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The topological organization of human brain networks can be mathematically

characterized by the connectivity degree distribution of network nodes. However,

there is no clear consensus on whether the topological structure of brain networks

follows a power law or other probability distributions, and whether it is altered in

Alzheimer’s disease (AD). Here we employed resting-state functional MRI and graph

theory approaches to investigate the fitting of degree distributions of the whole-

brain functional networks and seven subnetworks in healthy subjects and individuals

with amnestic mild cognitive impairment (aMCI), i.e., the prodromal stage of AD,

and whether they are altered and correlated with cognitive performance in patients.

Forty-one elderly cognitively healthy controls and 30 aMCI subjects were included. We

constructed functional connectivity matrices among brain voxels and examined nodal

degree distributions that were fitted by maximum likelihood estimation. In the whole-brain

networks and all functional subnetworks, the connectivity degree distributions were fitted

better by the Weibull distribution [f(x)∼x(β−1)e(−λxβ)] than power law or power law with

exponential cutoff. Compared with the healthy control group, the aMCI group showed

lower Weibull β parameters (shape factor) in both the whole-brain networks and all seven

subnetworks (false-discovery rate-corrected, p< 0.05). These decreases of theWeibull β

parameters in the whole-brain networks and all subnetworks except for ventral attention

were associated with reduced cognitive performance in individuals with aMCI. Thus, we

provided a short-tailed model to capture intrinsic connectivity structure of the human

brain functional networks in health and disease.

Keywords: Alzheimer’s disease, mild cognitive impairment, resting-state functional MRI, degree distribution,

Weibull, network
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INTRODUCTION

Resting-state functional magnetic resonance imaging (rsfMRI)
studies have suggested that the human brain can be considered
an efficiently integrated network that is divided into several
functionally linked subnetworks. Examining the topology of
brain networks can provide valuable information about the
organization of the networks such as hub regions, robustness
levels, and ability to communicate information (Bullmore and
Sporns, 2012; Dai et al., 2015; Liao et al., 2017). One of the
most important properties describing the network topology is the
degree distribution of network nodes, a graph theory property
that characterizes the probability distribution of the number of
connections between pairs of nodes in a network. In resting-state
brain networks, there is no agreement on which model can better
describe the degree distribution. One view is that the degree
distribution follows the heavy-tailed power law (Van Den Heuvel
et al., 2008; Hanson et al., 2016; Forlim et al., 2019) based on
the simple growth mechanisms, such as preferential attachment
(Barabási and Albert, 1999). Another view is that the degree
distribution can be better fitted by a short-tailed distribution
such as power law with exponential cutoff (Bassett et al., 2006;
Hayasaka and Laurienti, 2010; Cao et al., 2016) and Weibull
distribution (Nakamura et al., 2009; Gupta and Rajapakse, 2018),
considering the wiring-cost constrains (Bullmore and Sporns,
2012) in the human brain. These suggest that power law, power
law with exponential cutoff (also called truncated power law),
and Weibull distribution (also called stretched exponential) are
the three most frequently reported models for fitting the degree
distribution of human brain networks, but the findings are
not conclusive.

Amnestic mild cognitive impairment (aMCI) is an
intermediate stage between healthy aging and (most likely
to develop into) Alzheimer’s disease (AD) (Petersen et al.,
2001). For elderly subjects with cognitive impairment, rsfMRI is

acquired without engaging the subjects in a particular cognitive
task (i.e., during rest) and therefore has the advantages of clinical
practice. It has been argued that neuropsychiatric disorders

including AD can be considered as “dysconnectivity syndrome”
and that a combination of graph theory method enables a
quantitative study of the topology of the network (Bullmore
and Sporns, 2009; Xie and He, 2012). In resting-state networks,

functional connectivity (FC), the synchronization of spontaneous
low-frequency fluctuations in brain activity between different
brain regions, is themost commonly usedmeasure of the number
of connections in a degree distribution. Alterations of FC in
resting-state networks have been identified in the early stages of
AD, including elderly cognitively normal subjects with increased
amyloid-beta (Aβ) level and aMCI patients (Hedden et al., 2009;
Wang et al., 2013a; Zhang et al., 2016). Such aberrant FCs were
observed even when controlling for gray matter atrophy (Sorg
et al., 2007; Agosta et al., 2012; Wang et al., 2013b). Together,
these results suggest that alterations of degree distribution in
resting-state networks could be occurred in AD.

In the prodromal stage of AD, changes in network structures
are usually accompanied by a variety of alterations in cognitive
functions, such as memory, attention, and executive functions.

Previous rsfMRI studies suggest that brain regions involving the
medial and lateral prefrontal and parietal cortices, insula, and
thalamus are preferentially affected in AD (Buckner et al., 2009;
Dai et al., 2015, 2019). Two recent meta-analyses have explored
resting-state brain changes in the progression of AD and overlaid
the coordinates of these changes onto functional subnetworks. In
the meta-analysis of Li et al. (2015a), they included 25 resting-
state and 75 task-based fMRI studies, and the results revealed that
compared to healthy controls, MCI patients showed altered brain
activities in default, frontoparietal, and limbic networks during
rest; when fulfilling cognitive tasks, there were also abnormalities
in ventral attention and somatomotor networks in addition to
these three networks. Including 40 resting-state fMRI studies,
Badhwar et al. (2017) found that MCI and AD patients showed
connectivity alterations in default, salience, and limbic networks.
However, very few studies have examined AD-related changes in
the topology architecture of functional subnetworks as described
by the degree distribution.

Areas commonly activated during complex cognitive tasks are
distributed across several of the classic resting-state networks (Li
et al., 2015b). For example, a meta-analysis showed widespread
memory-related activities across temporal, frontal parietal, and
other regions of the brain (Spaniol et al., 2009). Also, these
areas can also be observed to have functional synchronization
during rest (Zhang et al., 2016). Therefore, to understand
changes in degree distributions and whether they are related
to cognitive performance, not only the connections within
a specific functional subnetwork need to be considered, but
also the connections of that network to other regions in the
whole brain. Many studies have also found that resting-state FC
changes, both within and in between the classic networks, are
significantly associated with the patients’ cognitive performance
(Dai et al., 2015; Pasquini et al., 2015; Zhang et al., 2016).
However, most of these studies have focused on some specific
functional connections. The changes in the degree distributions
of global connections in different functional subnetworks remain
to be elucidated.

To address these issues, we used rsfMRI to investigate
connectivity degree distributions of nodes in the whole-brain
functional networks and within functional subnetworks in
aMCI and healthy controls. The seven referenced functional
subnetworks were defined according to Thomas Yeo et al. (2011).
Using the three most likely candidate models (power law, power
law with exponential cutoff, andWeibull distribution), we sought
to determine whether degree distributions of these networks (1)
can be better fitted by one of the candidate models, (2) are altered
in aMCI, and (3) are associated with cognitive performance as
assessed by standard neuropsychological tests.

MATERIALS AND METHODS

Participants
Seventy-one subjects (30 aMCI patients and 41 healthy controls,
HC) were included in this study. The aMCI patients were
recruited from the Dementia Care and Research Center
(memory clinic) at Peking University Sixth Hospital. Elderly
cognitively HC were screened from local communities. All
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participants’ demographic information was collected through
detailed clinical consultations, including age, sex, education
level (years of education), history of depression, treatment
information, and current medication use. All participants were
right-handed, drug-naive, and aged between 55 and 85 years. All
participants received a neuropsychiatric and neuropsychological
examination, and a geriatric psychiatrist provided a definitive
diagnosis and Clinical Dementia Rating (CDR) (Chan and
Siu, 2005) score after a clinical interview. Participants with
aMCI met Petersen’s MCI criteria (Petersen, 2004), which
are as follows: (1) complaints of memory problems that are
confirmed by an informant, (2) preserved general cognitive
function (Mini-Mental State Examination (MMSE) (Folstein
et al., 1975) scores ≥ 24), (3) intact or mildly impaired
daily living ability (an ADL score ≤ 26) (Lawton and Brody,
1969), and (4) do not meet the diagnosis of dementia (World
Health Organization, 2010). All HC had no cognitive complaints
and did not meet clinical criteria for cognitive impairment
or depression. MMSE cutoff scores were ≥24 for the HC
group. The requirement for global CDR was ≤0.5 in the aMCI
group and 0 in the HC group. For all participants, exclusion
criteria were as follows: (1) history of stroke, tumor, subdural
hematoma, other cerebrovascular disease or intracranial space-
occupying disease, and obvious risk factors for cerebrovascular
disease, (2) currently taking anti-dementia or antidepressant
medications, (3) history of drug or substance abuse, (4) history
of neurological or psychiatric disorders, and (5) presence of a
physical illness that may affect cognition or emotion. Written
informed consent was obtained from each participant, and this
study was approved by the Medical Research Ethics Committee
of Peking University Sixth Hospital, Beijing, China. The data
of eight subjects were discarded during scanning, preprocessing,
diagnosis, or analysis (for details, see Supplementary Figure 1).
Neuropsychological and demographic summary statistics for
each diagnostic group are provided in Table 1. No significant
between-group differences were found in gender and education
level (gender: p = 0.45; education level: p = 0.81). The age of the
HC group was significantly lower than that of the aMCI group
(p < 0.01). The MMSE and the Montreal Cognitive Assessment
(MoCA) (Nasreddine et al., 2005) scores in the HC group were
significantly higher than those in the aMCI group (ps < 0.001).

Assessment of Cognitive Ability
Cognitive ability was quantified by a mean score of the
MMSE and the MoCA. The MMSE and the MoCA are
two widely used screening assessments for detecting cognitive
impairment. Both tests have a 30-point questionnaire and
cover a wide range of cognitive functions, with the MMSE
testing dysfunctions of attention and calculation, recall, language,
orientation, abilities to repeat named prompts and to follow
simple commands, and the MoCA screening for dysfunctions
of attention, executive function, language, visual, memory,
abstracting thinking, structure calculation, and directional force.

MRI Acquisition
All MRI data were acquired on a 3T Siemens Magnetom
Prisma scanner (Siemens, Erlangen, Germany). Foam pads

TABLE 1 | Characteristics of each diagnostic group.

Variable HC aMCI p-value

N 41 30 -

Gender (F/M) 28/13 17/13 0.45b

Age (y) 70.3 [7.0] 74.8 [5.7] <0.01a

Education 4.3 [0.9] 4.2 [1.1] 0.81a

MMSE 28.5 [1.3] 26.7[1.9] <0.001a

MoCA 25.7 [2.8] 22.2 [3.5] <0.001a

Values represent the mean [standard deviation] or number of subjects. HC, cognitively

healthy; aMCI, amnestic mild cognitive impairment; N, number of subjects; F, female; M,

male; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment.
aThe P-value was obtained by the two-sample two-tailed t-test.
bThe P-value was obtained by the two-tailed Pearson χ2 test.

and headphones were used to minimize head movement and
scanner noise. For rsfMRI, the following acquisition parameters
were used: T2∗-weighted multi-band echo planer imaging
(EPI) pulse sequence in transverse slice orientation, with
multiband acceleration factor of 4, repetition time (TR)/echo
time (TE) = 500/30ms, flip angle (FA) = 47◦, field of view
(FOV) = 231 × 231 mm2, matrix = 66 × 66, slices = 36,
thickness = 3.5mm, voxel size = 3.5 × 3.5 × 3.5 mm3,
echo spacing = 0.4ms, and bandwidth = 3,444 Hz/pixel. The
subjects were instructed to keep their eyes closed but not
fall asleep, relax their minds, and minimize their movement
during data acquisition. rsfMRI scan lasted for 480 s and
included 960 functional volumes for each subject. T1-weighted
magnetization-prepared rapid gradient echo (MPRAGE) sagittal
images were also scanned with the following sequence:
TR/TE= 2,530 ms/2.98ms, FA= 7◦, inversion time= 1,100ms,
FOV = 256 × 224 mm2, slices = 192, thickness = 1mm, voxel
size= 0.5× 0.5× 1 mm3.

Image Pre-processing
The first 10 rsfMRI volumes were discarded to ensure steady-
state magnetization. The remaining volumes were then realigned
to the first volume to correct for head motion. Subjects
were excluded if the head motion is larger than 3mm and
3◦. The mean functional image after motion correction was
coregistered to the individual T1-weighted images using a linear
transformation (Collignon et al., 1995) and were then segmented
into gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) with a priori tissue maps of SPM by using a unified
segmentation algorithm (Ashburner and Friston, 2005). The
resultant GM, WM, and CSF images were further non-linearly
registered into the Montreal Neurological Institute (MNI) space
with the information estimated in unified segmentation and
then averaged across all subjects to create custom GM, WM,
and CSF templates. Then, the custom templates were used as
reference images to segment the coregistered T1 images for
the second time. This two-step registration procedure based
on custom template could minimize the inaccuracies of the
spatial normalization of rsfMRI volumes caused by GM atrophy
in elderly people. The transformation parameters estimated
during unified segmentation were applied to motion-corrected
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rsfMRI images and then the images resampled to 3-mm isotropic
voxels, which reflect the neuronal pattern of the columnar
grain (Kriegeskorte et al., 2010) and are the minimum spatial
resolution to capture cortical folding (Kiselev et al., 2003).
Subsequently, a linear trend was removed and 24 head motion
parameters, mean global signal, and the WM and CSF time
courses were regressed out from the spatially normalized rsfMRI
scans. A bandpass filter was used to remove frequencies outside
of the 0.01–0.1-Hz range. It should be noted that no spatial
smoothing was applied to the rsfMRI time series, avoiding
local artificial correlations between voxels. The MATLAB-based
Statistical Parametric Mapping (SPM12, Wellcome Department
of Cognitive Neurology, London, http://www.fil.ion.ucl.ac.
uk/spm/) and graph theoretical network analysis toolbox
(GRETNA, Beijing Normal University, http://www.nitrc.org/
projects/gretna/) (Wang et al., 2015) were used to carry out all
functional imaging data pre-processing.

Degree Distribution Analysis
Creating Brain Networks and Degree Calculation
The degree distribution analyses were based on binarized brain
networks according to the original definition of nodal degree (i.e.,
the number of binary edges of a node). To establish the whole-
brain networks, for each subject, FC matrices were computed
by Pearson’s correlation between the times series of any pairs
of brain voxels. This procedure was constrained within a GM
mask (Nvoxels = 47,294) generated by thresholding (cutoff= 0.2)
the mean GM probability map of all subjects. A threshold T
between 0.4 and 0.6 (with steps of 0.1) defined links between
any pairs of nodes (voxels) in the networks. The maximum
T value was empirically set to 0.6 to maintain the network
integrity, minimizing the number of disconnected voxels, and
the minimum value was set to 0.4 to keep the small-world
property of the networks and to ensure that the matrices were
sufficiently sparse for voxel-based networks (Van Den Heuvel
et al., 2008). For each given voxel, i, its degree was calculated by
the following equation:

degree (i) =

Nvoxels
∑

j=1, j 6=i

aij,

{

aij = 1 if rij ≥ T
aij = 0 if rij < T

,

where rij was the correlation coefficient between voxel i and voxel
j. The seven referenced functional subnetworks were obtained
from previous studies based on the rsfMRI data from 1,000
participants and a data-driven clustering approach (Thomas
Yeo et al., 2011) (see Supplementary Figure 2), including visual
(V), sensorimotor (SM), dorsal attention (DA), ventral attention
(VA), limbic (Lim), frontoparietal (FP), and default mode (DM).
For each subnetwork, nodal degrees were still computed by
summing the connections of a voxel to any other voxels in the
whole brain (not only the connections within the subnetwork),
which we refer to here as the global degree of nodes in a
particular subnetwork.

For validity reasons, to identify the whole strength pattern
of degree distribution in both the HC and aMCI groups, we
performed a functional connectivity strength (FCS) analysis, also

called degree centrality of a weighted network (Buckner et al.,
2009; Zuo et al., 2012; Dai et al., 2015). For each subject, we built
whole-brain FC matrices by computing Pearson’s correlations
between the time series of any pairs of brain voxels. This process
was constrained within the same GMmask. For each voxel, i, the
FCS was computed by the following equation:

FCS (i) =
1

Nvoxels

Nvoxels
∑

j=1, j 6=i

zij, rij > r0 ,

where zij is the Fisher’s z-transformation of rij, r0 is a threshold
that eliminates weak correlations possibly arising from noise
[here r0 = 0.2, based on a previous study that evaluated different
thresholds (Dai et al., 2015)].

Notably, only positive correlations between voxels were
considered in the calculation of the nodal degree and FCS;
connectivity terminating within 20mm of each source voxel
center was set to zero to avoid potential shared signals between
nearby voxels. These voxel-wise brain network analyses were
performed using an in-house toolbox (developed by Dr. Mingrui
Xia, Beijing Normal University).

Degree Distribution Fit
Based on published literatures, we chose three most likely
models, including power law, power law with exponential
cutoff, and Weibull, as candidate models for the fittings of
the degree distributions (see Table 2 for their probability
density function). The fittings of the alternative models and
the estimations of the model parameters followed the statistical
methods from previous study (Clauset et al., 2009) and used
the powerlaw Python package (Alstott and Bullmore, 2014)
(https://github.com/jeffalstott/powerlaw). In general, the visual
form of the Complementary Cumulative Distribution Function
(CCDF) is more frequently preferred than that of the Probability
Distribution Function (PDF) against fluctuations due to finite
sample sizes (Clauset et al., 2009). In the fitting procedure, for
each network, a vector containing voxels’ degrees was sorted
in ascending order for each correlation threshold. For every
generated network, the maximum likelihood estimation method
was used to estimate model parameters. The obtained degrees
could only take values in integers. For the power law distribution,
there is no exact closed-form expression for the maximum
likelihood estimator of the parameter α in the discrete case. The
powerlaw Python package uses an analytic estimation of α with
the method mentioned by Clauset et al. (2009) that provides a
faster way to obtain a more precise estimation. The approximate
expression of α is

α̂ ≃ 1+ n

[

n
∑

i=1

ln
xi

xmin −
1
2

]− 1

,

where xi, i = 1 · · · n are the observed voxels’ degree values in the
vector. In practice, the power law tends to apply only when the
values of empirical phenomena are greater than some minimum
value xmin. Thus, when initially fitting with the power law, the
optimal value of xmin was obtained by selecting the one that
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TABLE 2 | The three candidate models for the fit of the degree distribution.

Distribution name Probability density function

Power law x−α

Power law with exponential cutoff x−αe−λx

Weibull xβ−1e−λxβ

resulted in the minimal Kolmogorov–Smirnov distance between
the data and the fit. The initial fit showed that the CCDF of
degree distributions of functional brain networks was curved
on the double logarithmic axis, and the selection of different
optimal xmin values resulted in a large shift of the fitted lines
on the sample curves for different subjects. Thus, the power-
law model might not be appropriate. The xmin was then fixed
to 1 in the fittings and comparisons of the other alternative
models. Discrete forms of the other alternative models are not
defined analytically. Discrete forms of probability distributions
are often more difficult to calculate. The powerlaw package
performs discretization by rounding, summing the continuous
distribution to the nearest integer, to calculate approximations to
the discrete form of the alternative distribution. For comparison
between models, a normalized loglikelihood ratio R and an
associated significance value p were used to evaluate the goodness
of fit between two competing distributions to identify a better
fit. The positive or negative sign of the R indicates which
model is better, or a ratio close to zero indicates the two
models have similar effects, if the p-value is small enough (<
0.05). Therefore, we used the mean of R-values to determine
which model and to what extent is more appropriate at the
group level.

Statistical Analyses
To investigate whether the degree distribution parameter(s) of
the best-fit model changed in the aMCI group compared to
the HC group, we applied analyses of the following general
linear model including diagnosis (HC vs. aMCI), age, gender,
and education as independent variables and model parameter as
dependent variable:

Model parameter ∼ β0 + β1 × Diagnostic group+ β2 × Age

+β3 × Gender + β4 × Education.

Then, to detect the relationship between a parameter of a
degree model and cognition ability, the parameters of degree
distribution that were found significantly altered in the aMCI
group were tested as predictors of cognition scores in the aMCI
group. We used the following linear regression model, including
cognitive ability as dependent variable and model parameter, age,
gender and education as independent variables:

Cognitive ability ∼ β0 + β1 ×Model parameter + β2 × Age

+β3 × Gender + β4 × Education.

For validity reasons, we generated mean FCS maps for the
HC and the aMCI groups. The group difference of the FCS

maps was evaluated via two-sample t-tests controlling for
age, gender, and education. A false discovery rate (FDR)
procedure was used to correct for multiple comparisons within
the GM.

Without other statements, the analyses were corrected for
multiple comparisons, FDR-corrected at p = 0.05. All group-
level statistical analyses were done with the stats package of
statistical software R implemented in R Studio v. 0.98.953
(Boston, MA, https://www.rstudio.com/).

RESULTS

Weibull Distribution Fits Brain Networks
Better
In order to estimate connectivity degree distributions of the
whole-brain networks and different functional subnetworks, we
tested the three candidate models for each subject by using
normalized loglikelihood ratios R and p-values (calculated by R
and its standard deviation σ , indicating whether the observed
sign of R is statistically significant). A positive R suggests a better
fit of the data to the first model, while a negative R suggests a
better fit to the second, if the p-value is small (< 0.05 here).
The results of the group-averaged normalized loglikelihood
ratios (only counted if ps < 0.05) for the fittings of degree
distributions between two of the three models in the whole-brain
networks and subnetworks are listed in Table 3. In the whole-
brain networks and all subnetworks, the connectivity degree
distributions were fitted better by a Weibull distribution than
power law or power law with exponential cutoff. Examples of the
CCDF plots and their fittings of the three candidate models in
the whole-brain network and the seven subnetworks (correlation
threshold T = 0.4) for an aMCI subject are shown (fittings
were similar for other subjects and thresholds); see Figure 1. For
the fittings compared between Weibull and power law, in all
networks, both the HC and the aMCI groups, all of the averaged
R ratios were positive and sufficiently larger than zero, indicating
that the Weibull is better than the power law in human brain
rsfMRI networks. For the 48 times fitting compared between
Weibull and power law with exponential cutoff, in all generated
networks, 85.4% of the R-values were positive, suggesting that
the Weibull is better than the power law with exponential cutoff.
While the other 14.6% comparisons have negative R-values, these
values were very close to zero, suggesting that the two models
fit similarly for these 14.6% comparisons (Table 3). It should
be noted that, in general, all R-values tended to decrease as the
correlation threshold increases. Consequently, out of the three
correlation thresholds, T = 0.4 and 0.5 were more compatible
with the Weibull distribution. The reason could be that lower
threshold preserves more weak connections. No significant
between-group difference in R-values was found in any of
the networks.

Degree Distribution Changes in aMCI
Focusing on the Weibull distribution, we tested whether its
two parameters, β and γ, were altered in the aMCI group.
The Weibull distribution can be used to describe a distribution
between the power law and the exponential function, where the
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parameter β ∈ (0, 1) denoting the extent it falls between the two
distributions. When β = 0, it reduces to a power law distribution
and when β = 1, it becomes an exponential distribution.
Compared with the HC group, the aMCI group showed lower
Weibull β parameters (shape factor) in both the whole-brain

TABLE 3 | Group-averaged loglikelihood ratios between candidate models for the

fittings of connectivity degree distributions.

WB vs. PL

in HC

WB vs. PL

in aMCI

WB vs. PLEC

in HC

WB vs. PLEC

in aMCI

V 66.9/37.9/25.9 63.8/32.5/21.2 33.8/12.5/7.4 29.8/7.2/2.7

SM 57.6/28.7/18.4 54.8/ 25.0/16.4 27.0/4.2/2.5 23.3/−1.3/0.8

DA 52.6/29.1/18.8 51.1/ 25.9/16.2 25.4/7.5/4.4 23.3/3.8/1.7

VA 48.8/24.9/15.8 46.6/ 22.7/14.8 22.1/4.6/1.6 19.5/0.5/0.5

Lim 43.6/19.0/11.6 40.2/ 16.3/9.8 19.2/−0.1/−1.8 16.5/2.9/2.0

FP 64.8/36.7/22.0 60.7/ 32.2/19.8 34.3/12.3/4.9 29.6/6.8/2.7

DM 80.6/44.5/27.3 75.5/ 39.3/24.6 42.3/13.7/4.8 36.4/7.8/2.2

Whole

brain

164.9/87.1/57.2 157.5/ 78.0/51.3 67.3/9.7/4.3 59.0/−2.1/−1.4

Values represent the mean normalized loglikelihood ratios (ps < 0.05) between candidate

models for the fittings of networks generated at threshold of 0.4/0.5/0.6 in the HC

and the aMCI groups. V, visual; SM, somatomotor; DA, dorsal attention; VA, ventral

attention; Lim, limbic; FP, frontoparietal; DM, default model; WB, Weibull; PL, power law,

PLEC, power law with exponential cutoff; HC, cognitively healthy; aMCI, amnestic mild

cognitive impairment.

network and all the seven subnetworks. When T= 0.4, decreased
Weibull β parameters were found in aMCI for connectivity
degree distributions in the whole-brain networks (p = 0.05)
and within functional subnetworks: in FP & DM (ps < 0.01),
in V & SM (ps = 0.05), and a tendency in VA (p = 0.06,
uncorrected p = 0.04). When T = 0.5, the β parameters of the
Weibull distribution in the whole-brain network and within all
seven subnetworks decreased significantly: in V (p = 0.001),
in SM, DA, VA, FP, DM, and whole brain (ps ≤ 0.01), and in
Lim (p = 0.05). When T = 0.6, the β parameters were also
decreased in V, DA, and the whole brain (ps < 0.05), and a
tendency to decrease in SM and DM (ps < 0.1, uncorrected
ps < 0.05). All p-values reported were FDR-corrected, unless
otherwise noted. As shown in Figure 2, the value of β parameters
in aMCI were lower than that for HC in the whole-brain network
and within all seven subnetworks (correlation threshold T= 0.5).
No changes of λ parameter in aMCI were observed compared to
HC. For validity reasons, we also examined the group difference
of the FCS map between the HC and the aMCI groups (see
Supplementary Figure 3). Visual inspection indicated that the
spatial distributions of FCS in the aMCI group were similar
but weaker than those of the HC group; the FCS of some
voxels distributed in regions including the angular and precuneus
were increased in the aMCI group. No significant between-
group difference was found after an FDR multiple comparisons
at p < 0.05 (for the number of connections between voxels
in GM).

FIGURE 1 | The CCDF plots of the degree distributions for an aMCI subject in the whole-brain network and seven subnetworks and their fit with the three candidate

models (correlation threshold T = 0.4). V, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; Lim, limbic; FP, frontoparietal; DM, default model; WB,

Weibull; PL, power law, PLEC, power law with exponential cutoff; CCDF, complementary cumulative distribution function.
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FIGURE 2 | Boxplot of the Weibull β parameters as a function of diagnosis on the degree distributions of the whole-brain network and seven subnetworks (correlation

threshold T = 0.5). P-values of between-group differences were FDR adjusted. V, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; Lim, limbic; FP,

frontoparietal; DM, default model; HC, cognitively healthy; aMCI, amnestic mild cognitive impairment; FDR, false-discovery rate.

Association Between Weibull β Parameter
and Cognitive Decline in aMCI
Focusing on the Weibull β parameter for which the value
was found to be decreased in aMCI, we found lower values
of the Weibull β parameter to be associated with reduced
cognitive ability in aMCI (mainly in the networks with T = 0.4).
Specifically, for connectivity degree distributions in rsfMRI, we
found the above associations for the whole-brain network and all
subnetworks excluding VA (for the t-values and FDR-corrected
p-values, see Figure 3). We also found the association in Lim
with T = 0.5 (t = 2.99, FDR-corrected p = 0.04). We computed
the diagnosis (HC, aMCI) × Weibull β parameter interactions,
controlled for age, gender, and education to correlate cognitive
ability in the networks showed the above relationship. The results
showed that the slopes of the Weibull β parameter in HC differed
significantly from those in aMCI (Supplementary Figure 4).

DISCUSSION

The first major finding of the present study was that the Weibull
distribution fits brain networks better in resting-state fMRI. The
second major finding was the decreased Weibull β parameters
in the whole-brain network and all seven subnetworks in aMCI
subjects compared to HC. The third major finding was that
the abnormal decrease in the values of Weibull β parameter in
the whole-brain network and the functional subnetworks were
associated with reduced cognitive performance in aMCI.

The current finding ofWeibull distribution fits brain networks
better is in line with previous reports of the nodal degree
of human brain functional networks that follow short-tailed
distribution such as the Weibull distribution and the power
law with exponential cutoff (Nakamura et al., 2009; Hayasaka

and Laurienti, 2010; Gupta and Rajapakse, 2018; Zucca et al.,
2019). In contrast, the heavy-tailed power law distribution
(also called scale-free network) has been extensively discussed
(Eguíluz et al., 2005; Van Den Heuvel et al., 2008; Ciuciu
et al., 2014; Hanson et al., 2016; Forlim et al., 2019). Most of
these studies on the power law had a strong hypothesis that
brain networks are structured with simple growth mechanisms,
such as preferential attachment (Barabási and Albert, 1999).
Under this assumption, the network has scale-free property that
allows for efficient communication of information through a
few hub nodes. To characterize this property, more complicated
network constructionmethods were adopted in these studies. For
example, Hanson et al. (2016) reported brain networks that fit for
power law distribution by using a conditional probability-based
Bayes network searchmodel that “allows for the node structure to
express more subtle hub and modular configurations.” Another
rsfMRI study also found that a machine learning-based k-nearest
neighbor graph construction of brain networks presents scale-
free properties (Forlim et al., 2019). However, a recent study
analyzing over a thousand power law distributions from various
disciplines concluded that scale-free networks are rare in real-
world data, and alternative models such as log-normal often
fit degree distributions better than the power law (Broido and
Clauset, 2019).

For the present study, we found that the Weibull distribution
outperforms the other two commonly reported brain network
models in the whole-brain networks and all the seven
subnetworks, in both the HC and the aMCI subjects. We agree
with the assumption of wiring-cost constrains in human brain
(Bullmore and Sporns, 2012). In addition to the fact that the
human brain has mechanisms to reduce information processing
cost and maximize efficiency, the organization of functional
networks is also limited by the spatial structure of the brain. The
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FIGURE 3 | Regression plots of the association between Weibull β parameters and cognitive ability scores for aMCI in the whole-brain network and seven

subnetworks (correlation threshold T = 0.4). All p-values were FDR adjusted. V, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; Lim, limbic; FP,

frontoparietal; DM, default model; aMCI, amnestic mild cognitive impairment; FDR, false-discovery rate.

dynamic properties of functional networks such as their topology
and synchronization ability are strongly influenced by small
world and other structural connectivity constraints (Bullmore
and Sporns, 2009). The architectural constraints prevent the
occurrence of long-distance hubs, as the corresponding remote
anatomical connections consume more energy. Therefore, on
a CCDF plot of the nodal degree with logarithmic axes, the
tail of the Weibull distribution may show a downward bend
compared to the power law distribution. Notably, it has been
suggested that the estimation of the degree distribution is still
dependent on several factors such as the pre-processing process,
region-based or voxel-based node scale, edge calculation, and
fitting method (Clauset et al., 2009; Hayasaka and Laurienti,
2010; Zucca et al., 2019). For example, the earliest studies usually
used the least-square fitting method on log–log plots to test
whether a degree distribution is power law. This fitting method
is systematically biased and does not take into account the
goodness of fit and selection of prospective degree distributions
(Clauset et al., 2009). Another study comparing functional
brain networks at multiple resolutions found that although the
degree distributions of all networks followed the power law
with exponential cutoff, the higher the resolution (up to the
voxel level), the more the distribution tended to be a power law
(Hayasaka and Laurienti, 2010). In summary, in this study, we

aimed to use a generally applicable, easily understood approach
to discuss degree distribution of functional brain networks in
rsfMRI. We used the Pearson association of FC to construct
binary networks at the finest voxel level. To avoid the flaws
of the least-squares, the maximum likelihood estimation and
loglikelihood ratio methods were used to estimate and compare
proposed models. Our results suggest that the short-tailed
Weibull distribution is superior to the other two models in all
generated networks.

The second major finding showed decreased Weibull β

parameters of the global degree distribution in the whole-
brain network and all seven functional subnetworks in aMCI.
These nodal degrees were computed from themselves to all
the other nodes in the whole brain. The calculation of the
degree distribution was based on the strength of functional
connectivity between paired voxels. Therefore, these findings are
at least partially in agreement with previous reports that found
alterations in resting-state connectivity in aMCI. Specifically, two
meta-analyses reported increased connectivity in default mode,
salience, and limbic networks, while decreased connectivity in
default mode, frontoparietal, visual, and limbic networks (Li
et al., 2015a; Badhwar et al., 2017). Another study that explored
topological pattern changes of brain networks in aMCI reported
decreased nodal centrality in the medial temporal lobe and
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increased nodal centrality in the occipital regions (Liu et al.,
2012). Here we extended these findings to the network level,
showing that the overall topology features of these functional
subnetworks have changed in aMCI.

The underlying nature of the decrease in Weibull β

parameter in aMCI is unclear. The Weibull distribution used
here that describes the degree distribution of functional brain
networks is a two-parameter model. Although no statistically
significant between-group differences were found for the second
γ parameter, it is difficult to determine the specific variation of
the curve on the CCDF plot based on just one β parameter.
The β parameter is the shape factor of the Weibull distribution.
Its slight decrease may be thought of as a small shifting of the
degree distribution from exponential to power law distribution,
reflecting an increase in the number of hub nodes in the
network. One possible explanation is that the decrease in
Weibull β parameter reflects less efficient neural network activity.
According to the dedifferentiation hypothesis, inefficient neural
processing results in age-related brain functional changes that
lead to more diffuse brain activity (Dennis and Cabeza, 2011). In
line with the dedifferentiation hypothesis, a study found that age-
related decreased modularity of resting-state FC within networks
and increased inter-network connectivity in elderly cognitively
healthy subjects (Geerligs et al., 2015). Another study showed
increased number of FC connections in aMCI and AD compared
to HC. The number of connections peaked in aMCI and is
significantly higher compared to AD. Furthermore, increased
strength of FC was found for connections that spanned different
functional clusters were identified, including the FP network, the
posterior DM network, the medial temporal lobe subsystem, and
a subcortical cluster (Zhang et al., 2016). The human brain has
the capacity to buffer or reserve itself against some extent of
the changes brought on by aging and disease (Staff, 2012). It is
possible that this more diffuse, less efficient neural processing
may require an increase in the strength or the number of FC,
with compensatory recruitment of additional neural resources to
try to maintain task performance in early stage of AD (Grady
et al., 2003; Dickerson et al., 2004). An alternative explanation
is that the increase in FC results from increased deposition of
Aβ (Elman et al., 2014; Huijbers et al., 2015). However, this
hypothesis is still in doubt. The present study did not collect
Aβ from the subjects, and therefore, no Aβ-related experimental
manipulation was involved.

The third major findings found that the abnormal decrease in
the value of Weibull β parameter was associated with reduced
cognitive performance in aMCI. These findings are consistent
with previous reports of increased DM network connectivity
contributes to semantic memory deficits in MCI patients
(Gardini et al., 2014). The abnormal increase in the strength of
FC, not confined to the DM network but connected between the
FP network andmedial temporal lobe subsystem, was found to be
associated with reduced episodic memory performance in MCI
and AD (Zhang et al., 2016). Task-related studies have also shown
that MCI patients had enhanced activation in the hippocampus
(Dickerson et al., 2004) and its association with faster subsequent
cognitive decline in MCI (Miller et al., 2008). Although most
of the previous findings were related to the DM network,

complex cognitive functions, such as memory, are distributed
across several resting-state networks (Li et al., 2015b). Here
we addressed the associations between changes in nodal degree
distributions and cognitive ability at the functional network level.
Negative correlations were found between the cognitive ability
and the Weibull β parameters of several subnetworks’ global
degree distributions in aMCI. Notably, we focus on the number
of FC-based connections for each node in the network, with
each connection potentially linking to other functional networks.
In other words, increase in the number of hub nodes in these
networks is associated with cognitive decline in aMCI. Thus, the
inverse association may reflect a failed compensatory attempt to
recruit additional neural resources to maintain task performance.
These results suggest that decrease in the Weibull β parameter
characterizing the functional brain network is detrimental to
cognitive performance in aMCI.

It is important to acknowledge the potential limitations of
our study. Firstly, the number of subjects used in this study was
relatively small, which may lead to potential statistical instability.
Secondly, the determination of the connections during network
construction will have an influence on the results. We used
absolute thresholds so that connections that surpass the fixed
connectivity strength were kept and set to 1. However, there is no
consistent standard for the selection of threshold. In this study,
the selection was based on the small-world characteristic and the
integrity of the network. The networks generated with multiple
thresholds were all well-fitted by the Weibull distribution. For
validity reasons, we performed a FCS analysis, using the weighted
degree centrality to avoid the selection of thresholds. The
results also revealed enhanced degree centrality of several hub
regions in aMCI (Supplementary Figure 3), which is consistent
with the results of reduced Weibull β parameters using the
absolute thresholds. Additionally, in rsfMRI, the spontaneous
brain activation is sampled without reference to external tasks,
so its interpretation is inherently less well-understood. Therefore,
we attempted to frame the study in a hypothesis-driven manner,
focusing on functional subnetworks derived from a data-driven
approach based on 1,000 participants. However, the combination
of resting-state and specific task-related fMRI studies would be
important for future researches.

Overall, the current results on the altered degree distributions
of functional brain subnetworks support that the degree
distribution gives a window to evaluate the neural network
topology underlying cognitive performance. This study offers a
method for designing resting-state analysis to assess variations in
degree distribution for providing insight into cognitive decline
in aMCI. Degree distribution is currently not established as a
biomarker for neuroimaging. Longitudinal studies are needed to
examine the value of degree distribution to predict subsequent
cognitive decline.
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