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Alzheimer’s disease (AD) is the most common form of dementia and affects over 45
million people worldwide. Both type-2-diabetes (T2D), a metabolic condition associated
with aging, and disrupted sleep are implicated in the pathogenesis of AD, but how sleep
and metabolism interact to affect AD progression remains unclear. In the healthy brain,
sleep/wake cycles are a well-coordinated interaction between metabolic and neuronal
activity, but when disrupted, are associated with a myriad of health-related issues,
including metabolic syndrome, cardiovascular disease, T2D, and AD. Therefore, this
review will explore our current understanding of the relationship between metabolism,
sleep, and AD-related pathology to identify the causes and consequences of disease
progression in AD. Moreover, sleep disturbances and metabolic dysfunction could serve
as potential therapeutic targets to mitigate the increased risk of AD in individuals with
T2D or offer a novel approach for treating AD.
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INTRODUCTION

Alzheimer’s disease (AD) is severe neurodegenerative disorder characterized by the accumulation
of extracellular amyloid plaques and intracellular neurofibrillary tau tangles (NFT), with detectable
pathology occurring 15–20 years prior to the onset of clinical symptoms [as reviewed in Holtzman
et al. (2011)]. Deposition of amyloid-beta (Aβ) into amyloid plaques is one of the initial changes
observed in presymptomatic AD, with tau hyperphosphorylation, aggregation, and NFT formation
to follow in spatially distinct regions (Bateman et al., 2012). Although changes in cerebral amyloid
burden occurs early and is necessary for an AD diagnosis, the development of tau pathology, both
temporally and spatially, more closely aligns with neurodegeneration and clinical symptoms. In
general, disease development is multifaceted and influenced by a variety of genetic, environmental,
and lifestyle components. Brain hypometabolism, hyperexcitability, oxidative stress, mitochondrial
dysfunction, brain insulin resistance, and inflammation all contribute to AD pathophysiology,
yet it is unclear whether they are a cause or consequence of Aβ and tau pathology (Musiek
and Holtzman, 2015). Type-2-diabetes (T2D), a metabolic disease also associated with aging, is
characterized by hyperglycemia, hyperinsulinemia, insulin resistance, and beta cell dysfunction.
Sleep, on the other hand, is a complex homeostatic mechanism tied to altered consciousness
and decreased responsiveness to sensory stimuli that relies heavily on the tight coupling between
cerebral metabolism and neuronal activity. Both T2D and sleep disorders are implicated in the
pathogenesis of AD, but the exact role sleep and metabolism play remains unclear (Ott et al., 1999;
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Stanley et al., 2016). In this review, we summarize the current
understanding of the interplay between metabolism, sleep, and
AD pathophysiology with an emphasis on disrupted sleep as a
modifiable lifestyle characteristic contributing to increased risk
of both AD and T2D.

GLUCOSE METABOLISM AND
NEURONAL ACTIVITY IN AD

The relationship between metabolic activity and neuronal activity
is central to both healthy brain function as well as the
pathogenesis of AD. First, neuroimaging studies confirmed that
prior to the hypometabolism typically described in preclinical
stages of AD, brain regions most vulnerable to Aβ and tau
accumulation are uniquely reliant on glucose for normal brain
function and display increased glucose consumption at a young
age (Edison et al., 2007; Mosconi et al., 2008; Vaishanavi
et al., 2010; Vlassenko et al., 2010; Oh et al., 2016; Hanseeuw
et al., 2017; Adams et al., 2018). Aerobic glycolysis is an
emerging biomarker of network vulnerability in AD where
brain regions prone to Aβ deposition utilize glucose beyond
what is necessary for energy production, even though sufficient
concentrations of oxygen exist for oxidative phosphorylation and
ATP generation (Vlassenko et al., 2010, 2018; Yao et al., 2011;
Vlassenko and Raichle, 2015; Harris et al., 2016). Biosynthesis,
synaptic plasticity, synaptic remodeling, memory formation,
and other key processes utilize glucose in this way and are
essential for healthy brain function. In AD, brain regions
predisposed to Aβ deposition markedly overlap with the brain’s
default mode network, a network characterized by highly variant
resting-state blood oxygen level dependent fMRI signals, high
resting-state functional connectivity, high aerobic glycolysis,
and high neuronal activity (Jagust and Mormino, 2011). In
amyloid-positive, cognitively normal adults, elevated default
mode network connectivity patterns are associated with low
tau burden, while decreased connectivity is associated with
increased tau burden, introducing a pattern of hyper- and
hypoconnectivity along the preclinical-AD trajectory (Schultz
et al., 2017). Recent studies demonstrate that individuals with
high amyloid burden and lower aerobic glycolysis also have
higher tau burden, another core pathological feature of AD
(Vlassenko et al., 2018). Therefore, an interesting relationship
emerges that links brain regions that are both metabolically and
neuronally active with regions susceptible to AD pathology. This
places regional glucose metabolism in the aging brain at the
forefront of AD pathogenesis.

In a metabolically healthy brain, neuronal activity evokes
a localized vascular response to increase cerebral blood flow
and deliver enough oxygen and glucose to sustain periods of
increased activity. Therefore, regional glucose consumption and
glucose concentration in the brain’s interstitial fluid (ISF) are
closely tied to changes in neuronal activity. However, it is still
unclear how alterations in glucose availability and glycemic
variability can modify the relationship between neuronal and
metabolic activity to influence AD-related pathology and
dementia. Elevated blood glucose levels, or hyperglycemia, are

associated with an increased prevalence of dementia and AD,
faster progression from mild cognitive impairment (MCI) to
AD, and increased rates of Aβ accumulation (Whitmer et al.,
2009; Aung et al., 2012; Crane et al., 2013; Lin and Sheu,
2013; Yaffe et al., 2013; Morris et al., 2014; Gomez et al.,
2018). Similarly, repeated episodes of hypoglycemia that typically
accompany treatment of T2D are also associated with increased
risk of dementia and dementia of an Alzheimer’s type. In
preclinical models, inducing peripheral hyperglycemia in rodents
increases hippocampal ISF glucose, Aβ, and lactate levels. This
effect is exacerbated in mice with significant Aβ pathology,
demonstrating fluctuations in peripheral metabolism not only
alter cerebral metabolism and Aβ release but amyloid plaques
impact the brain’s response to glycemic changes (Macauley
et al., 2015). Moreover, fluctuations in ISF lactate accompany
hyperglycemia and represent changes in neuronal activity
(Pellerin and Magistretti, 1994). Evidence from the astrocyte
neuron lactate shuttle (ANLS) demonstrates glutamate release
from neurons stimulates glycolysis within astrocytes, causing
astrocytes to shuttle the glycolytic end-product, lactate, to
neurons as fuel for ATP generation. Thus, preferential utilization
of lactate over glucose occurs during periods of heightened
neuronal activity and relative changes in the pool of ISF lactate
represents changes in excitatory neurotransmission. Indeed,
previous studies show that Aβ is released in an activity-dependent
manner via changes in synaptic vesicle exocytosis (Cirrito et al.,
2005) and increased neuronal activity is coupled to ISF lactate
and Aβ levels. Moreover, regional differences in Aβ levels
and subsequent plaque formation mirrors regional patterns
of neuronal activity, where hyperexcitability is associated with
increased plaque aggregation (Busche et al., 2008; Bero et al.,
2011). Although tau is a cytoplasmic protein and pathological
tau accumulates intraneuronally, tau is found in the ISF and
cerebrospinal fluid (CSF) demonstrating it can be released
from neurons. Historically, extracellular tau was thought to be
released from dead or dying cells, but recent studies demonstrate,
similar to Aβ, tau is released during neuronal activity under
normal conditions (Pooler et al., 2013; Yamada et al., 2014),
and accumulates in periods of hyperactivity (Huijbers et al.,
2019). Extracellular tau monomers and aggregates can be taken
up by neighboring neurons where tau pathology can propagate
and spread through network connectivity (Clavaguera et al.,
2009; Lehmann et al., 2013; Wu et al., 2016; Franzmeier et al.,
2019). Therefore, mechanisms that alter neuronal excitability also
modulate the levels of Aβ and tau in the extracellular space and
over time, can promote or attenuate Aβ and tau aggregation. This
has been shown in clinical epilepsy populations (Mackenzie and
Miller, 1994; Tai et al., 2016) and APOE4 targeted replacement
mice, a genetic knock-in model of AD (Klein et al., 2014;
Nuriel et al., 2017), where network hyperexcitability leads to
increased accumulation of AD pathology. Taken together, these
data support a reciprocal relationship between metabolic activity,
neuronal activity, and AD-related proteins.

Individuals with T2D have a 2–4-fold increased risk of
developing AD (Ott et al., 1999). Although the relationship
between T2D and AD is complex, alterations in glucose
metabolism and glucose homeostasis are central to both diseases.
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As a disease associated with aging, T2D is characterized by
hyperglycemia, hyperinsulinemia, and insulin resistance (Ott
et al., 1999). While disrupted glucose regulation is correlated
with cerebral hyperexcitability and accumulation of pathology,
disrupted insulin signaling and insulin resistance also have
strong associations with MCI, dementia, and AD (Craft, 2007;
Talbot et al., 2012). Further, there is evidence that insulin
resistance may be an early biomarker of AD risk in cognitively
normal individuals, as greater insulin resistance is correlated
with decreased cerebral glucose uptake and poor memory
performance (Baker et al., 2011). Peripheral hyperinsulinemia
leads to increased circulating Aβ and CSF Aβ42 in cognitively
normal adults (Watson et al., 2003; Fishel et al., 2005)
and increased hyperphosphorylated tau protein expression
in mice (Freude et al., 2005). Further, in rodent models,
hyperinsulinemic-euglycemic clamps raised serum insulin levels
and modestly impacted ISF Aβ levels without detectable changes
in insulin levels or signaling pathways in the brain (Stanley
et al., 2016). Further, chronic hyperinsulinemia is thought to
lead to lower insulin levels in the brain, which could explain
why treating with insulin has been shown to cause memory
improvements (Craft et al., 1996; Kern et al., 2001; Rerger
et al., 2008). These studies suggest that both abnormal peripheral
glucose metabolism and insulin resistance, akin to that seen in
T2D, can accelerate AD pathogenesis through alterations in both
neuronal and metabolic activity.

SLEEP ARCHITECTURE AND
METABOLIC REGULATION

Sleep is a conserved behavior that occurs in two distinct stages –
non-rapid eye movement (NREM) and rapid eye movement
(REM). NREM sleep is characterized by large, slow waves that
propagate across the entire cortex, producing synchronized
periods of neuronal activation and silence (Steriade et al., 1993).
It is hypothesized that this slow wave activity (SWA) of NREM
sleep is restorative in nature; a price paid for neuronal activity and
synaptic strengthening that occurs during waking, and therefore
representative of the homeostatic need for sleep (Vyazovskiy
et al., 2009). SWA peaks early in the night and increases following
periods of extended wakefulness and decreases across sleep
periods as well as following daytime naps (Werth et al., 1996;
Achermann and Borbley, 2003). This is correlated to the patterns
of neuronal activity across the sleep/wake cycle where firing
rates are high during waking and lower across sleep, therefore
indicating a relationship between synaptic activity and sleep
(Vyazovskiy et al., 2009). Further, periods of heightened neuronal
activity and synaptic strengthening cause local increases in SWA,
while stimulus deprivation or pharmacological depotentiation of
synapses causes a reduction in SWA, further demonstrating SWA
as a marker for homeostatic sleep need (Huber et al., 2006, 2007;
Carroll et al., 2019).

Glucose and lactate also show consistent patterns across the
sleep/wake cycle closely related to neuronal activity. Glucose
concentrations in the brain increase during both NREM sleep,
which is thought to aid in restoration and replenishment of

glucose stores, and waking, indicative of increased metabolic
functioning. While glucose cannot accurately measure sleep
propensity because of these increases across both states, it is
useful as a biomarker for cerebral metabolism (Dash et al.,
2012b). Lactate concentrations in the brain increase with
heightened neuronal activity during wakefulness and decrease
across the night in correlation with both SWA and glutamate
concentration, suggesting a shift toward astrocytic glycolysis
and lactate utilization in periods of increased neuronal activity.
Because of this tight correlation with neuronal activity, lactate is
hypothesized to be an accurate biomarker for homeostatic sleep
(Dash et al., 2012b; Naylor et al., 2012).

In the periphery, blood glucose is homeostatically regulated to
maintain euglycemia and prevent extreme fluctuations. Glucose
tolerance reflects both hepatic gluconeogenesis and glucose
utilization and it is closely related to insulin release from
pancreatic beta cells, insulin sensitivity of peripheral tissues,
or the ability of insulin to inhibit glucose production and
increase glucose utilization. With decreased insulin sensitivity
or insulin resistance, the body is unable to effectively combat
hyperglycemia, allowing for consistent states of high blood
glucose (Knutsson et al., 2007). Blood glucose is also regulated
by a circadian rhythm where plasma glucose levels are higher
in the evening than morning and glucose tolerance and
insulin sensitivity are lowest at night (Van Cauter et al.,
1997). As the brain utilizes the majority of glucose in
the body, peripheral and cerebral glucose levels are tightly
correlated and shifts in peripheral glucose levels tend to
model shifts in patterns of neuronal activity across the
sleep/wake cycle. As such, glucose utilization is increased
during wakefulness to accommodate for high levels of neuronal
activity (Nofzinger et al., 2002). ISF glucose also increases
across NREM sleep, likely reflecting both a decrease in
glucose utilization as well as a decrease in insulin sensitivity
(Spiegel et al., 2009; Dash et al., 2012a). Further, increasing
concentrations of glucose can promote slow wave sleep
through increased activation of the sleep-promoting neurons
in the ventrolateral preoptic nucleus (VLPO) (Varin et al.,
2015), as well as inhibiting hypothalamic orexin neurons that
typically promote arousal (Yamanaka et al., 2003). As described
earlier, glucose dysregulation and insulin resistance are key
components connecting AD and T2D, so dysregulation of normal
sleep/wake rhythms could be mediating this relationship between
the two diseases.

AD AND SLEEP

Disrupted sleep is commonly observed in individuals with
symptomatic AD (Peter-Derex et al., 2015) and can be detected
in the preclinical stage (Ju et al., 2013; Hahn et al., 2014;
Lucey et al., 2019). Moreover, sleep fragmentation, poor sleep
quality, and excessive daytime sleepiness have been shown to
increase risk of cognitive impairment and eventual dementia in
clinical populations (Blackwell et al., 2013; Lim et al., 2013a;
Spira et al., 2015, 2018). One of the most common causes of
sleep disturbances in older adults is sleep disordered breathing
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(SDB), largely due to the high prevalence of obstructive sleep
apnea (OSA) in the elderly (Andrade et al., 2018). In OSA,
the airway is blocked during sleep, causing difficulty breathing,
reduced blood oxygen saturation (e.g., hypoxemia), recurrent
arousals, and sleep fragmentation (Yaffe et al., 2011; Osorio et al.,
2015; Sharma et al., 2018; Ju et al., 2019). Cross-sectional and
prospective studies in humans both demonstrate individuals with
OSA are at increased risk for cognitive impairment, dementia,
and changes in AD-related biomarkers (Yaffe et al., 2011; Ju et al.,
2019). Conversely, treatment for OSA with continuous positive
airway pressure (CPAP) reduces sleep fragmentation, hypoxia,
and normalizes CSF Aβ/tau levels. In rodent models, acute
sleep disruptions, as modeled in mice via chronic intermittent
hypoxia, causes impaired spatial learning and memory (Ward
et al., 2009), as well as increased Aβ and tau pathology (Gao
et al., 2013; Shiota et al., 2013). This established a bidirectional
relationship between sleep, cognition, and AD pathogenesis,
which is further supported by the general characteristics of
sleep and resulting fluctuations in Aβ and tau. As Aβ and
tau are released in an activity dependent manner, the levels of
Aβ and tau within the ISF of the brain parallel the diurnal
rhythm of neuronal activity across the sleep/wake cycle. ISF Aβ

and tau are closely correlated with wakefulness, with increases
during sleep deprivation in both mice and humans (Kang et al.,
2009; Lucey et al., 2017; Holth et al., 2019). Further, sleep has
also been associated with the clearance of Aβ/tau from the
ISF into the CSF and blood (Xie et al., 2013). Any situation
that disrupts sleep, therefore, will alter Aβ and tau production
and clearance. Decreased sleep spindle density, for example,
has been connected to early neuronal dysfunction, particularly
as it relates to tau release (Kam et al., 2019). Similarly, sleep
deprivation increases Aβ and tau levels acutely and can lead
to increased plaques, tangles, and cognitive decline in chronic
conditions (Kang et al., 2009; Spira et al., 2013; Ju et al.,
2017; Lucey et al., 2017; Zhu et al., 2018; Holth et al., 2019).
Restoring sleep, however, has been shown to reduce ISF Aβ and
tangle density (Kang et al., 2009; Lim et al., 2013b; Tabuchi
et al., 2015). While the exact mechanism is unknown, increased
neuronal activity could be playing a role in increasing AD
pathology, as chronic sleep deprivation has been shown to
increase intrinsic neuronal activity (Tabuchi et al., 2015). Because
of the strong diurnal pattern of neuronal activity across the
sleep/wake cycle, lactate, a biomarker for neuronal activity, is
also used as a biomarker for sleep (Naylor et al., 2012). The
diurnal oscillation of lactate, therefore, mirrors that of neuronal
activity and Aβ, providing evidence that neuronal activity,
mediated by the sleep/wake cycle, is responsible for driving AD
pathology accumulation, particularly during sleep deprivation
(Roh et al., 2012). While it is unknown what causes the
initial disruption in sleep, degeneration of certain sleep-related
nuclei, including the VLPO and intermediate nucleus, has been
associated with sleep loss in AD (Lim et al., 2014). Moreover,
recent work has shown individuals with MCI and AD have
elevated levels of orexin in the CSF, which could be contributing
to the overall increase in arousal seen in these individuals
(Gabelle et al., 2017). This initial disruption could activate a
cascade of accumulating sleep debt and pathology accumulation

and explains the epidemiological evidence connecting sleep
disturbances and AD.

SLEEP DISRUPTION AND METABOLIC
DISTURBANCES

Poor sleep quality and quantity is also a common feature of
individuals with T2D (Spiegel et al., 1985; Yaggi et al., 2006), and
can increase the risk of developing T2D by 2–3-fold (Kawakami
et al., 2004). Hypoglycemia alone has been shown to activate
orexin neurons in the hypothalamus, causing increased arousal
in both mice and men (Tkacs et al., 2007). This effect is ablated
in individuals with T2D, where hypoglycemia episodes failed
to increase arousal, leading to poorer glycemic control and
suggesting the presence of a dysfunctional autonomic arousal
system (Banarer and Cryer, 2003). Currently, research suggests
that most sleep disturbances related to T2D are largely the
result of SDB. OSA is strongly associated with obesity and
is likely caused by changes in the upper airway structure in
humans (Young et al., 1993). There is a well-defined correlation
between OSA and increased risk for T2D due to the presence
of decrease glucose tolerance and insulin sensitivity, with
a positive correlation between severity of OSA and poorer
glucose regulation (Punjabi et al., 2004; Bostros et al., 2009;
Aronsohn et al., 2010; Zhang et al., 2018). Similarly, in mice,
chronic intermittent hypoxia results in insulin resistance and
decreased glucose tolerance (Jiyori et al., 2007). Sleep deprivation,
independent of any chronic sleep condition, is also known
to disrupt glucose homeostasis. Specifically, sleep restriction
causes reductions in glucose tolerance and insulin sensitivity,
two components that contribute to increased risk for T2D
and are present in early AD (Spiegel et al., 1999). While
the mechanisms are not fully understood, there is evidence
that sleep fragmentation can lead to altered glucose regulation
through decreased cerebral glucose metabolism (Wu et al., 1991),
alterations in endocrine function (Van Cauter et al., 2008; Spiegel
et al., 2009), and increased inflammatory processes directly tied
to T2D risk (Patel et al., 2009). Further, sleep deprivation also
increases the expression of ANLS-associated genes, specifically
within astrocytes, indicating SWA can regulate neuro-metabolic
coupling and any disruption to this process can dysregulate
cerebral metabolism independent of pathology (Petit et al., 2013).
Selective disruption of slow wave sleep, which is prevalent in
both aging and OSA, causes decreased insulin sensitivity and
glucose tolerance, suggesting that slow wave sleep plays a specific
role in maintaining glucose levels and the risk for T2D (Tasali
et al., 2008). Similarly, improving sleep is thought to mitigate
some of these metabolic impairments. Administration of orexins,
a neuropeptide implicated in regulating both sleep/wake cycles
and energy homeostasis, lowered fasting blood glucose levels
in streptozotocin(stz)-induced diabetic mice (Tsuneki et al.,
2002). In clinical trials, use of a CPAP, the main treatment
option for OSA and other sleep breathing disorders, can
improve glucose tolerance and lower hemoglobin A1C levels, a
long-term biomarker of blood glucose levels (Babu et al., 2005;
Salord et al., 2016).
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CIRCADIAN CONTROL OF METABOLISM
AND IMPACT ON SLEEP

It is worth noting that the circadian system controls the
timing of sleep, as mutations in circadian clock genes which
alter clock function are associated with sleep phenotypes in
mice and humans (Hsu et al., 2015). Fragmentation of normal
circadian timing of activity has been observed in preclinical
AD and worsens in symptomatic AD in humans (Ju et al.,
2013; Musiek et al., 2013; Peter-Derex et al., 2015). Loss of
neurons in the suprachiasmatic nucleus (SCN), the master
circadian clock of the body, has been described in AD and
correlates with loss of circadian rhythms in activity (Swaab
et al., 1985; Wang et al., 2015). Thus, degeneration of the
circadian system, and the SCN in particular, may be a cause of
sleep disruption in AD. Circadian disruption is associated with
increased AD risk in humans, and can accelerate Aβ plaque
formation in mice (Tranah et al., 2011; Kress et al., 2018).
Moreover, the circadian system has strong influences on glucose
metabolism, as poor circadian function is a major risk factor
for the development of metabolic syndrome and T2D [Bass and
Takahashi, 2010; as reviewed in Knutsson and Kempe (2014)].
In mice, a considerable literature links the circadian clock to
glucose homeostasis, and mice with clock gene deletions develop
obesity and hyperglycemia (Rudic et al., 2004; Turek et al., 2005;
Bass and Takahashi, 2010; Marcheva et al., 2010). Thus, circadian

rhythm dysfunction is another factor potentially linking sleep,
metabolism, and AD.

CURRENT THERAPEUTIC OPTIONS

As previously discussed, treatment of OSA with CPAP to
promote increased sleep efficiency can improve glucose tolerance
and overall metabolic health (Babu et al., 2005; Salord et al.,
2016) as well as AD biomarkers (Ju et al., 2019). Other
treatments for T2D have also shown promising effect to
alleviating some of the negative impacts on sleep. Metformin,
the antihyperglycemic drug and first-line treatment for T2D,
reduces hepatic gluconeogenesis, plasma insulin, and insulin
resistance (Viollet et al., 2012). Further, individuals treated with
metformin show improved sleep quality and quantity, suggesting
that maintaining glucose homeostasis is essential for efficient
sleep, although the exact mechanisms are not yet understood
(Kaibaf et al., 2013). Treatment with insulin therapies has been
linked to worse subjective sleep quality, potentially though
hyperactivity in the sympathetic nervous system, although this
treatment type has been widely understudied in terms of the
effects on sleep (Song et al., 2013). Similarly, treating sleep
disturbances has been shown to improve aberrant glucose
metabolism. Orexins are critical for the regulation of glucose
homeostasis and maintenance of the diurnal rhythm via influence

FIGURE 1 | Proposed model for the relationship between sleep, type-2-diabetes (T2D), and Alzheimer’s disease (AD). Both alterations in glucose and insulin
homeostasis associated with T2D and Aβ and tau aggregation found in AD are associated with increased sleep disruption. Moreover, sleep deprivation is associated
with increased AD-related pathology, including Aβ and tau pathology, cognitive deficits, and inflammation, as well as diabetes related pathology, including metabolic
dysregulation, glucose intolerance, and insulin resistance. Therefore, sleep is a modifiable risk factor in T2D and AD that could bidirectionally impact disease
progression. Moreover, targeting sleep, AD, or T2D has been shown to modify these relationships (Box: 1, 2, 3). HbA1c = Hemoglobin A1c; SWA = slow wave
activity; REM = rapid eye movement sleep; NREM = non-rapid eye movement sleep; Aβ = amyloid-beta; ISF = interstitial fluid; CSF = cerebrospinal fluid;
CPAP = continuous positive airway pressure; SGLT2 = sodium glucose cotransporter 2.
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over hepatic gluconeogenesis, making the timing modulation
of the orexin system crucial. Administration of dual orexin
receptor antagonist (DORA) drugs in accordance with the
orexin rhythm can improve sleep and glucose tolerance, likely
though suppression of hepatic gluconeogenesis rather than
an effect on insulin production or sensitivity (Tsuneki et al.,
2016). Additionally, results from Merck’s Phase 3 Clinical Trial
DORA, suvorexant, improved sleep quality and quantity in
individuals with AD. Sleep loss is known to promote the release
of Aβ and tau, potentially suggesting that treating these sleep
problems could slow disease progression, although no studies
of this nature have been done (Herring et al., 2019). While
more research on the subject is needed, sleep represents a
modifiable aspect of these two diseases and offers a potential
therapeutic benefit in delaying the onset of AD and mitigating the
increased risk of AD among individuals with T2D by restoring
glucose homeostasis.

CONCLUSION

This review outlines the interactions between sleep, altered
glucose metabolism, and Alzheimer’s disease and suggests the
emergence of a feedforward cascade where sleep dysfunction
and metabolic impairment contribute to the progression of AD
pathology (Figure 1). Similarly, we provide evidence of AD
pathology leading to further disruptions to sleep and metabolic

health. Therefore, exploring the timing and mechanisms that
lead to the emergence of sleep disturbances in both conditions
warrants further study as it represents a potential therapeutic
treatment option for resolving peripheral glucose intolerance
and insulin resistance in individuals with T2D and potentially
slowing AD progression.
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