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Alzheimer’s disease (AD), the predominant cause of late-life dementia, has a multifactorial
etiology. Since there are few therapeutic options for symptomatic AD, research is
increasingly focused on the identification of pre-symptomatic biomarkers. Recently,
evaluation of neuron-derived exosomal markers has emerged as a promising novel
approach for determining neuronal dysfunction. We aimed to identify novel neuron-
derived exosomal markers that signify a transition from normal aging to Mild Cognitive
Impairment (MCI) and then to clinically established AD, a sequence we refer to as AD
progression. By using a Tandem Mass Tag-based quantitative proteomic approach,
we identified a total of 360 neuron-derived exosomal proteins. Subsequent fuzzy
c-means clustering revealed two clusters of proteins displaying trends of gradually
increasing/decreasing expression over the period of AD progression (normal to MCI to
AD), both of which were mainly involved in immune response-associated pathways,
proteins within these clusters were defined as bridge proteins. Several differentially
expressed proteins (DEPs) were identified in the progression of AD. The intersections
of bridge proteins and DEPs were defined as key proteins, including C7 (Complement
component 7), FERMT3 (Fermitin Family Member 3), CAP1 (Adenylyl cyclase-associated
protein 1), ENO1 (Enolase 1), and ZYX (Zyxin), among which the expression patterns
of C7 and ZYX were almost consistent with the proteomic results. Collectively, we
propose that C7 and ZYX might be two novel neuron-derived exosomal protein markers,
expression of which might be used to evaluate cognitive decline before a clinical
diagnosis of AD is warranted.

Keywords: Alzheimer’s disease, mild cognitive impairment, proteomics, neuron-derived exosomal markers,
bioinfomatics analysis

INTRODUCTION

Dementia manifests via progressive cognitive impairment leading to patient dependency
or even death (Duong et al., 2017). According to an analysis of dementia prevalence in
2015, there were some 47 million dementia patients around the world, and this number
was predicted to reach 131 million by the mid-21st century (Arvanitakis et al., 2019).
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Alzheimer’s disease (AD), a major component of age-related
dementia, results from progressive neurodegeneration
(Lane et al., 2018) characterized by β-amyloid (Aβ) plaques
and intracellular neurofibrillary tangles composed of
hyperphosphorylated tau protein (Lane et al., 2018).

AD is thought to result from the interplay of genetic
susceptibility and unknown environmental factors (Bird et al.,
1989; Devi and Scheltens, 2018; Dunn et al., 2019). The
insidious and progressive nature of AD makes it difficult to
diagnose (Swallow, 2017), and confirmation of AD is based on
post-mortem evaluation of cerebral tissues (Weller and Budson,
2018). The lack of effective therapeutic options for AD has
shifted research focus toward preclinical AD prediction (Imtiaz
et al., 2014; Swallow, 2017). Although evaluation of biomarkers
in cerebrospinal fluid was shown to be reliable for predicting
AD (Paterson et al., 2018), it requires lumbar puncture and
thus is highly invasive (Khan and Alkon, 2015). Therefore, it is
imperative to find an alternative diagnostic approach that not
only causes less harm to patients but also provides early warning
signals of impending AD. Mild cognitive impairment (MCI) is
considered an intermediate stage between normal aging and AD
(Geda, 2012) that confers a 10–15% annual risk of converting to
probable AD (Risacher et al., 2009).

Peripheral biomarker (blood) testing offers advantages over
traditional AD screening procedures in terms of cost and
invasiveness (Sabbagh and Blennow, 2019). Previous studies
have placed emphasis on evaluating known AD biomarkers,
such as Aβ or tau isoforms in various peripheral body fluids,
such as saliva (Sabbagh et al., 2018) or serum (Li and Mielke,
2019). A longitudinal blood transcriptomic study identified a
consistent downregulation of TOMM40 (translocase of outer
mitochondrial membrane 40 homolog) in AD patients and
upregulation of several leukocyte-specific genes among those
with rapidly vs. slowly advancing disease, including KIR2DL5A
(killer cell immunoglobulin-like receptor, two domains, long
cytoplasmic tail, 5A), SLC2A8 (solute carrier family 2, facilitated
glucose transporter, member 2), and PLOD1 (procollagen-lysine
2 o-oxoglutarate 5-dioxygenase 1; Chong et al., 2013).

Since mRNA alterations have an unknown impact at the
protein level, we designed a proteomic study that sought novel
exosome-associated proteins that might serve as peripheral blood
biomarkers for MCI/AD progression. Exosomes are a group of
endocytosis-related membrane vesicles that act as intercellular
messengers by carrying various cargo biomolecules from donor
cells to recipient cells (Sancho-Albero et al., 2020). Due to
their pivotal regulatory roles, these nanometer-sized particles
are ubiquitously distributed throughout the body and can be
detected in a variety of easily accessible biospecimens, including
blood, urine, or saliva (Yang et al., 2020). Moreover, given
their stability, exosomal biomarkers match or outperform their
counterparts in conventional specimens, such as serum or urine,
in terms of specificity and sensitivity (Lin et al., 2015). Since
exosomes can be released by neurons (Sharma et al., 2019),
the diagnostic potential of neuron-derived exosomal biomarkers
has drawn interest. Notably, exosomes have been proposed to
promote the propagation of AD-associated substances across
the brain (Bellingham et al., 2012). Several candidates for AD

diagnosis were recently unearthed, such as synapse proteins
(including synaptophysin, synaptopodin, and synaptotagmins),
down-regulation of which might signal neuronal dysfunction
(Goetzl et al., 2016), as well as NPTX2 (neuronal pentraxin
2), which maintains neuronal homeostasis (Goetzl et al., 2018;
Watson et al., 2019).

Endeavor has been made to identify blood-derived prognostic
markers that change as the AD progresses in its early stage.
In a previous study, Chong et al. found a lack of TOMM40
(translocase of outer mitochondrial membrane 40 homolog)
at the transcriptomic level in fast- or slow-AD progressors
(AD patients with changes in Clinical Dementia Rating-Sum
of Boxes score of ≥2 points or <2 points), along with
several leukocytes-specific genes, includingKIR2DL5A (killer cell
immunoglobulin-like receptor, two domains, long cytoplasmic
tail, 5A), SLC2A8 (solute carrier family 2, facilitated glucose
transporter, member 2), and PLOD1 (procollagen-lysine 2
o-oxoglutarate 5-dioxygenase 1) that were specifically elevated
in fast-AD progressors (Chong et al., 2013). However, such
alterations at the mRNA level are not representative of the
biological impact at the protein level; in addition, the mere focus
on biomarkers of early-stage AD does not reflect the progressive
nature of AD. Therefore, the present study employs quantitative
proteomic and bioinformatic tools to compare and contrast
neuron-derived exosomes in peripheral blood collected from
Chinese patients undergoing normal aging and from individuals
with diagnoses of MCI and AD.

MATERIALS AND METHODS

Reagents
The ExoQuick ULTRA exosome isolation kit was purchased
from SBI System Bioscience (Palo Alto, CA, USA). Anti-L1CAM
biotinylated antibody was purchased from R&D Systems
(Minneapolis, MN, USA). The human CD81 (Cluster of
Differentiation 81) antigen ELISA kit was purchased from
CUSABIO (Wuhan, China). ELISA kits for C7 (Complement
component 7), FERMT3 (Fermitin Family Member 3), CAP1
(Adenylyl cyclase-associated protein 1), ENO1 (Enolase 1), and
ZYX (Zyxin) were purchased from CLOUD-CLONE (Wuhan,
China). Albumin/IgG removal kits were purchased from
Merk (Shanghai, China). TMT 6-plex labeling kit, MicroBCA
protein quantification kit, Streptavidin Plus UltraLinkTM Resin,
M-PER Mammalian Protein Extraction Reagent, 1M TEAB, and
50% Hydroxylamine were purchased from Thermo Scientific
(Rockford, IL, USA). Sequence grade trypsin was purchased
from Promega (Madison, WI, USA). Dithiothreitol and indole-
3-acetic acid were purchased from GE Healthcare (Shanghai,
China).

Subject Selection and Serum Collection
The overall study design is shown in Supplementary Figure 1.
The study was reviewed and approved by the Ethics Committee
of Shenzhen Center for Disease Control and Prevention, and
all participating subjects provided written informed consent.
Subjects were selected from the elderly (60+ years) population
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in a hospital in Shenzhen. Cognitive status was measured by
Mini-cog and MMSE (Mini-Mental State Exam) assessment.

Subjects with Mini-cog score less than 5 and MMSE score
≤21 (for subjects with an education level of primary school or
below) or MMSE score ≤24 (for subjects with an education level
of secondary school and above) were considered to have MCI
(Katzman et al., 1988). Patients were diagnosed with AD by
experienced neurologists in accordance with criteria adopted by
the U.S. National Institute of Neurological and Communicative
Disorders and Stroke Alzheimer’s Disease and Related Disorders
Association (NINCDS-ADRDA). A total of five subjects with
AD, five with MCI, and five normal age-matched controls
participated in this study. Venous blood samples (5 ml) were
collected from each subject, and the serum was separated by
centrifugation (3,000 rpm for 10 min at 4◦C).

Isolation of Neuron-Derived Exosomes
Total exosomes were separated from 250 µl serum samples
and cleaned up by ExoQuick ULTRA kit following the
manufacturer’s instruction. One microgram anti-L1CAM
biotinylated antibody was linked to 20 µl streptavidin resin
by incubation at room temperature for 1 h. Antibody-linked
resins were washed in Hank’s balanced salt solution (HBSS),
incubated overnight at 4◦C with 350 µl cleaned serum exosome
solution (pH 8.0), and washed again with HBSS buffer. Finally,
the neuron-derived exosomes were eluted with Tris-HCl (pH
3.0).

Identification of Neuron-Derived
Exosomes
Exosome suspension (20 µl) was dropped onto a 400-mesh
copper grid and air-dried for 30 min, following which the
samples were stained with 20 µl 1% uranium acetate solution
for 1 min. The remaining liquid was removed from the copper
grid, which was then loaded into a JEM F200 (JEOL, Tokyo,
Japan) transmission electron microscope. Ultrastructural images
were captured with a resolution of∼100 nm. NTA (Nanoparticle
Tracking Analysis) measurements were performed by injecting
the samples into a NanoSight LM20 (NanoSight, Amesbury, UK)
equipped with a 640-nm laser, and a Viton fluoroelastomer O-
ring. Particle size was evaluated with NTA 2.3 software.

Proteomic Analysis
Neuron-derived exosomal proteins were extracted with
Mammalian Protein Extraction Reagent (M-PER). Total protein
levels were quantified using a bicinchoninic quantification assay
kit; the protein suspension was subsequently filtered by 3 kDa
filtration devices (Millipore, CA, USA). Protein reduction and
alkylation employed 400 µl DTT solution (100 mM TEAB with
10 mMDTT) and incubation with 400 µl IAA solution (100 mM
TEAB with 20 mM IAA), respectively. Next, the proteins were
digested with trypsin at 37◦C for 15 h; the digestion products
were labeled with TMT (6-plex) labeling reagent and samples
from different groups were pooled. Peptides were separated by
a DionexTM nano liquid chromatography system (3 µm, 100 Å,
75 µm i.d. ×15 cm, Acclaim PepMap100, C18) and analyzed
by high-resolution Orbitrap mass spectrometry (Q-Exactive

System, Thermo Scientific, MA, USA). Data were processed
and searched against the Uniprot human protein database
(a total of 71,434 entries) with Proteome Discoverer 2.1. All
groups of reporter ion intensities were log2 transformed to
form an expression matrix for bioinformatics analyses. The
mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (Deutschet al., 2020) via the
PRIDE (Perez-Riverol et al., 2019) partner repository with the
dataset identifier PXD027561.

Soft Clustering of AD Progression-Related
Proteins
To investigate overall protein expression patterns, a soft
clustering method called fuzzy c-means clustering (Kumar and
Futschik, 2007) was performed using the R package Mfuzz
(version 2.48.0). Briefly, the mean protein expression value
per stage (normal/MCI/AD) was first computed and fed to
the fuzzy c-means algorithm; this resulted in six neuron-
derived exosomal protein clusters, each with distinct expression
pattern. Protein clusters that showed AD-progression-dependent
increase/decrease (defined as bridge clusters) were visualized by
heatmap using R package ComplexHeatmap (version 2.4.3) and
chosen for further analyses. Proteins in bridge clusters were
defined as bridge proteins.

Function Enrichment Analysis
To illuminate the biological impacts caused by altered protein
expression across various stages of AD development, the
exosomal proteins in 6 clusters were subjected to function
enrichment analysis. By searching against the GO/KEGG
database (2021, February 11th) using the R package clusterprofiler
(version 3.16.1), the joint effect of proteins in different clusters
was interpreted. The top five enriched GO terms (under
Biological process, BP; Molecular function, MF or Cellular
component, CC branches) and KEGG pathways with the
smallest q-value (p-value adjusted by Benjamini–Hochberg
procedure) were extracted and displayed in bubble plots using
R package ggplot2 (version 3.3.3). The size of the intersection
between/among different clusters was displayed in an upset
plot using R package ComplexHeatmap, where GO terms/KEGG
pathways co-regulated by ≥3 clusters (defined as core pathways)
were intuitively visualized. Next, the co-regulatory relationship
between core pathways and 6 clusters was visualized in a Sankey
diagram using the R package ggalluvial (version 0.12.3). Finally,
a chord diagram showing the co-regulated pathways shared by
bridge clusters was generated using R package circlize (version
0.4.12).

Differential Expression Analysis
Differential expression analysis was performed using a t-test
approach; the DEPs were shown in volcano plots using R package
ggplot2. The log2-fold-change of a protein between two groups
of samples was calculated based on the arithmetic mean of
log2-transformed protein expression, which was expressed using
the formula:
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where G1i and G2j represent the expression of the protein in
the ith sample of group 1 and the jth sample of group 2,
respectively. m and n correspond to the total number of samples
within group 1 and group 2, respectively. This is equivalent to
the log2-transformed ratio of geometric means of the protein
expression (original scale) between two groups:
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Proteins that satisfied p-values <0.05 and log2-fold-change
greater than or equal to 0.5 were considered DEPs. The
intersection between DEPs and bridge proteins was defined as
key proteins and used in experimental validation by ELISA.

ELISA Assay
After extraction of neuron-derived exosomal protein, the
CD81 levels in peripheral blood samples were assayed using
the Human CD81 antigen ELISA kit. The best-fit curve of
optical density vs. concentration was drawn using Curve Expert
software (version 1.3), enabling the calculation of the peripheral
blood CD81 concentration. After the bioinformatics analyses, the

expression levels of key proteins (C7, FERMT3, CAP1, ENO1,
and ZYX) were validated in an independent set of samples using
corresponding ELISA kits. The relative protein expression of key
proteins (normalized to the levels of CD81) was shown in box
plots using the R package ggpubr (version 0.4.0), and the p-value
and statistical significance were displayed by the R package rstatix
(version 0.6.0).

Protein-Protein Interaction (PPI) Network
Analysis
The PPI network of bridge proteins was established by
STRING online database (string-db.org, version 11.0) and
analyzed locally with a Cytoscape (version 3.8.1) plug-in called
‘‘NetworkAnalyzer’’ (version 4.4.6). Two topological parameters,
namely, the degree of centrality (how many edges are linked to
the node) and the betweenness centrality (how frequent the node
serves as a bridge in the shortest path between two other nodes)
were used to visualize the PPI network.

RESULTS

Neuron-Derived Exosomes Were
Successfully Isolated From the Peripheral
Blood
Transmission electron microscopy revealed ∼100 nm exosome
particles with double membranes (Figure 1). Nanoparticle

FIGURE 1 | Identification of neuron-derived exosomes. Image showing the double-layer membrane structure of exosomes, with a scale bar of 50 nm.

TABLE 1 | Evaluation of exosome specific marker CD81 in the peripheral blood sample.

S0 S1 S2 S3 S4 S5 S6 Sample

OD 0.214 0.235 0.293 0.367 0.439 0.517 1.524 0.337
ng/ml 0.000 0.156 0.312 0.625 1.250 2.500 5.000 0.465

S0-S6: Serially diluted standard samples.

Frontiers in Aging Neuroscience | www.frontiersin.org 4 August 2021 | Volume 13 | Article 696944

https://www.string-db.org
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Zhong et al. Exosomal Markers for AD Progression

FIGURE 2 | Soft clustering of exosomal protein expression patterns. The membership values of each cluster protein are color-encoded in the plots. Yellow- or
green-colored trend lines correspond to bridge proteins with relatively low membership value, whereas their red-colored counterparts represent bridge proteins with
higher value of membership. Three characters “N,” “M,” and “A” on the horizontal axis represent normal, mild cognitive impairment (MCI) and Alzheimer’s disease
(AD). The six soft clusters exhibit distinct expression patterns of neuron-derived exosomal proteins across the different stages of AD progression, among which
Cluster 4/Cluster 5 display a consistently increasing/decreasing trend.

tracking analysis suggested that the average size and
mean intensity of the particle were 56.19 nm and 66.3%,
respectively (Supplementary Figure 2A). The standard curve
of CD81 concentration vs. optical density (Supplementary
Figure 2B) was later used to calculate the concentration of
CD81. As shown in Table 1, a certain concentration of CD81 was
detected in peripheral blood samples, indicating the successful
isolation of exosomes.

Two Protein Expression Patterns Are
Associated With AD Progression
We identified 360 neuron-derived exosomal proteins by tandem
mass tag (TMT) quantitative proteomics. The longitudinal
evolution of the mean expression of exosomal proteins along
the three steps of cognitive decline was assessed by fuzzy
c-means algorithm. As shown in Figure 2, the expression
patterns of several protein clusters were represented by colored
trendlines, and Cluster 4 and Cluster 5 displayed a trend
of gradually increasing/decreasing protein expression over the
period of AD progression (these clusters were defined as bridge
clusters). The proteins in these clusters were named bridge
proteins and subjected to subsequent investigations. A list of

identified proteins was provided in Supplementary Table 1.
The phenotypic information of the subjects used for proteomic
analysis is provided in Supplementary Table 2. All results
of fuzzy c-means clustering are provided in Supplementary
Table 3.

Function Enrichment Analyses Revealed
Several Core Pathways
To gain insight into their biological functions, proteins in
all six clusters were used as queries to search GO/KEGG
databases. The top enriched pathways/GO terms in each cluster
are shown in bubble plots (Figure 3) and further integrated
into an upset plot (Figure 4A), wherein the right histograms
marked in red correspond to pathways/GO terms co-regulated
by ≥3 clusters (core pathways). As shown in Figure 4B,
the co-regulatory relationship between core pathways and the
6 clusters were visualized in a Sankey diagram, the most
representative core pathways (co-regulated by ≥5 clusters,
defined as pivotal pathways) and the corresponding ontologies
were ‘‘blood microparticle’’ (GO-CC), ‘‘antigen binding’’ (GO-
MF), ‘‘complement activation’’ (GO-BP), and ‘‘humoral immune
response’’ (GO-BP).
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FIGURE 3 | Bubble plots showing the involvement of six protein clusters in different biological processes. The top five enriched KEGG pathways/GO terms for each
cluster displayed in bubble plots. The dot size represents the number of proteins involved in each KEGG pathway/GO term, and the color gradient corresponds to
the q-value-based statistical significance.

Two Bridge Protein Clusters Jointly
Regulate Several Biological Pathways
To investigate the interaction of Cluster 4 and Cluster 5, a chord
diagram was used to visualize the involvement of bridge proteins

in the top enriched GO terms/KEGG pathways (Figure 5),
Cluster 4/Cluster 5 bridge proteins jointly regulate the following
biological processes: ‘‘complement activation,’’ ‘‘humoral
immune response,’’ ‘‘regulation of complement activation,’’
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FIGURE 4 | Discovery of core pathways for cognitive decline. The top histogram of the upset plot (A) shows the set size of each cluster (five top enriched KEGG
pathways plus 5*3 top enriched GO terms under BP, CC, or MF branches, a total of 20 pathways/GO terms). The right histogram represents the size of intersection
between two, or among more than two clusters. Specifically, right histograms correspond to the pathways/GO terms co-regulated by the majority (≥3) of clusters
were marked in red. Details within these histograms are further depicted in a Sankey diagram (B). Each flow is colored to represent a specific KEGG pathway/GO
term. The information flow starts from blocks representing different clusters (source node), passes through the second column of blocks representing the biological
processes, and finally converges on one of the four (BP, CC, MF, KEGG) ontologies (sink node).

‘‘antigen binding,’’ ‘‘immunoglobulin receptor binding,’’ ‘‘blood
microparticle,’’ and ‘‘secretory granule lumen.’’ In addition,
various pathways are exclusively regulated by Cluster 4 (such
as ‘‘phagocytosis’’ and ‘‘receptor-mediated endocytosis’’) and
Cluster 5 (such as ‘‘complement activation, classical pathway,’’
and ‘‘humoral immune response mediated by circulating
immunoglobulin’’).

K-Means Clustering Based on Expression
Profiles of Bridge Proteins Distinguishes
the Majority of AD Patients From Their
Normal Aging Counterparts
There were 55/59 bridge proteins in Cluster 4/Cluster 5,
expression of which increased/decreased as cognitive function
declined (i.e., from normal to MCI to AD), as shown in the
corresponding expression heatmaps (Figures 6A,B). The top
dendrogram shows that the K-means clustering was performed
based on the expression profile of 55 Cluster 4 bridge
proteins/59 Cluster 5 bridge proteins, whereby samples were split
into three clusters that distinguish the majority of AD patients
from normal controls.

Several Differentially Expressed Proteins
Were Identified by t-test
Next, we used a t-test approach to determine neuron-derived
exosomal proteins with statistically significant changes between
each possible combination of the groups. As shown in
Figure 7, volcano plots demonstrated the results of pairwise

comparison between MCI and normal, AD and normal,
and AD and MCI. The DEPs between MCI and N were
NCL (Nucleolin), HSP90AB1 (Heat Shock Protein 90 Alpha
Family Class B Member 1), F11 (coagulation factor XI),
CFP (Cyan Fluorescent Protein), PRG4 (Proteoglycan 4),
C4BPB (Complement Component 4 Binding Protein Beta)
and C4BPA (Complement Component 4 Binding Protein
Alpha; Figure 7A); the DEPs between AD and normal were
FCN3 (Ficolin 3), FERMT3, ENO1, ZYX, YWHAZ (Tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation
protein zeta), and CAP1 (Figure 7B); the DEPs between AD and
MCI were C4BPA (Complement Component 4 Binding Protein
Alpha), F12 (Coagulation Factor XII), APOA2 (apolipoprotein
A-II), and C7 (Figure 7C). To improve the robustness of the
proteomic results, intersections between bridge proteins in
Cluster 4/Cluster 5 and DEPs between two groups of samples
were defined as key proteins (Figure 8), including C7 (in Cluster
4, showing a consistent upward trend across the progressive
steps of cognitive decline), FERMT3, CAP1, ENO1, and ZYX
(in Cluster 5, showing a consistent downward trend across the
progressive steps of cognitive decline). Results of t-tests were
provided in Supplementary Table 4.

Expression Patterns of C7 and ZYX Were
Validated by ELISA Analyses
The expression of key proteins was validated in an independent
set of samples (containing 32 AD patients, 34 MCI sufferers,
and 52 normal aging controls) using ELISA assay, among
which the expression of CAP1 and ENO1 was below the
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FIGURE 5 | Enriched biological processes of bridge proteins. The participation of bridge proteins in the top five enriched GO terms/KEGG pathways are shown in a
chord diagram. The sectors correspond to the top five enriched GO-BP/GO-CC/GO-MF terms and KEGG pathways with the lowest p-value. The spill-over from
“Cluster 4” or “Cluster 5” sector to other sectors indicates the number of bridge proteins involved in different GO terms/KEGG pathways. Notably, the intersection
between pathways regulated by Cluster 4/Cluster 5 bridge proteins are: “complement activation,” “humoral immune response,” “regulation of complement
activation,” “antigen binding,” “immunoglobulin receptor binding,” “blood microparticle,” and “secretory granule lumen.”

detection limits. Hence, only expression of C7, FERMT3, and
ZYX was used to generate box and whisker plots (Figure 9A)
Statistically significant expression changes of C7 and ZYX were
found between different group pairs (except for ZYX expression
between MCI and AD), which was almost consistent with the
proteomic analysis results. The phenotypic information of the
subjects in the independent cohort is provided in Supplementary
Table 5.

PPI Network of Bridge Proteins Reveals
a Potential Regulatory Axis
Finally, in the PPI network obtained from the STRING database
(Figure 9B), we found that C7 and ZYX might be connected by
a path containing VTN (Vitronectin) and SRC (Proto-oncogene
tyrosine-protein kinase Src). Although VTN and SRC were not
identified as differential enrichment proteins, based on their
relatively high betweenness centrality, we speculated that VTN

and SRC might exert important anti-AD roles (as they belong
to Cluster 5) by regulating several bridge proteins, and most
importantly, theymight constitute a regulatory axis together with
the preceding two key proteins (C7 and ZYX).

DISCUSSION

We used a TMT-based quantitative proteomic approach to
identify and compare neuron-derived blood exosomal markers
in participants with AD, MCI, and age-matched healthy controls
with the goal of identifying a stepwise progression from
normality to AD. First, several expression behaviors of neuron-
derived exosomal proteins were identified by fuzzy c-means
clustering, whereas the trend lines of Cluster 1 and Cluster
3 exhibited a concaved shape, with minimum expression changes
at the MCI stage, in distinct contrast to the expression patterns
of bridge proteins in Cluster 2 and Cluster 6 (demonstrated
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FIGURE 6 | Heatmap of normalized expression matrix of two clusters. The expression matrixes of bridge proteins in Cluster 4 (A) and Cluster 5 (B) visualized as a
heatmap. The dendrogram at the top of the heatmap was generated by K-means clustering based on the expression profile of 55 Cluster 4 bridge
proteins/59 Cluster 5 bridge proteins, whereby samples were divided into 3 clusters. The bridge proteins were sorted in descending order according to the
corresponding cluster membership; therefore, the membership value decreases from top to bottom of the row annotation (as represented by a color gradient from
green to yellow).

by convex-shaped trend lines). The aforementioned clusters
might exert a dual role in the progression of AD (vide infra,
Liu et al., 2014). By comparison, more consistent trends of
elevation/reduction of protein expression were observed in
Cluster 4 and Cluster 5.

Despite the divergence among these clusters, we used function
enrichment analyses to describe their respective roles in the
pathogenesis of AD. The results were visualized using bubble
plots, among which the core pathways (GO terms/KEGG
pathways co-regulated by ≥3 clusters) were identified and
marked red in an upset plot; the corresponding detailed
information was further visualized by a Sankey diagram, the
most representative core pathways (GO terms/KEGG pathways
co-regulated by ≥5 clusters, defined as pivotal pathways)
were ‘‘blood microparticle,’’ ‘‘antigen binding,’’ ‘‘complement
activation,’’ and ‘‘humoral immune response.’’ Aside from the
enrichment in the ‘‘blood microparticle’’ that might be attributed
to the source of the samples analyzed (peripheral blood),
enrichment of protein clusters in the three remaining pivotal

pathways was consistent with evidence that neuroinflammation
contributes to the pathogenesis of AD (Heneka et al.,
2015). Antigen binding is a fundamental process for the
initiation of various immune effector functions, including
phagocytosis and neutralization of receptors (Heesters et al.,
2016). Complement activation is a crucial innate immune process
for timely recognition and clearance of exogenous pathogens and
endogenous misfolded proteins (Ricklin and Lambris, 2013). In
the context of AD, the complement system could compensate
for the insufficient clearance of Aβ and trigger relevant adaptive
immune responses (Tenner, 2020). The B cell-mediated humoral
immune response, which was initiated by antigen binding to
clonally distributed B-cell receptors (Liu et al., 2010), was thought
to bear anti-AD potential: as early as 1993, four AD patient-
derived B cell lines were found to secret antibodies that target Aβ

peptide in a specific manner (Gaskin et al., 1993), an in-depth
animal study demonstrated that the formation of amyloid
plaques was abolished by Aβ immunization (Schenk et al., 1999),
further corroborating the therapeutic potential of the humoral
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FIGURE 7 | Volcano plot of differential expression analysis. Each dot in the Volcano plot represents a neuron-derived exosomal protein. Difference in expression
between two groups and p-values are reported as log2 fold changes and –log10 values, respectively. The cut-off limits are set at p < 0.05 and log2 fold change
≥0.5, with red/blue dots signifying the up-/down-regulated DEPs calculated by t-test of MCI vs. normal group (A); AD vs. MCI group (B) and AD vs. normal group
(C), respectively. The representative proteins are labeled in the plots.

immune response in Alzheimer disease. Although we found
several pivotal pathways that might be co-regulated by different
protein clusters, our purpose was to identify proteins accountable
for AD-progression; therefore, we focused on Cluster 4 and
Cluster 5 that display a consistently increasing/decreasing trend,
as these clusters might promote or impede the development of
AD. Thus, the combined action of Clusters 4 and 5 was further
investigated.

The chord diagram indicated that several enriched GO
terms/KEGG pathways were co-regulated by bridge proteins in
Cluster 4 and Cluster 5. Both clusters were highly implicated
in immune-associated pathways including ‘‘complement
activation,’’ ‘‘antigen binding,’’ ‘‘immunoglobulin receptor
binding,’’ ‘‘immunoglobulin complex,’’ and ‘‘humoral immune
response.’’ Since ‘‘antigen binding,’’ ‘‘complement activation,’’
and ‘‘humoral immune response’’ were previously defined as
pivotal pathways, this suggests that clusters other than Clusters
4 and 5 might also participate in these pathways. However,
‘‘immunoglobulin receptor binding’’ and ‘‘immunoglobulin
complex’’ might be more specifically regulated by Cluster
4/Cluster 5. Immunoglobulin is important in AD pathology, as
illustrated by the significantly lower serum IgG autoantibody

level relative to healthy controls (Acharya et al., 2013) although,
on the other hand, an inverse correlation was proposed between
cerebral Aβ burden and IgM in a mouse model of AD (Wang
et al., 2017). Taken together, the findings underscore the role
of the immune system (especially immunoglobulin-associated
immune processes) in the evolution of AD. In our subsequent
heatmap analysis, the expression profiles of bridge proteins in
Cluster 4/Cluster 5 were used for K-means clustering, which
distinguished most AD subjects from their normal aging
counterparts. These results highlight the biological significance
of the bridge proteins.

Next, we performed differential protein expression
analysis, in addition to time-course analysis, to ensure
the statistical rigor of this study. We defined several key
proteins based on the intersections between bridge proteins
and differential enrichment proteins (DEPs). The biological
roles of representative identified DEPs included two major
constituents of C4BP (complement component 4 binding
proteins), namely, C4BPA and C4BPB, that were differentially
expressed between the MCI (elevated) and the normal aging
group. However, the elevated expression in MCI samples
was not totally consistent with the cerebral-protective roles
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FIGURE 8 | Identification of key proteins in AD progression. The Venn
diagram of Cluster 4 (yellow)/Cluster 5 (purple) bridge proteins and DEPs
obtained through differential expression analysis between each pair of
groups: AD vs. MCI (AVsM, blue)/AD vs. normal (AVsN, green). There is no
intersection between Cluster 4/Cluster 5 and DEPs obtained through
differential expression analysis of MCI vs. normal. The intersection between
Cluster 4 and AVsM was C7, while the intersection between Cluster 5 and
AvsN was FERMT3, CAP1, ENO1, and ZYX.

of C4BP, such as reducing excessive complement activation
mediated by extracellular Aβ accumulation (Trouw et al., 2008).
Nevertheless, we hypothesized that this phenomenon might
be an innate resistance, although perhaps not sufficient in
magnitude, to counteract AD progression. Second, we have
ENO1, which is a crucial glycolytic enzyme (Butterfield and
Lange, 2009) differentially expressed between AD (reduced)
and the normal aging group. In a previous report, proteomic
results suggested that ENO1 was prone to oxidation in the
cerebral tissue of both 3×Tg-AD mice and AD patients
(Shen et al., 2015); such modification might result in the
altered metabolic processing of glucose and degradation of Aβ

(Butterfield and Lange, 2009). Finally, APOA2 was differentially
expressed between the AD (elevated) and MCI group, and is
the second major apolipoprotein of the high-density lipoprotein
cholesterol (HDL-C). This protein inhibits cholesterol efflux
by regulating the activity of several enzymes associated with
HDL-C remodeling (Bandarian et al., 2016). Importantly, a
reduced plasma APOA2 protein level was previously found to
be related to cognitive decline in normal aging subjects during
a 2-year follow-up period (Song et al., 2012); this suggests that
the relatively low APOA2 expression in the MCI group were
predisposed to further decline in their cognitive function.

Among five key proteins, ELISA validation of C7 and ZYX
was almost consistent with the proteomic results. By utilizing
whole-exome sequencing (WES) technology, C7 was previously
identified as a risk gene for AD in the Han Chinese population
(Zhang et al., 2019): first, an exome-wide missense variant
rs3792646 was identified in the C7 gene, the corresponding

risk allele rs3792646-C might exert potential influence over the
working memory performance, as well as the cerebral structure
of the carriers (e.g., reduced volume of the right hippocampus);
second, at the transcriptomic level, C7 was the only elevated
component of the terminal complement complex in brain tissues
of AD patients; such transcriptional change was concordant with
the ELISA-validated expression pattern of C7 in this study, and
we hypothesized that the neuron-derived exosomes might be
responsible for the dissemination of C7 protein from the brain to
the peripheral vascular system. ZYX is predominantly expressed
during brain development (Fujita et al., 2009); its subcellular
localization is decisive for whether it promotes (Hervy et al.,
2010) or prevents (Kato et al., 2005) apoptosis. ZYX contributes
to the stability of HIPK2 (homeodomain interacting protein
kinase 2); HIPK2 promotes apoptosis in the DNA damage
response process by forming a complex with p53 and inducing
phosphorylation at serine 46, thereby triggering the expression
of multiple pro-apoptotic regulators (Crone et al., 2011). In the
context of AD, Lanni et al. (2013) found that two Aβ peptides
could suppress the expression of ZYX, thereby inhibiting the
activity of HIPK2, and indirectly modulating apoptosis by
inducing the unfolded conformation of p53 that impedes the
normal apoptotic process in the presence of stimulation. Such
observation (Aβ induced ZYX degradation) might explain the
gradually decreasing expression of neuron-derived ZYX over the
period of AD progression in this study.

Although significant results were found, it should be noted
that there are some limitations to this study. First, we did not
perform phosphoproteomics, therefore, phosphorylation of tau
(e.g., pT181 and pS396) was not identified. Second, this study was
designed to explore novel AD markers, which led to the neglect
of known AD markers (such as the level of Aβ). The lack of
evidence on tau phosphorylation and Aβ level makes it difficult
to associate the current findings with the empirical knowledge
about AD, which may potentially impact the interpretation of
our current results. Third, APOA2 was found to be a DEP
in this study, which might signal co-isolation of lipoproteins.
In addition, only one extracellular vesicles marker (membrane
protein CD81) was used to determine the successful isolation of
the exosomes. Finally, given the relatively small sample size for
proteomic analysis (5 normal aging controls, 5 MCI sufferers,
and 5 AD patients) and ELISA assay (52 normal aging controls,
34 MCI, and 32 AD patients), validation of the present findings
is needed by longitudinal studies of a larger number of subjects
progressing fromMCI to AD.

In summary, transcriptomic expression of the C7 gene was
previously identified as a risk factor for AD (Song et al., 2012),
whereas ZYX was known to be degraded by Aβ peptides in
the neuroblastoma cell model (Lanni et al., 2013). Hence, in
the current study, for the first time, we demonstrate that C7
(at protein level) and ZYX (in human sample) might be novel
neuron-derived protein markers for cognitive decline.
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FIGURE 9 | ELISA validation of key proteins and construction of protein-protein interaction (PPI) network. Box and Whisker plot (A) demonstrate the median
expression (middle line), minimum/maximum expression (whiskers) of key proteins (C7, FERMT3, and ZYX) validated in an independent set of samples using ELISA
assay; the outliers are shown as colored dots. The statistical significance of t-tests between any two groups of samples is indicated by p-values and asterisks
(*p < 0.05, **p < 0.01, ****p < 0.0001). The PPI network (B) is constructed based on Cluster 4/Cluster 5 bridge proteins (denoted by diamond/oval-shaped nodes).
The node size is proportional to the degree centrality of a node, whereas the color gradient represents the betweenness centrality of a node. The width of edges
corresponds to the strength of the evidence supporting the connection between two nodes; the red-highlighted edges indicate a potential C7-VTN-SRC-ZYX
cascade in the progression of AD. ns, non-significant.
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