
The scores are presented using the entire dataset (Table 2A) 
and for the sake of accurate comparison between the models 

also by using the reduced dataset in which 79 scans used for 
pattern identification were restricted to the training set 
(Table 2B).

Model explanations

We have tried to explain the ROI-based classifiers on three 
different levels and the schematic is shown in Figure 5.

A B

FIGURE 4

The classification results using a region of interest-based support vector machine classifier. A classifier based on 95 regions of interest (ROIs) and 
multi-class support vector machine (SVM) correctly diagnosed 177 out of 206 cases and achieved 86% overall accuracy. (A) Confusion matrix of 
labels predicted by the SVM (Predicted Class) compared to gold standard (True Class). (B) One vs. all receiver operating characteristic (ROC) curves 
for the four possible labels. AD, dementia due to Alzheimer’s disease; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; NC, normal 
control; ROI, region of interest; AUC, area under the curve; TPR, true positive rate; FPR, false positive rate.

FIGURE 5

Flowchart depicting three different approaches to the explanation of the model. Initially, we used the entire dataset and assessed feature 
importance using neighborhood component analysis (NCA). The weights were used to rank the features from most to least important. NCA was 
then performed separately on just the training set for each iteration, and the retained features were plotted on a frequency histogram. To explain 
the support vector machine (SVM) model we employed Shapley Additive Explanations (SHAP). ROI, region of interest; SUVR, standard uptake value 
ratio; AAL, automated anatomic labeling atlas.
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Based on the NCA results on the entire dataset, the regions 
with feature weights exceeding 0.3 were: bilateral angular gyri, 
left pallidum, bilateral calcarine sulci, pons, left middle 
cingulum, bilateral superior frontal cortex, right hippocampus, 
left middle occipital cortex, left inferior temporal lobe, left 
inferior occipital cortex and left inferior parietal cortex. Similar 
regions were seen on the frequency histogram with feature 
selection on just the training set in each of the 500 iterations 
(Figure 6).

F1 scores reached their maximal values after including the 40 
most important ROIs based on the NCA results obtained on the 
entire dataset (Figure 7).

Absolute average SHAP values plotted on an AAL template for 
each of the four groups are shown in Figure 8. The most important 
features for AD classification included bilateral temporal cortices, 
cerebellum, bilateral lingual, and calcarine sulci, for DLB 
classification included occipital cortices, hippocampi and 
parahippocampi, amygdala, and middle temporal lobes and for FTD 
classification included bilateral frontal cortical regions, middle 
cingulum, and anterior cingulum. The most important features for 
NC classification included bilateral angular gyri, pons, and vermis.

Discussion

In this study, we applied a multi-class SVM, based either on 
the expression of disease-specific metabolic brain patterns or ROI 
glucose uptake values, as features to classify FDG PET brain scans 
of participants with three different dementia syndromes (AD, 
DLB, and FTD) and NC. The classification accuracies, F1 scores, 
specificity and sensitivity between the models were then compared 
to the experts’ visual reading.

Pattern- and ROI-based classifier achieved higher overall 
accuracy compared to the expert readers (78 and 80% respectively, 
vs. 71%). Looking at the entire dataset (not excluding the patients 
used for pattern identification from the testing set), the ROI-based 
SVM model also achieved higher overall accuracy than visual 
reading (86% vs. 78%, respectively). Both SVM classifiers performed 
similarly to one another and to expert readers in AD (F1 = 0.74, 
0.78, and 0.78) and DLB (F1 = 0.81, 0.81, and 0.78) groups. However, 

FIGURE 7

The effect of the number of regions of interest included on the 
F1 scores. F1 scores reached their maximal values after including 
the 40 most important regions of interest (ROIs). AD, dementia 
due to Alzheimer’s disease; DLB, dementia with Lewy bodies; 
FTD, frontotemporal dementia; NC, normal controls.

FIGURE 6

Feature selection frequency histogram of 40 most important features. Feature selection was performed on training set in each iteration using 
neighborhood component analysis (NCA), identifying the best non-zero lambda value corresponding to the minimum average loss. AAL, 
automated anatomic labeling; L, left; R, right.
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in DLB group expert readers achieved lower sensitivity (68%) than 
SVM classifiers (77%–85%). SVM classifiers consistently 
outperformed expert readers in FTD group (F1 = 0.87, 0.83, and 
0.63), mostly due to the lower sensitivity of expert readers (46% in 
reduced and 70% in entire dataset vs. 77%–92%). Lower sensitivity 
of visual assessment has been reported previously (Rabinovici et al., 
2011; Tripathi et al., 2014; Etminani et al., 2021). Expert readers, 
however, achieved higher specificity and precision in AD, DLB, and 
FTD groups compared to the two SVM classifiers. Lower sensitivity 
in combination with high specificity shows that expert readers 
needed to recognize clear visual features of the disease to make a 
diagnosis and when they made a final call, they had less false 
positive readings than SVM models. In the NC group, SVM 
classifiers performed worse than expert readers (F1 = 0.71, 0.75, and 
0.92). Expert readers were less likely to classify the scan belonging 
to a diseased individual as normal. Indeed, only two scans belonging 
to diseased individuals were read as normal. However, expert 
readers could classify the scans that showed some pathological 
changes as inconclusive, while SVM models were “forced” to make 
a diagnostic decision. On one hand, that resulted in more diseased 
scans being misclassified as normal but on the other, it increased the 
number of scans that were correctly classified. Taken together, SVM 
classifiers outperformed visual readers in overall accuracy, but our 
results show that a combination of both approaches offers 
complementary information. In borderline cases, a decision from 
the SVM classifier might help the physician to make a final 
diagnosis and a combination of expert knowledge and computer-
aided assessment might be superior to either approach alone.

While the ROI-based classifier needed 40 features to reach the 
maximal classification accuracy, we have also shown that similar 
performance to visual reading can be  made using only the 
expression of four characteristic metabolic brain patterns. In 
addition, previous studies have shown that pattern expression 
scores correlate with measurements of cognitive impairment in 

AD and DLB (Perovnik et al., 2022a,b), and higher expression 
values are predictive of conversion from MCI to AD (Blazhenets 
et  al., 2019). In contrast to the ROI-based approach, pattern 
expression values can be more easily interpreted by a physician 
who would want to use the multi-class SVM as a supportive tool 
to aid the differential diagnosis.

Several studies have explored the utility of FDG PET for 
dementia differential diagnosis using computer-aided approaches. 
Xia et al. (2014) reported an overall accuracy of 95% with high 
sensitivity and specificity for the classification of AD, FTD, and 
NC using FDG PET scans. Díaz-Álvarez et  al. (2022) utilized 
genetic algorithms [which are population-based dimensionality 
reduction techniques that aim to maximize the classification 
performance while keeping the number of features low (Deb et al., 
2002)], for feature selection with K-Nearest Neighbor, and the 
naïve Bayes model for classification of AD, FTD, primary 
progressive aphasia variants, and NC, by using FDG PET scans. 
This approach achieved 86–93% classification accuracies in one 
vs. one design. Etminani et al. (2021), on the other hand, employed 
a deep learning model and included AD, DLB, MCI-AD, and NC 
scans in their study and reported high AUC values for AD (0.96), 
DLB (0.96), and NC (0.95). However, algorithms that include 
information on all the most common dementias are needed for 
successful implementation in the clinical workup. Mattila et al. 
(2012) developed a disease state index (DSI) classifier for five-class 
classification [AD, DLB, FTD, Vascular dementia (VaD) and 
subjective memory complaint (SMC)]. DSI is a data-driven model 
for dementia differential diagnosis utilizing a combination of 
clinical tests, CSF biomarkers, and MRI features to aid clinicians, 
which was shown to have an accuracy of 75% (Tong et al., 2017). 
FDG PET imaging can increase classification accuracy even 
further (Gjerum et al., 2020). Indeed, using only FDG PET data 
with a DSI classifier, high AUC values for AD (0.84–0.87), DLB 
(0.84–0.97), and FTD (0.87–0.97) were reported. The AUC values 

FIGURE 8

Absolute average Shapley values for four groups plotted on an AAL template. The most important features for dementia due to Alzheimer’s disease 
(AD) classification included bilateral temporal cortices, cerebellum, bilateral lingual, and calcarine sulci, for dementia with Lewy bodies (DLB) 
occipital cortices, hippocampi and parahippocampi, amygdala, and middle temporal lobes, for frontotemporal dementia (FTD) bilateral frontal 
cortical regions, middle cingulum and anterior cingulum, and for normal controls (NC) bilateral angular gyri, pons, and vermis. Regions (features) 
are color-coded blue to red from least to most important.
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were lower for the VaD group, where MRI outperformed FDG 
PET (Gjerum et al., 2020). Our study reports higher AUC values 
for all three groups using either pattern or ROI-based SVM 
classifiers (0.89 and 0.94 for AD; 0.90 and 0.93 for DLB; 0.98 and 
0.99 for FTD, respectively).

Even though machine learning algorithms can achieve high 
diagnostic accuracy, their interpretation is not trivial. Understanding 
of the decision-making process behind the machine learning 
algorithm is essential for a wider acceptance among physicians 
(Burgos and Colliot, 2020) and different approaches can be used to 
look inside the black box of a machine learning model. In our study, 
we examined feature importance in three steps. First, we looked at 
the entire dataset and calculated feature importance based on a 
distance metric algorithm, and then repeated this procedure in the 
training set in each iteration. Based on feature weights and frequency 
histogram, we  saw bilateral angular gyri, calcarine sulci, pons, 
cingulum, parts of frontal and occipital cortices, and inferior 
temporal and inferior parietal lobes as the most important features 
to make a prediction. However, this approach is unable to determine 
class-specific feature relevance, and thus we  employed Shapley 
Additive exPlanations (SHAP; Lundberg and Lee, 2017). SHAP has 
gained popularity in machine-learning literature in recent years 
(Lundberg and Lee, 2017; Lundberg et al., 2020), but its usefulness 
in explaining machine learning models in neuroimaging field has 
not been fully utilized. By plotting the Shapley values, we could 
observe class-specific region importance, based on which the final 
prediction of the SVM model was made, as shown in Figure 8.

Visualization of class-specific regional importance showed 
characteristic and well-known changes in FTD (Brown et al., 2014) 
in bilateral frontal cortices. In DLB, we  saw the importance of 
occipital changes and changes in medial temporal structures. The 
occipital hypometabolism is a known feature of DLB (McKeith et al., 
2017). However, based on Shapley’s values, we  cannot make a 
statement on the directionality of observed feature importance; the 
preservation of medial temporal structures is a consistent finding 
when comparing DLB to AD (Watson and Colloby, 2016). 
Conversely, in the AD group, our analysis did not reveal a classical 
pattern of hypometabolism in temporoparietal cortices and 
precuneus (Brown et al., 2014), presumably because similar regions 
are also affected in DLB (Perovnik et al., 2022b) and FTD (Nazem 
et  al., 2018), and are thus lacking differential diagnostic value. 
Interestingly, the metabolic status of parietal lobes was deemed as the 
most important for classifying a scan as NC. The four patterns, 
shown in Figure  8, resemble classic metabolic brain patterns 
characterized with a more typical multivariate approach, such as 
PCA. However, multi-class SVM aims to separate the four groups, 
unlike the typical PCA analysis, which maximize the difference 
between diseased and healthy individuals. Highlighted class-specific 
regional importance can provide useful information also to an 
expert reader, who could in uncertain situations focus his or her 
attention to the regions bearing the most differential diagnostic 
information, instead of looking for a fully characterized pattern of 
neurodegeneration. Furthermore, an expert reader might benefit 
from using the output from the automated algorithm in conjunction 

with visual assessment. We hypothesize that this approach would 
provide the highest diagnostic accuracy. However, this remains to 
be addressed in future studies.

This study is not without its limitation. The patients included did 
not have a pathologically confirmed diagnosis. The accuracy of the 
diagnosis was improved with long-term follow-up by a dementia 
specialist in DLB and FTD groups and confirmed with CSF 
biomarkers in the AD group, which are in close concordance with 
pathological findings (Toledo et al., 2012). Clinicians making the 
diagnosis were not blinded to the visual reading of the FDG PET 
scan. While this could potentially be a source of bias, we included 
only those patients who fulfilled clinical diagnostic criteria in 
combination with other objective markers, i.e., CSF biomarkers in 
AD and dopamine transporter imaging in DLB. Furthermore, all 
subjects were scanned with the same PET scanner and the 
generalization of our findings to a more heterogeneous group 
remains to be tested. Some of the studied groups in our sample were 
small and we had class imbalance in our dataset. The latter was 
addressed by comparing the models based on the F1 scores, which 
are a more robust metric than accuracy in imbalanced datasets. The 
groups differed in their mean age and sex distribution with FTD and 
NC participants being younger than the other groups and the DLB 
cohort included more male participants than the NC group. These 
differences could have introduced a subtle bias to our models. Thus, 
the extension of the dataset to include a larger sample will be needed 
to evaluate this possibility.

Conclusion

This study shows that a multi-class SVM algorithm based 
either on the expression of characteristic metabolic brain patterns 
or ROI glucose uptake can perform better than experts’ visual 
reading in the differential diagnosis of most common dementia 
syndromes using FDG PET scans. Furthermore, we have shown 
the utility of Shapley’s values for showing class-specific regional 
importance in explaining SVM models. A head-to-head 
comparison of interpretable machine learning model with visual 
reading has the potential of bringing computer-aided diagnosis 
closer to clinical workup. A future comparison with other imaging 
modalities and other diagnostic tools would be interesting.
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