
ORIGINAL RESEARCH
published: 11 November 2020

doi: 10.3389/fnagi.2020.593648

Frontiers in Aging Neuroscience | www.frontiersin.org 1 November 2020 | Volume 12 | Article 593648

Edited by:

Mingxia Liu,

University of North Carolina at Chapel

Hill, United States

Reviewed by:

Lishan Qiao,

Liaocheng University, China

Biao Jie,

Anhui Normal University, China

Qi Zhu,

Nanjing University of Aeronautics and

Astronautics, China

*Correspondence:

Peijun Wang

peijwang@163.com

Received: 11 August 2020

Accepted: 26 October 2020

Published: 11 November 2020

Citation:

Qi H, Hu Y, Lv Y and Wang P (2020)

Primarily Disrupted Default

Subsystems Cause Impairments in

Inter-system Interactions and a Higher

Regulatory Burden in Alzheimer’s

Disease.

Front. Aging Neurosci. 12:593648.

doi: 10.3389/fnagi.2020.593648

Primarily Disrupted Default
Subsystems Cause Impairments in
Inter-system Interactions and a
Higher Regulatory Burden in
Alzheimer’s Disease
Huihui Qi 1, Yang Hu 2, Yingru Lv 3 and Peijun Wang 4*

1Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China,
2 Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of

Medicine, Shanghai, China, 3Department of Imaging, Huashan Hospital, Fudan University, Shanghai, China, 4Department of

Medical Imaging, Tongji Hospital Affiliated With Tongji University, Shanghai, China

Background: Intrinsically organized large-scale brain networks and their interactions

support complex cognitive function. Investigations suggest that the default network (DN)

is the earliest disrupted network and that the frontoparietal control network (FPCN) and

dorsal attention network (DAN) are subsequently impaired in Alzheimer’s disease (AD).

These large-scale networks comprise different subsystems (DN: medial temporal lobe

(MTL), dorsomedial prefrontal cortex (DM) subsystems and a Core; FPCN: FPCNA and

FPCNB). Our previous research has indicated that different DN subsystems are not

equally damaged in AD. However, changes in the patterns of interactions among these

large-scale network subsystems and the underlying cause of the alterations in AD remain

unclear. We hypothesized that disrupted DN subsystems cause specific impairments in

inter-system interactions and a higher regulatory burden for the FPCNA.

Method: To test this hypothesis, Granger causality analysis (GCA) was performed to

explore effective functional connectivity (FC) pattern of these networks. The regional

information flow strength (IFS) was calculated and compared across groups to explore

changes in the subsystems and their inter-system interactions and the relationship

between them. To investigate specific inter-system changes, we summed the inter-

system IFS and performed correlation analyses of the bidirectional inter-system IFS,

which was compared across groups. Additionally, correlation analyses of dynamic

effective FC patterns were performed to reveal alterations in the temporal co-evolution

of sets of inter-subsystem interactions. Furthermore, we used partial correlation analysis

to quantify the FPCN’s regulatory effects. Finally, we applied a support vector machine

(SVM) linear classifier to probe which network most effectively discriminated patients

from controls.

Results: Compared with controls, AD patients showed a decreased intra-DN regional

IFS, which was significantly related to the inter-network’s IFS. The IFS between the DN

subsystems and FPCN subsystems/DAN decreased. Critically, the correlation values of

the decreased bidirectional IFS between the DN subsystems and FPCNA diminished.
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Additionally, the Core and DM play pivotal roles in disordered temporal co-evolution.

Furthermore, the FPCNA showed enhanced regulation of the Core. Finally, the MTL

subsystem and Core were effective at discriminating patients from controls.

Conclusion: The predominantly disrupted DN subsystems caused impaired

inter-system interactions and created a higher regulatory burden for the FPCNA.

Keywords: Alzheimer’s disease, dynamic effective connectivity, resting-state functional MRI, large-scale

networks, Granger causality analysis, subsystem

INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-
fMRI) has emerged as a powerful, non-invasive tool for
measuring temporal correlations in spontaneous blood
oxygen level-dependent (BOLD) signal fluctuations in discrete
brain regions. Spatially distributed brain regions within
neuroanatomical systems spontaneously activate in concert as
large-scale networks, thereby delineating the functional network
architecture of the human brain (Allen et al., 2011; Power
et al., 2011; Van den Heuvel and Sporns, 2013). Recent studies
have witnessed extraordinary interest in the default network
(DN), dorsal attention network (DAN), and frontoparietal
control network (FPCN) since these resting state networks
(RSNs) are reproducible and not only reflect human brain
intrinsic structure and function but also provide potential
sensitive hallmarks for disease processes (Greicius et al., 2004;
Damoiseaux et al., 2006; Sorg et al., 2007; Liao et al., 2010;
Yeo et al., 2011; Wang et al., 2015; Zhan et al., 2016). The DN
showed increased activity during rest and tasks involving aspects
of self-generated thought (Andrews-Hanna et al., 2014). In
contrast, the DAN showed increased activation during cognitive
tasks that require externally focused visuospatial attention (Fox
et al., 2005; Dosenbach et al., 2007). The FPCN, as a regulatory
network, mediates the dynamic balance between the DN and
DAN by flexibly coupling its activity with one or the other,
and thereby driving either internally or externally directed
cognition, respectively (Gao and Lin, 2012; Spreng et al., 2013;
Elton and Gao, 2014). Alzheimer’s disease (AD) is a progressive
neurodegenerative disease characterized by early predominant
memory impairment and subsequent disturbances in other
cognitive functions with progression of the disease (Krajcovicova
et al., 2014). Corresponding with the clinical symptoms, studies
have found that the memory-related DN was first disrupted in
AD (Greicius et al., 2004); however, other networks have since

Abbreviations: FPCN, frontoparietal control network; DN, default network; DM,

dorsomedial prefrontal cortex; MTL, medial temporal lobe; DAN, dorsal attention

network; LTC, lateral temporal cortex; PCC, posterior cingulate cortex; vPCC,

ventral posterior cingulate cortex; pIPL, posterior inferior parietal lobule; RMPFC,

rostromedial prefrontal cortex; DM, dorsomedial prefrontal cortex; pDLPFC,

posterior dorsolateral prefrontal cortex; TP, temporopolar cortex; PrCv, ventral

precentral cortex; aMT, anterior middle temporal region; pIFS, posterior inferior

frontal sulcus; aIFS, anterior inferior frontal sulcus; aIPL, anterior inferior parietal

lobule; IFS, information flow strength; rs-fMRI, Resting-state functional magnetic

resonance imaging; BOLD, blood oxygen level-dependent; L, left hemisphere;

R, right hemisphere; SVM, support vector machine; LOOCV, leave-one-out

cross-validation.

been implicated, including those involved in visuospatial and
executive function networks (Brier et al., 2012; Jones et al., 2015).
Recently, converging evidence has revealed that these large-scale
networks are not a unitary entity but can be divided into distinct
subsystems associated with more specific cognitive processes
(Buckner et al., 2008; Andrews-Hanna et al., 2010; Kim, 2012;
Salomon et al., 2014; Dixon et al., 2018). Andrews-Hanna et al.
(2010), using hierarchical clustering techniques, revealed that
the DN comprised three distinct subsystems: a dorsomedial
prefrontal cortex (DM) subsystem that is preferentially activated
during the generation of inferences about one’s present situation
or mental state, a medial temporal lobe (MTL) subsystem that
is selectively involved in self-relevant predictions about one’s
future and recollection of episodic memories, and a Core that
supports self-referential processing (Andrews-Hanna et al., 2010,
2014). Dixon et al. (2018) identified two distinct subsystems
within the FPCN based on hierarchical clustering and machine
learning classification analyses of within-FPCN functional
connectivity (FC) patterns and found that the FPCNA was
preferentially coupled with the DN, which was mainly involved
in the regulation of introspective processes; on the other hand,
the FPCNB exhibited stronger connectivity with the DAN, which
was preferentially involved in the regulation of visuospatial
perceptual attention. Recent studies have indicated different
levels of disruption in distinct subsystems of the DN in AD
(Buckner et al., 2005; Zhang et al., 2010; Jones et al., 2011; Qi
et al., 2018). However, little is known about changes in the causal
interactions among the subsystems of these large-scale brain
networks and the underlying causes of these alterations in AD.
Based on the above findings, we envisaged that significantly
disrupted DN subsystems initiated their specifically disordered
interactions with FPCN subsystems and the DAN, and placed a
higher processing burden on the FPCNA. To test our hypotheses
in this study, Granger causality analysis (GCA) was used to
construct effective connectivity networks for 27 normal controls
(NCs) and 24 patients with mild to moderate AD (Granger,
1969). GCA is a method to infer directional influences among
brain regions and has been proven to be effective in investigating
the causal networks according to previous neuroimaging studies
(Winston, 2013; Zhong et al., 2014). GCA is data-driven and rests
upon multivariate or vector autoregressive models for functional
MRI time-series to test for directed connections and can provide
information about the dynamics and directionality of the fMRI
BOLD signal in cortical circuits (Harrison et al., 2003; Zhou
et al., 2009). We performed regional information flow strength
(IFS) analyses to identify the prominently disrupted systems
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TABLE 1 | Demographics and clinical information.

Characteristics NC (n = 27) AD (n = 24) P

Age 63.74 ± 7.80 67.54 ± 10.48 0.146a

Female/Male 11/16 13/11 0.406b

MMSE 28.84 ± 1.19 21.46 ± 1.67 <0.001a

Data are presented as the mean ± standard deviation (SD).
aThe P-value was obtained using a two-sample t-test.
bThe P-value was obtained using the Pearson chi-square test.

and changes in their causal interactions with other systems as
well as the relationships between them. Then, the inter-system
effective connectivity analyses were used to further explore
specific changes in the inter-system causal interactions in AD.
Additionally, we performed correlation analyses of inter-system
dynamic effective connectivity to explore alterations in the
temporal co-evolution of sets of inter-subsystem interactions.
Furthermore, we quantified the regulatory effects of FPCNA
on DN subsystems and inter-system interactions. Finally, a
support vector machine (SVM) linear classifier was performed to
probe which network contributed the most to the discrimination
between AD patients and NCs.

MATERIALS AND METHODS

Participants
A total of 55 subjects were enrolled from Shanghai Huashan
Hospital. All participants were categorized into an NC group
(n = 27) and an AD patient group (n = 28). AD patients
were diagnosed by a qualified neurologist using criteria for
amnestic AD (Fennema-Notestine et al., 2009) and had mini-
mental state examination (MMSE) scores between 12 and 27
(inclusive) and clinical dementia rating (CDR) scores of 1 or
2. The control groups had MMSE scores between 26 and 30
(inclusive) and CDR scores of 0. The data of four subjects
(four patients with AD) were excluded due to excessive motion,
severe brain atrophy, hydrocephalus or large areas of cerebral
infarction. Details regarding the clinical and demographic data
of the remaining 51 subjects are shown in Table 1. There were
no significant differences in terms of sex or age between the
two groups.

Image Acquisition and Pre-processing
All subjects underwent whole-brain MRI scanning with a 3.0-
T SIEMENS Verio scanner. Resting-state BOLD functional MRI
data were collected using an echo-planar imaging (EPI) sequence.
The scanning parameters were TR = 2,000ms, TE = 35ms,
FOV = 25.6 ×25.6 cm, flip angle = 90, matrix = 256 ×

256, slices = 33, thickness = 4mm, and gap = 4mm. Unless
specifically stated otherwise, all of the pre-processing was
performed using statistical parametric mapping (SPM8, http://
www.fil.ion.ucl.ac.uk/spm). The first ten images were discarded
in consideration of magnetization equilibrium. The remaining
190 images were corrected for the acquisition time delay
among different slices. Then, the images were realigned to

the first volume for head-motion correction. The fMRI images
were further spatially normalized to the Montreal Neurological
Institute (MNI) EPI template and resampled to a 3-mm cubic
voxel. Several sources of spurious variance, including the
estimated motion parameters, the linear drift, and the average
time series in the cerebrospinal fluid and white matter regions,
were removed from the data through linear regression. Temporal
bandpass filtering (0.01–0.08Hz) was performed to reduce the
effects of low-frequency drift and high-frequency noise. Finally,
we conducted spatial smoothing with a Gaussian kernel (full-
width-at-half-maximum [FWHM] 6mm). The time course of
head motion was obtained by estimating the translations in each
direction and the rotations in angular motion about each axis for
each of the 155 consecutive volumes. All the subjects included in
this study exhibited amaximumdisplacement of<3mm (smaller
than the size of a voxel in a plane) at each axis and an angular
motion of <3 degrees for each axis. Data from two subjects were
excluded due to excessive motion.

Region of Interest Definition
We selected 52 prior defined regions of interest (ROIs) that
represented six brain networks corresponding to the MTL
subsystem (six ROIs), DM subsystem (nine ROIs), Core (nine
ROIs), FPCNA subsystem (11 ROIs), FPCNB subsystem (nine
ROIs), and DAN (eight ROIs) (see Figure 1). We obtained
these ROIs from Matthew L. Dixon. The authors (Dixon et al.,
2017, 2018) had used anatomical ROIs created by Yeo and
colleagues (Krienen et al., 2014; Yeo et al., 2015) based on
their 17-network parcellation derived from the data of 1,000
participants (Yeo et al., 2011) and identified two distinct
subsystems within the FPCN based on hierarchical clustering
and machine learning classification analyses of within-FPCN
FC patterns.

GCA
GCA is an approach used to explore the dynamic causal
relationship between two time series (Granger, 1969, 1980).
We aimed to examine the bidirectional IFS between any two
brain regions in the six networks for the following analyses.
The computation was performed using the DynamicBC toolbox
(Liao et al., 2014). In this study, we extracted the mean time
series from each of these ROIs, and then the time series of
all 52 predefined ROIs in the six network subsystems were
simultaneously modeled based on the GCA, a bivariate analytic
method that characterizes directional functional connections
among brain regions to investigate the causal relationship of
these regions. To detect reliable Granger causalities between
pairs of regions and specifically analyse group differences,
a linear SVM classifier was adopted to identify common
effective functional connections that stably contributed to
the classification between AD patients and healthy controls.
These common effective connections were retained for the
subsequent analyses. The steps for obtaining these common
effective connections were as follows: The effective FC between
each pair of regions was used as a classification feature. We
performed feature selection by using the F score method for
feature ranking (Chen and Lin, 2006; Akay, 2009; Liu et al.,
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FIGURE 1 | ROIs of the MTL subsystem, DM subsystem, Core, FPCNA subsystem, FPCNB subsystem, and DAN.

2015). A leave-one-out cross-validation (LOOCV) strategy was
used to evaluate the performance of a classifier. For each
LOOCV fold, we ranked the features in descending order
according to their F scores; 1,320 ranked features were detected,
which allowed the linear SVM classifier to reach the highest
classification accuracy (see Figure 2). Then, we selected the
top 1,320 ranked features in each iteration of the LOOCV
for the classification. Since feature ranking was based on a
slightly different subset of the data in each iteration of the
LOOCV, the final features used in classification differed for
each iteration of the LOOCV. We defined common effective
connections that were always included in the final feature
set in each LOOCV iteration as consensus features. For each
participant, 813 consensus features are retained and other
connections become 0 for the following network analysis (see
Figure 3).

Regional IFS Analysis
An aim was to examine prominently disrupted brain systems
and changes in their interactions with other systems and to
explore the underlying cause of these alterations. In the current
study, for each ROI, we calculated its inflow/outflow IFS with the
other ROIs across all subjects. Similar to the general definition
of “in degree” and “out degree,” as provided by previous studies
(Sridharan et al., 2008; Stevens et al., 2009), in this study, we
extended the definition of regional IFS as follows:

Intra-in IFS

Efferent IFS to a region from the other regions in the same
network. This causal flow profile identifies regions that are the
central targets of the intra-network afferent IF.

Intra-out IFS

Afferent IFS from a region to the other regions in the same
network. This causal flow profile identifies regions that are the
central sources of the intra-network efferent IF.

Inter-in IFS

Efferent IFS to a region from all the regions of the other networks.
This causal flow profile identifies regions that are the central
targets of the inter-network afferent IF.

Inter-out IFS

Afferent IFS from a region to all the regions of the other networks.
This causal flow profile identifies regions that are the central
sources of the inter-network efferent IF. For each ROI, we
calculated the sum of intra-in and intra-out as “intra-in+out
IFS” and the sum of the inter-in and inter-out as “inter-in+out
IFS.” we also calculated the sum of intra-out IFS and inter-out
IFS as “intra+inter-out IFS,” as well as the sum of intra-in IFS
and inter-in IFS as “intra+inter-in IFS” for every subject. The
IFS of these ROIs were compared across groups by using two-
sample t-tests. We used a statistical significance level of p < 0.01.
For the ROIs with disrupted intra-in+out IFS, we analyzed the
correlation between its intra-in+out IFS and inter-in+out IFS in
the patients with AD.

Inter-network Effective Connectivity
Analyses
To probe the specific changes in the interactions between
subsystems. We calculated the forward or feedback IFS of the
inter-subsystems for every subject. The inter-subsystem IFS was
defined as the total of each inter-regional effective connectivity
strength from the ROIs of one network to the ROIs of the
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FIGURE 2 | The relationship between classification accuracy and the number of effective connections used in the classification process. The effective connections

were ranked according to F scores in descending order.

FIGURE 3 | The consensus effective connections within or across the MTL subsystem, DM subsystem, Core, FPCNA subsystem, FPCNB subsystem and DAN

(indicated by a 0 or 1).

other network. The IF between each pair of brain regions is
bidirectional; therefore, there are forward and feedback IFS
between the two subsystems. To detect group differences in
these causal interactions between subsystems, two-sample t-tests

were performed, and the statistical significance level was set at
p < 0.01 (the results at p < 0.02 were considered statistically
significant at p < 0.05 after false discovery rate (FDR) correction
for multiple comparisons). To further analyse the alterations in
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the coordination of the causal interactions of the inter-subsystem,
we performed correlation analyses on the forward and feedback
IFS between subsystems with significant group differences. First,
for each group, we used a one-sample t-test to verify whether
there was a significant correlation between the forward and
feedback IFS of the inter-systems. Then, correlation values were
compared across groups by using the Z score test. In the present
study, correlation analyses were performed on the bidirectional
IFS between the FPCNA and three DN subsystems.

Correlation Analyses of Inter-network
Dynamic Effective Connectivity
Many researches have found that FPCN as a control network
regulated the DN and the DAN and their interactions. In the
present study, we were to extend this finding and demonstrate
that the IFS initiated from DN subsystems to DAN was
dynamically correlated with the causal interactions with the
IFS from FPCNA to show the coordination in the inter-system
causal interactions and then examined which subsystems play
central roles in the alterations of temporal co-evolution of
these inter-system causal interactions. Prior work has shown
that functionally-relevant FC patterns can be isolated from
∼ 60 s of data (Gonzalez-Castillo et al., 2015; Leonardi and
Ville, 2015). Based on the inter-system causal interactions
with group differences, we selectively examined the IFS values
initiated from the Core/DM subsystem to the DAN and from
the FPCNA to Core/DM subsystem within 60-s windows,
which were then shifted by three timepoints (6 s) each time.
Then, within each 60-s window, we averaged the IFS values
of these pairs of networks. This provided several time series
of inter-system IFS that reflected changes across time in the
strength of the causal interactions between these pairs of
networks. Furthermore, for every subject, we measured the linear
association between the time series of IFS, which was ourmeasure
of the co-evolution of these large-scale network subsystem
interactions, and these correlation values were converted into
z-values with the application of Fisher’s r-to-z transformation.
We used a one-sample t-test to examine the significance for
each group and compared correlation values across groups
to examine whether the temporal co-evolution of sets of
inter-subsystem interactions were disrupted in patients with
AD. In this study, temporal co-evolution between FPCNA-
>Core and Core->DAN and between FPCNA->DM and DM-
>DAN were examined and compared across groups (using
two-sample t-tests).

Quantifying the FPCNA Regulatory Effect
To quantify the regulatory effect of the FPCNA on DN
subsystems and the interactions between DN subsystems and
the DAN, for each subject, we calculated Pearson’s correlation
between all given ROIs. Then, the partial correlation between
pairs of regions within the DN subsystems and between
the DN subsystems and DAN was calculated by regressing
out the effect of all signals within the FPCNA. Fisher’s z
transform was also applied to both the full correlation and
partial correlation values. The strength of the intra-subsystem
FC was defined as the total inter-regional FC strength within

the selected subsystem, while the FC strength of the inter-
subsystem was defined as the total FC strength between any
two ROIs of the two selected subsystems. For the NC group,
we compared the full with the partial correlation strength
within the DN subsystems and between the DN subsystems
and DAN using paired t-tests to clarify the regulatory role
of the FPCNA. The differences between the full and the
partial correlation strength of the intra- and inter-subsystems
were then taken as indicators of the regulatory effects of the
FPCNA on the DN subsystems and interactions between the
DN subsystems and DAN (Gao and Lin, 2012), which was
compared across groups (using two-sample t-tests) to detect
the change in the regulatory effect of the FPCNA in patients
with AD.

SVM Classification Analysis
To explore which systems contribute the most to the
discrimination between patients with AD and healthy elderly,
a linear kernel SVM classifier was adopted for classification to
reduce the risk of overfitting the data (Pereira et al., 2009). The
SVM classifier was implemented using the LIBSVM toolbox
(Chang and Lin, 2011), with a default value for the parameter C
(i.e., C = 1). The calculated indicators of the brain networks that
had higher absolute t-statistics were selected as the classification
features in the classifier. Due to our limited number of samples,
an LOOCV strategy was used to estimate the classification
accuracy. In each iteration of the LOOCV, an example from total
samples was used as the testing set, while the remaining examples
were used as the training set. Additionally, to assess whether the
computed classification accuracy is statistically significant, the
statistical significance of the classification results is evaluated
using permutation test (Golland and Fischl, 2003). In the current
analysis, the class labels (i.e., AD vs. NC) of the training data
were permuted 1,000 times at random prior to training and
then the same entire classification process was carried out with
each set of permuted class labels. If p < 0.05, the result was
thought to be significant. In this study the p = 0 after using
permutation test.

RESULTS

Group Differences in the Regional IFS
An aim was to better evaluate the prominently disrupted
brain networks and changes in their interactions with other
systems. For every ROI, we calculated its “intra-in/out,” “intra-
in+out,” “inter-in/out,” “inter-in+out,” “intra+inter-out,” and
“intra+inter-in” IFS, and the number of ROIs of the large-scale
brain networks showing significant group differences in these
indicators are shown in Table 2. Due to too many significant
results, in the present research, we selectively presented only
ROIs and their statistics (i.e., only a few ROIs (n < 3) with group
differences in a certain indicator or p ∼ = 10−4). ROIs within
the DN showed decreased regional IFS in the patients with AD
compared with the NCs: decreased intra-in IFS was found in the
PCC_L [t(49) = −4.12, p = 1.4∗10−4], vPCC_L [t(49) = −4.20,
p = 1.2∗10−4], vPCC_R [t(49) = −3.74, p = 4.7∗10−4], etc.
Weaker intra-out IFS was observed in the PCC_L [t(49) =−3.57,
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TABLE 2 | The number of ROIs in the brain networks with significant group

differences in regional IFS (p < 0.01).

Regional IFS DN FPCNA subsystem FPCNB subsystem DAN

Intra-in IFS 14 0 1 0

Intra-out IFS 14 1 1 1

Intra-in+out IFS 14 0 2 0

Inter-in IFS 6 4 4 1

Inter-out IFS 6 3 0 1

Inter-in+out IFS 6 4 4 2

Intra+inter-in IFS 12 4 4 1

Intra+inter-out IFS 14 5 2 0

p = 8.0∗10−4], PCC_R [t(49) = −4.00, p = 2.5∗10−4], vPCC_L
[t(49) = −3.58, p = 7.9∗10−4], vPCC_R [t(49) = −3.53,
p = 9.1∗10−4], pIPL_R (t(49) = −3.55, p = 8.6∗10−4), DM_L
[t(49) = −3.80, p = 4.0∗10−4], etc. Reduced intra-in+out IFS
was found in the PCC_L [t(49) = −3.91, p = 2.8∗10−4],
PCC_R [t(49) = −3.78, p = 4.2∗10−4], VPCC_R [t(49) = −3.63,
p = 6.7∗10−4], pIPL_R [t(49) = −3.78, p = 4.1∗10−4], etc.
Decreased inter-in IFS, inter-out IFS and inter-in+out IFS
were also found in ROIs within the DN. Additionally, the
PCC_L [t(49) = −3.68, p = 5.8∗10−4], PCC_R [t(49) = −4.16,
p = 1.3∗10−4], DM_L [t(49) = −3.78, p = 4.3∗10−4], etc.,
within the DN showed decreased intra+inter-out IFS; the
PCC_L [t(49) = −3.76, p = 4.6∗10−4], PCC_R [t(49) = −3.92,
p = 2.7∗10−4], vPCC_L [t(49) = −3.93, p = 2.6∗10−4], etc.,
within the DN exhibited reduced intra+inter-in IFS in the
patients with AD. ROIs in the FPCNA showed decreased inter-
in IFS, inter-out IFS and inter-in+out IFS, whereas decreased
intra-out IFS was found only in the aIPL_L [t(49) = −3.01,
p = 0.0041] in the patients with AD relative to NCs, and
no ROIs of the FPCNA showed group differences in intra-
in and intra-in+out IFS. Regions of the FPCNA also showed
decreased intra+inter-in and intra+inter-out IFS in the patients
with AD. Decreased inter-in IFS and inter-in+out IFS occurred
in ROIs of the FPCNB; however, no group differences were
observed in inter-out IFS. Only the Right inferior frontal sulcus
[t(49) = −2.84, p = 0.0065, t(49) = −3.11, p = 0.0032] showed
decreased intra-in and intra-out IFS; moreover, decreased intra-
in+out IFS was observed in the Right inferior frontal sulcus
[t(49) = −3.13, p = 0.0029] and aIFS_L [t(49) = −2.78,
p = 0.0077]. Regions in the FPCNB also showed decreased
intra+inter-in IFS, and decreased intra+inter-out IFS was found
only in the aIFS_L [t(49) = −3.14, p = 0.0029] and Right
inferior frontal sulcus [t(49) = −2.95, p = 0.0049] in the patients
with AD.

The aMT_L in the DAN showed decreased inter-in IFS
[t(49) = −2.82, p = 0.0070] and inter-out IFS [t(49) = −2.91,
p = 0.0054), and the aMT_L [t(49) = −3.00, p = 0.0043) and
PrCv_R [t(49) = −2.80, p = 0.0071] showed decreased inter-
in+out IFS. Increased intra-out IFS was found only in the aMT_R
[t(49) = 2.78, p = 0.0076], and no group difference was observed
in the intra-in IFS and intra-in+out IFS. Decreased intra+inter-
in IFS was found in the PrCv_R [t(49) = −2.98, p = 0.0045],

whereas no group difference was observed in intra+inter-out
IFS in the patients with AD. To explore whether the disrupted
intra-DN IFS was related to its inter-system interaction, for the
ROIs of the DN with significant group differences in intra-
in+out IFS, we performed correlation analyses between the
intra-in+out IFS and inter-in+out IFS in the AD group. We
found that the intra-in+out IFS of eight regions in the DN was
significantly associated with its inter-in+out IFS (see Figure 4)
including the LTC (r = 0.69, p = 2.0∗10−4), PCC_L (r = 0.51,
p = 0.01), PCC_R (r = 0.46, p = 0.025), pIPL_R (r = 0.84,
p = 0.38∗10−7), RMPFC_R (r = 0.66, p = 4.2∗10−4), DM_L
(r = 0.50, p = 0.01), pDLPFC_L (r = 0.50, p = 0.02), and TP_R
(r = 0.64, p= 6.4∗10−4).

Group Differences in the Causal
Interactions of Inter-systems
The specific changes in causal interactions among these networks
were explored. The inter-system IFS values with significant group
differences are shown in Figure 5. Compared with the healthy
elderly, the AD patients showed decreased bidirectional IFS
among the DN subsystems, including the IFS between the Core
andMTL subsystem [Core->MTL: t(49) =−3.85, p= 3.48∗10−4;
MTL->Core: t(49) = −4.14, p = 1.36∗10−4], between the Core
and DM subsystem [Core->DM: t(49) =−2.88, p= 0.0059; DM-
>Core: t(49) =−2.92, p= 0.0052], and between theMTL andDM
subsystem [MTL->DM: t(49) = −2.89, p = 0.0058; DM->MTL:
t(49) = −3.00, p = 0.0043] in the AD patients. We also found
both decreased forward and feedback IFS between the Core and
FPCNA [Core->FPCNA: t(49) = −2.69, p = 0.0097; FPCNA-
>Core: t(49) = −2.78, p = 0.0076], between the MTL subsystem
and FPCNA [MTL->FPCNA: t(49) = −3.08, p = 0.0034;
FPCNA->MTL: t(49) = −3.14, p = 0.0028], and between the
DM subsystem and FPCNA [DM->FPCNA: t(49) = −2.87,
p = 0.0060; FPCNA->DM: t(49) = −2.74, p = 0.0086) in the AD
patients relative to the healthy elderly. Additionally, the results
revealed that the IF initiated from both the Core [t(49) = −2.95,
p = 0.0049] and DM [t(49) = −3.36, p = 0.0015) subsystem
to the DAN were decreased; the IF initiated from the Core
[t(49) = −2.99, p = 0.0044], MTL subsystem [t(49) = −2.95,
p = 0.0049] and FPCNA subsystem [t(49) = −2.74, p = 0.0085]
to the FPCNB subsystem were also decreased in the AD patients
compared with the healthy elderly.

To explore the alterations in the coordination of the
disrupted causal interactions of particular pairs of networks, the
correlations of the forward and feedback IFS between the FPCNA
and DN subsystems were calculated and then compared across
groups. We found that forward and feedback IFS between the
FPCNA subsystem and three DN subsystems [DM subsystem:
(r = 0.97, p = 0); Core: (r = 0.95, p = 3.6 ∗10−14); and
MTL subsystem: (r = 0.95, p = 2.1∗10−14)] were significantly
correlated in healthy elderly group (see Figure 6). Finally, the
results revealed decreased correlation values of the bidirectional
IFS between the FPCNA and the MTL subsystem (Z = −5.05,
p= 4.40∗10−7), DM subsystem (Z =−4.66, p= 3.10∗10−6), and
Core (Z = −2.61, p = 0.0090) in the AD patients relative to the
healthy elderly (see Figure 6).
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FIGURE 4 | Correlation of decreased DN regional intra-in+out IFS and inter-in+out IFS in AD subjects (P < 0.05, uncorrected for multiple comparisons). LTC, lateral

temporal cortex; PCC, posterior cingulate cortex; pIPL, posterior inferior parietal lobule; RMPFC, rostromedial prefrontal cortex; DM, dorsomedial prefrontal cortex;

pDLPFC, posterior dorsolateral prefrontal cortex; TP, temporopolar cortex; L, left hemisphere; R, right hemisphere; r, Pearson correlation coefficient.

FIGURE 5 | Inter-subsystem IFS showing significant group differences (p <

0.01). A single arrow indicates that the unidirectional connection between

networks was decreased in AD. Double arrows indicate that the reciprocal

connections between networks were decreased in AD. FPCNA, frontoparietal

control network A; FPCNB, frontoparietal control network B; DM, dorsomedial

prefrontal cortex; MTL, medial temporal lobe subsystem; DAN, dorsal

attention network.

Group Differences in Temporal
Co-evolution of the Inter-system Causal
Interactions
We selectively assessed correlations between the dynamic
effective connections of inter-subsystem to measure the temporal
co-evolution of sets of inter-subsystem causal interactions, which

was then compared across groups. The results showed that
IFS initiated from the FPCNA to the Core was significantly
correlated with the IFS initiated from the Core to the DAN
[rmean = 0.39, p = 3.5∗10−6, t(26) = 5.1], and a significant
dynamic correlation [rmean = 0.46, p= 2.7∗10−5, t(26) = 5.9] was
also found between the FPCNA->DM subsystem IFS and the DM
subsystem->DAN IFS in the healthy elderly group. Moreover,
temporal co-evolution between FPCNA->Core IFS and Core-
>DAN IFS [t(49) = −2.2, p = 0.04), as well as between FPCNA-
>DM IFS and DM->DAN IFS [t(49) = −3.2, p = 0.0025), was
significantly decreased in the AD patients compared with the
healthy elderly (see Figure 7).

Group Differences in the Regulatory Effect
of the FPCNA
The changes in the regulatory effect of the FPCNA were
examined in the AD patients relative to the healthy elderly.
Compared with the full correlation, the FC strength
within the Core [t(26) = −8.80, p = 2.8∗10−9], MTL
subsystem [t(26) = −7.66, p = 4.0∗10−8], and DM subsystem
[t(26) = −11.11, p = 2.3∗10−11], between the DM subsystem
and DAN [t(26) = −6.94, p = 2.3∗10−7], and between the
Core and DAN [t(26) = −6.08, p = 2.0∗10−6] after removing
the role of the FPCNA were significantly decreased in healthy
elderly group (see Figure 8A). In the AD patients, the FPCNA
showed a higher regulatory effect on the Core [t(49) = 2.31,
p = 0.025] than in the healthy controls, whereas no group
differences were found in the regulating effect of the FPCNA on
the MTL subsystem [t(49) = −0.053, p = 0.96], DM subsystem
[t(49) = 1.89, p = 0.064], interaction between the Core and DAN
[t(49) = 0.70, p= 0.49], or interaction between the DM and DAN
[t(49) = 1.01, p= 0.32] (see Figure 8B).
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FIGURE 6 | The correlation of forward and feedback IFS between the FPCNA and three DN subsystems in the NC and AD groups.

FIGURE 7 | Temporal co-evolution of inter-system causal interactions in the NC and AD groups. (A) Temporal co-evolution between FPCNA->Core IFS and

Core->DAN IFS and between FPCNA->DM IFS and DM->DAN IFS in the NC and AD groups (*p < 0.05, **p < 0.005). Error bars represent the standard error of the

mean. (B) Data for four randomly chosen example participants demonstrating IFS from FPCNA to Core and IFS from Core to DAN (Top) as well as IFS from FPCNA to

DM and IFS from DM to DAN (Bottom) within successive 60-second windows in the AD and NC groups.

Network Roles in the Classification
Between AD Patients and NCs
The network that made the strongest contribution to the
classification between the two groups was identified. The SVM
classifier was adopted for classification using indicators with
higher absolute t-statistics as the features. As shown in Table 3

and Figure 9, the linear SVM classifier achieved an accuracy of
82%, with a sensitivity of 91%, a specificity of 74%, and an area

under the receiver operating characteristic (ROC) curve value of
79% by using the intra-in IFS of the vPCC_L within the DN as

the classification feature. When we used intra-in+out IFS of the

PCC_L within the DN as the feature, the SVM classifier reached

an accuracy of 74%, a sensitivity of 83%, a specificity of 89%,

and an area under the curve (AUC) value of 82%. The linear
SVM classifier attained an accuracy of 76%, with a sensitivity
of 92%, a specificity of 81%, and an AUC value of 82 when we
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FIGURE 8 | The regulatory effects of the FPCNA. (A) In the NC group, full and partial correlation strength within the Core, MTL subsystem, DM subsystem, between

the Core and DAN, and between the DM subsystem and DAN. (B) The regulatory effect of the FPCNA on the Core, MTL subsystem, DM subsystem, interactions

between the Core and DAN, and between the DM subsystem and DAN in the NC and AD groups (*p < 0.05, **p < 0.005, ***p < 0.001).

TABLE 3 | Classification performance using linear SVM classifiers with the

regional IFS of ROIs within DN as classification features.

Classification

feature

Accuracy Sensitivity Specificity AUC

Intra-in IFS of the

vPCC_L

82% 91% 74% 79%

Intra-in+out IFS of

the PCC_L

74% 83% 89% 82%

Intra+Inter-out IFS

of the PCC_R

76% 92% 81% 82%

used the intra+inter-out IFS of the PCC_R within the DN as
the features.

DISCUSSION

The current study suggests that prominently disrupted DN
subsystems initiated their disordered interactions with FPCN
subsystems and DAN and caused the FPCNA to have a higher
regulatory burden. First, the regional IFS analysis revealed that
the regional IFS of most ROIs within the DN significantly
decreased in the AD patients, and the disrupted intra-DN
regional IFS was closely related to inter-system regional IFS.
Additionally, some ROIs in the FPCN subsystems and DAN
also showed decreased inter-system regional IFS, but only a

few showed decreased intra-system regional IFS. Moreover, the
inter-system effective connectivity analysis demonstrated that the
DN subsystems showed extensive decreased effective connections
with the FPCN subsystems and DAN in a different pattern and
that correlation values of the forward and feedback IFS between
the FPCNA and DN subsystems significantly decreased in the
AD patients compared with the healthy elderly. Furthermore,
DN subsystems played a central role in the changes in the
temporal co-evolution of sets of inter-system interactions in AD;
the FPCNA exhibited a higher regulatory effect on the Core in the
AD patients; and the DN made the strongest contribution to the
classification between the AD and NC groups.

Prominently Impaired Intra-DN Regional
IFS Is Associated With Inter-system
Regional IFS in Patients With AD
The regional IFS analysis results suggested that the DN was
prominently disrupted in the AD patients, and other systems
outside theDN also had a certain degree of disruption. Consistent
with our findings, previous studies revealed mainly impaired
FC and activity abnormalities as well as structural atrophy of
the DN (Greicius et al., 2004; Buckner et al., 2005, 2009; Wang
et al., 2006; Zhou et al., 2008; Yu et al., 2017). Some studies have
proposed that the DN was the first large-scale system shown to
be disrupted in AD (Greicius et al., 2004; Buckner et al., 2005;
Rombouts et al., 2005; Sorg et al., 2007; Sheline et al., 2010; Zhang
et al., 2010), and other networks were involved in succession
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FIGURE 9 | ROC curves of the linear SVM classifier using (A) intra-in IFS of the vPCC_L, (B) intra-in+out IFS of the PCC_L, and (C) intra+inter-out IFS of the PCC_R

within the DN as classification features. PCC, posterior cingulate cortex; vPCC, ventral posterior cingulate cortex.

(Agosta et al., 2011; Thomas et al., 2014; Jones et al., 2015;
Wang et al., 2015). Our results also showed that disrupted intra-
system regional IFS of ROIs in the DN were associated with the
inter-system regional IFS. A few studies have directly explored
the relationships between intra- and inter-system functional
connections; however, Avelar-Pereira et al. (2017) found that the
degree of DN-DAN anti-correlation during a task was associated
with DN neural activity during rest. Additional analyses have
proposed that disruptions in the DN initiated disordered FC
with other networks that were initially unaffected by AD (Brier
et al., 2012, 2014). Our findings support the hypothesis that
the prominent disruption of the DN affected its inter-system
causal interactions.

Disrupted Causal Interactions of
Inter-systems in Patients With AD
The inter-system effective connectivity analysis showed that the
bidirectional IFS values among the DN subsystems and between
the three DN subsystems and FPCNA were decreased in the
AD patients, additionally, effective connections initiated from
the Core, MTL subsystem and FPCNA to the FPCNB subsystem,
from the Core and DM subsystem to DANwere decreased. These
results suggested that the DN subsystems play a crucial role in
the alterations of inter-subsystem interactions. Consistent with
our findings, previous researchers have reported that decreased
effective connectivity was found between the DN and other
systems in patients with AD (Liu et al., 2012). Resting-state FC
analysis also revealed abnormal connectivity between the DN
and DAN and FPCN in AD patients (Brier et al., 2012; Wang
et al., 2015; Zhu et al., 2016). Recent studies have proposed
that the DN couples with the FPCN to generate and sustain an
internal train of thought (Smallwood et al., 2012). Dixon et al.
(2018) indicated that the FPCNA subsystem was preferentially
coupled with the DN to regulate internal thoughts and emotions
such as abstract thinking (Christoff et al., 2009; Fox et al.,
2015), relational reasoning (Christoff et al., 2001; Vendetti and
Bunge, 2014), mentalizing (Bhatt et al., 2010), episodic memory
(Fornito et al., 2012), and future planning (Spreng and Grady,

2010). The disruption of directional IFS between the FPCNA
and DN subsystems may result in cognitive impairment of these
introspective processes. Studies have suggested that the core of
the DN shares functional properties with both the MTL and
DM subsystems involved in self-referential processing, emotion
evaluation, and social andmnemonic processes (Andrews-Hanna
et al., 2014). In this study, in addition to decreased effective
connectivity with the FPCNA subsystem, the Core also exhibited
extensive disrupted effective connections with the DAN and
FPCNB subsystems. In line with previous findings, Zhang et al.
(2010) suggested that impairments in PCC (one of the critical
regions of the Core) FC changes with the progression of AD.
Previous studies have found that the anti-correlation between
the DN and the DAN is attenuated in AD patients (Zhou et al.,
2010; Agosta et al., 2011; Brier et al., 2012; Thomas et al., 2014;
Zhu et al., 2016). Intrinsically, the anti-correlated DAN and DN
inversely subserve externally and internally directed cognition,
respectively (Spreng et al., 2010; Andrews-Hanna, 2012), and this
anti-correlation pattern may play an important role in flexibly
allocating attentional resources. Dixon et al. (2017) revealed that
the DAN showed weak negative FC with the Core but was
uncorrelated with the DM and MTL subsystems. Hence, the
disrupted effective connectivity from the Core to the DAN in
AD patients might lead to impaired function at the clinical level,
which may partly explain the attention deficits observed with
AD patients. Additionally, decreased IFS was also found from
the DM subsystem to the DAN and from the Core and MTL
subsystems to the FPCNB subsystem. Our results also indicated
that distinct DN subsystems have different patterns of disrupted
inter-system interactions, which further proved the heterogeneity
of these large-scale networks’ functional-anatomic organization
(Buckner et al., 2008; Uddin et al., 2009; Sestieri et al., 2011;
Yeo et al., 2011; Andrews-Hanna, 2012; Kim, 2012; Salomon
et al., 2014; Dixon et al., 2018), and our findings regarding the
changes in these large-scale network subsystem interactions may
provide a greater understanding of the system-level pathogenesis
of AD. The DM subsystem and DAN are involved in mentalizing
and perceptual processing, respectively, sometimes operate in
concert, making inferences about others’ thoughts by analyzing
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the perceptual input of body language, facial expression, and
eye gaze (Baron-Cohen et al., 2001; Dixon et al., 2017). The
disruption of effective connections between the DM subsystem
and the DAN may affect AD patients’ normal cognitive abilities.
The FPCNB is preferentially coupled with the DAN to engage
in regulating visuospatial perception and action during physical
interactions with the environment; however, it was also shown
to be aligned with the DN in some contexts (Stokes et al.,
2013; Dixon et al., 2018). The decreased IFS from the MTL and
Core to the FPCNB during rest can also affect its IFS during a
task; therefore, we speculated that the disruptions possibly led
to limited task-related flexibility of inter-system interactions. In
this study, we also found decreased IFS from the FPCNA to
the FPCNB subsystem. In particular, the FPCNB has been more
related to complex tasks, and the FPCNAmay recruit the FPCNB
when performing highly complex, perceptually focused tasks
(Dixon et al., 2018). Disruption of effective connectivity from the
FPCNA to the FPCNB subsystem may, to some degree, explain
AD patients’ impaired ability to complete complex cognitive
and executive function tasks. To further explore the changes
in coordination in these disrupted causal interactions of inter-
systems, we compared correlation values of forward and feedback
IFS between the FPCNA andDN subsystems and found that these
correlation values were significantly reduced in the AD patients.
Previous studies scarcely examine changes in the coordination
of causal interactions in inter-systems. Similar to self-organizing
and homeostatic feedback control in other biological systems,
such as body temperature control and the body’s immune system,
we assumed that the control system of the FPCNA showed
feedback regulation of the DN subsystems (Brun et al., 2009;
Cole et al., 2014). Our results clarified a significant correlation
of bidirectional IFS between the FPCNA and DN subsystems
and the meditation role of the FPCNA on the DN subsystems
(the latter will be elaborated on in detail below) in the healthy
elderly group, which further supports this hypothesis. Therefore,
in view of our findings, we speculated that the disrupted DN
subsystems had difficulty effectively responding to signals from
the FPCNA meditation and could not correctly convey the
feedback information to the FPCNA in AD patients. For example,
in some contexts, the disrupted DN cannot correctly transmit the
inhibitory feedback signal to the FPCNA, and the DN would fail
to be deactivated; meanwhile, to maintain the normal function of
the DN, the FPCNA continues to constantly attempt to regulate
the damaged DN subsystems (Spreng and Schacter, 2012; Cole
et al., 2014). Our findings suggested that the DN subsystems not
only initiated disrupted inter-system causal interactions but also
caused incoordination in the causal interactions between the DN
subsystems and the FPCNA in AD patients.

Disordered Temporal Co-evolution of Sets
of Inter-system Causal Interactions
Abundant evidence has suggested that the FPCN may serve
as a “switch” that actively engages or disengages the DN
and DAN to regulate the balance between them (Spreng
et al., 2010, 2013; Gao and Lin, 2012; Cole et al., 2013b;
Shaw et al., 2015). In the present study, we also extended

this finding and demonstrated that variation across time in
the IFS initiated from the FPCNA subsystem to Core was
related to that from the Core to DAN and that variation
across time in the IFS initiated from the FPCNA subsystem
to the DM subsystem was associated with that from the DM
subsystem to DAN in the healthy elderly group. The DM
subsystem and Core are involved in processing high-level
conceptual information associated with the self or others (Binder
et al., 2009; D’Argembeau et al., 2010, 2012; Denny et al.,
2012; Andrews-Hanna et al., 2014; Simony et al., 2016). The
FPCNA IFS patterns being tightly coupled with the IFS from
the Core/DM subsystem to DAN changes across time could
potentially reflect moment-to-moment shifts in the distribution
of attention between perceptual information and internally
oriented conceptual thought (Dixon et al., 2017). In the present
study, we found that temporal co-evolution between FPCNA-
>Core IFS and Core->DAN IFS as well as between FPCNA-
>DM IFS and DM->DAN IFS was significantly decreased in
the AD patients. The disordered temporal co-evolution of these
large-scale network subsystem interactions in the AD group
may reflect impaired flexibility and reconfiguration abilities of
the interactivity between RSNs, which may lead to deficits in
cognitive and executive function (Cocchi et al., 2013; Dwyer
et al., 2014). The results also suggested that DN subsystems
play central roles in the disordered temporal co-evolution of
these inter-system causal interactions. Therefore, our findings
further demonstrated that significantly disrupted DN initiated
disordered causal interactions of the inter-system.

Higher Regulatory Burden of the FPCN on
the Core in Patients With AD Relative to
NCs
Extensive evidence has identified the FPCN as a control system
showing extensive functional connectivity to regulate other
systems (Cole et al., 2010, 2013a,b; Power et al., 2011). This
study suggested a regulatory ability of the FPCNA on DN
subsystems and interactivity between the DM subsystem and
DAN, as well as an interaction between the Core and DAN
in the healthy elderly group. We assumed that the constant
regulation of the FPCNA on the disrupted DN subsystems and
interactions between systems possibly leads itself to a higher
regulatory burden in AD patients. To test this hypothesis, we
compared its meditating effect across the groups. We found
that the FPCNA showed a higher regulatory effect on the
Core, but the regulatory effects of the FPCNA on other DN
subsystems and interactions between systems showed no group
differences. This finding is consistent with previous observations
that enhanced connectivity occurred mainly between the PCC
and the prefrontal-parietal cortex in AD patients (Zhang et al.,
2010; Franzmeier et al., 2017). Studies have reported that
increased FC between the FPCN and DN is coupled with
reduced connectivity within the DN to maintain better memory
performance (Grady et al., 2016). The FPCN has recently been
proposed to be related to higher reserve capacity (Franzmeier
et al., 2017). The increased regulating effect of the FPCNA
may compensate for the deficit in the function of the DN.
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Therefore, the structural and functional integrity of the FPCNA
plays a crucial role in maintaining normal cognitive function
(Cole et al., 2014). In the present study, a few ROIs in the
FPCN subsystems were also impaired in the AD patients. We
speculated that the continuous high-load regulation of damaged
systems may cause damage to the regulatory system and that
this disruption of the FPCN will lead to more severe cognitive
deficits in AD patients. Therefore, the higher regulatory burden
of the FPCN subsystem may serve as a warning that the recently
influential treatment based on transcranial magnetic stimulation
(TMS) that stimulates regions of the FPCN to activate the
downstream regions of DN (Chen et al., 2013) may help to
improve patients’ cognitive function in a short time and will
possibly have the risk of irreversibly exacerbating the AD. Our
findings not only support the hypothesis that the significantly
disrupted DN subsystem causes a higher regulatory burden on
the FPCNA and but also possibly provide a valid warning about
the approach to treat AD by stimulating brain regions within the
FPCN via TMS.

The Core and MTL Subsystem Made the
Strongest Contributions to the
Classification Between AD Patients and
NCs
To identify which systems made the most contribution to the
classification between the AD and the healthy elderly groups, we
applied an SVM linear classifier to differences with the higher
absolute t-statistics. The results showed that the regional IFS
of the regions within the Core (PCC_L, PCC_R) and MTL
subsystems (vPCC) had higher sensitivity and specificity for
classification than each of the other examined features. Our
findings further demonstrated that the brain regions within the
MTL subsystem and Core may be more susceptible to AD.
The present results were supported by our previous findings
that the MTL subsystem was significantly disrupted and that
the PCC plays an important role in the disruption of FCs in
AD (Qi et al., 2018). Seminal studies have reported that the
external attentional state is related to the PCC; in contrast, the
vPCC supports various aspects of internally oriented cognition,
including the retrieval of episodic and semantic memories
(Hampson et al., 2006; Gilbert et al., 2007; Hahn et al., 2007;
Leech and Sharp, 2014). The interactions between the PCC
and vPCC and other systems are the key to regulating the
balance between internal and external attentional focus (Leech
et al., 2011). The disrupted IFS of the PCC and vPCC may
in part explain the impaired cognitive and executive function
of AD patients. The finding of specific disrupted regions may
provide evidence for early accurate diagnosis and clues for future
targeted treatment.

Limitations
There are several limitations in the present work. First, this
study included a small sample size. Second, our research focused
only on cross-sectional data, which did not allow us to track
the specific alterations in the causal interactions among inter-
system during different stages of the disease. Third, we did not

perform related behavioral tests. Specific cognitive and executive
function impairment in AD patients may be related to changes
in the IFS of the inter-systems. Considering these limitations,
future work should involve a longitudinal study [including
different stages of AD, i.e., from mild cognitive impairment
(MCI) to mild, moderate, and severe AD] to investigate the
sequence of the changes in different systems; we will recruit
more participants and collect multi-center imaging data to
enhance the stability of the results. In addition, we should
explore the relationships between the changes in the causal
interactions among the inter-systems and specific cognitive and
executive abilities.

CONCLUSIONS

To summarize, significant disruption of the DN itself was found
to be closely related to the changes in its interactions with other
systems in AD patients. Distinct DN systems showed different
patterns of disruption and/or incoordination in their causal
interactions with the FPCN subsystems and DAN. Additionally,
the DN subsystems also play a crucial role in the disordered
temporal co-evolution of sets of inter-system interactions in AD.
Furthermore, the FPCNA had a higher regulatory burden on
the Core; the MTL subsystem and Core contributed the most
to the classification between the AD and NCs. These findings
indicated that disrupted DN subsystems initiated disrupted and
disordered interactions with the FPCNA/B and DAN and caused
a higher regulatory burden of FPCNA. A detailed exploration of
the changes in the causal interactions among these large-scale
network subsystems and the initial elements that caused these
alterations may be helpful for further understanding the specific
system-level pathogenesis of AD, might provide a potential
imaging biomarker for the early accurate diagnosis of AD, and
find clues for therapeutic interventions targeting large-scale brain
networks in AD.
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