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A commentary on

Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels

Alzheimer’s Disease Risk

by Huang, Y. A., Zhou, B., Nabet, A. M., Wernig, M., and Südhof, T. C. (2019). J. Neurosci. 39,
7408–7427. doi: 10.1523/JNEUROSCI.2994-18.2019

Alzheimer’s disease (AD) is a neurodegenerative condition that inevitably impairs cognitive
functions and influences a patient’s behavior, mood, and self-reliance. Due to demographic changes,
AD and other age-associated diseases have become increasingly common and burdensome for
families, as well as entire societies. It is extremely important that we learn more about specific
mechanisms that can be linked to the development of the disease. The main symptoms of AD,
observed in the central nervous system, are brain atrophy and loss of neurons and synapses. They
are believed to result from excessive aggregation of tau protein and amyloid plaques (composed
of ß-amyloid). However, neither the initial cause nor the detailed chain of events that lead to
this type of neurodegeneration are known. No deterministic genes were identified for late-onset
Alzheimer’s disease (LOAD), but several risk genes seem to be involved in its pathogenesis. The
gene coding apolipoprotein E (APOE) is the best-known and has the strongest association with AD
development. AD probability decreases in carriers of the e2 variant of the APOE gene (APOE-e2),
whereas APOE-e4 is believed to be a strong risk factor (Strittmatter et al., 1993) and is associated
with overall cognitive impairment and synapse loss (see review by Selkoe, 2002).

Few hypotheses have been proposed in the literature explaining possible mechanisms by which
APOE could affect the brain and promote AD. ApoE in the brain is mostly expressed by astrocytes
and microglia and is thought to be involved in the metabolism and clearance of lipoproteins (see
Fernandez et al., 2019 for review). Astrocytes play a vital role in the internalization and degradation
of extracellular beta-amyloid (Aβ), the component which forms plaques that are believed to be
involved in AD neurodegeneration (Serrano-Pozo et al., 2011; Ries and Sastre, 2016, see also review
by Haass and Selkoe, 2017; Fernandez et al., 2019). The APOE-e4 variant was shown to be least
effective in degradation of Aβ (Castellano et al., 2012).

Another hypothesis points to the fact that ApoE variants have different binding properties
(Calandra et al., 2011) to the receptors that regulate intracellular signaling (Ohkubo et al., 2001; Qiu
et al., 2004). This hypothesis was first addressed by Huang et al. (2017) and again in a replication
and control study published last year in the Journal of Neuroscience (Huang et al., 2019). Their
research was conducted on stem cell-derived human neurons cultured without glial cells. Results
of the experiments (Huang et al., 2019) showed that even in the absence of glial cells ApoE strongly
and diversely influenced signal transduction cascades in neurons, which led to intensification of
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amyloid precursor protein (APP) synthesis and, at the same time,
to the formation of new synapses. The study revealed the synaptic
paradox of the APOE-related risk of AD: surprisingly, it was
APOE-e4, the gene variant that is linked to the highest risk of
AD, that was most efficient in stimulating MAP signaling and in
enhancing synaptogenesis.

The question arises: how is it possible to link these cell-
level studies with the same ranking (APOE-e4 > APOE-e3 >

APOE-e2) of negative impact on human brain function in AD.
Results indicating enhanced APP synthesis are in agreement with
studies showing higher levels of Aβ in brains ofAPOE-e4 carriers,
examined post-mortem (Shinohara et al., 2013), as well as in vivo
studies using positron emission tomography (see review of Jack
and Kepe, 2013). However, a reported APOE-e4-related increase
in synapse formation contradicted numerous findings indicating
the highest loss of synapses and severity of cognitive decline in
APOE-e4 carriers (Terry et al., 1991; Selkoe, 2002; Scheff et al.,
2006; Purro et al., 2012; Chen et al., 2018). It appears that the link
between APOE isoforms and neuronal and synaptic dysfunction
observed in AD comprises multiple, seemingly contradictory,
mechanisms. Huang et al. (2019), and previously Lin et al. (2018),
showed an APOE-e4 related increase in the number of synapses
in isolated neurons. On the other hand in vivo research has
demonstrated strong evidence of synapse loss related to memory
and cognitive impairment, which characterize dementia and
neurodegeneration. The direct effect of APOE-e4 on neurons can
be modulated by the interplay of many factors, including the
activity of glial cells (mainly astrocytes and microglia) and other
risk-genes. Moreover, it was shown that neurons need astrocytes
and microglia to eliminate redundant synapses (Lee and Chung,
2019). Maintaining proper synapse number is a crucial process
in learning and memory and thus any changes may disrupt the
cells’ homeostasis and lead to neurodegenerative diseases like
AD. APOE-e4 was shown to inhibit synaptic pruning, realized
by astrocyte phagocytosis, whereas APOE-e2 promoted it Chung
et al. (2016). APOE has a strong impact on lipoprotein (and
cholesterol) homeostasis and synaptic stabilitymaintenance, with
APOE-e4 having the most negative impact on the brain. APOE-
e4 limits the astrocytes’ ability to recycle and clear extracellular
cholesterol (Fernandez et al., 2019) and leads to its accumulation
and an increase of Aβ (Strittmatter et al., 1993) related to

synaptic dysfunction (Purro et al., 2012). Human astrocytes with
APOE-e4 showed accumulation of cholesterol and could not
efficiently fulfill their role related to clearance of Aβ (Lin et al.,
2018).

Perhaps it is the initial higher number of synapses and APP
in neurons with APOE-e4 that leads to an increase in toxic
Aβ forms and impairs astrocytes’ function, which can initiate
the whole cascade of changes related to later loss of synapses
and cognitive functions. It may indicate that, in the brains of
APOE-e4 carriers, AD risks begin to accumulate from early
developmental stages when too many synapses are formed and
not enough of them are pruned (Chung et al., 2016; Lin et al.,
2018; Huang et al., 2019). Although, the APOE-e4 risk related to
loss of cognitive functions is predominant for persons older than
50 years of age, people homozygous for APOE-e4 may experience
the risk much earlier, just after 40 years of age (Liu et al., 2010).
Other studies point out that APOE-e4 could affect the brain
even earlier, changing its structure, function and neurochemistry
(see DiBattista et al., 2016 for review). APOE-e4 young carriers
perform equally well or even much better in a variety of
cognitive tasks compared to non-carriers (Mondadori et al., 2007;
Jochemsen et al., 2012; DiBattista et al., 2016). The effect is tried
to be explained by antagonistic pleiotropy hypothesis: some genes
may enhance fitness early in life but act adversely in elderly. They
are still favored by natural selection since the survival of the
species depends on young individuals (Tuminello and Han, 2011;
DiBattista et al., 2016). Understanding the specific influence
of APOE-e4 on neuronal signaling pathways throughout the
lifespan may help us to identify early biomarkers and target
therapy against AD in the future.
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