AUTHOR=Ma Qinying , Geng Yuan , Wang Hua-long , Han Bing , Wang Yan-yong , Li Xiao-li , Wang Lin , Wang Ming-wei TITLE=High Frequency Repetitive Transcranial Magnetic Stimulation Alleviates Cognitive Impairment and Modulates Hippocampal Synaptic Structural Plasticity in Aged Mice JOURNAL=Frontiers in Aging Neuroscience VOLUME=11 YEAR=2019 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2019.00235 DOI=10.3389/fnagi.2019.00235 ISSN=1663-4365 ABSTRACT=

Normal aging is accompanied by hippocampus-dependent cognitive impairment, which is a risk factor of Alzheimer’s disease. This study aims to investigate the effect of high frequency-repetitive transcranial magnetic stimulation (HF-rTMS) on hippocampus-dependent learning and memory in aged mice and explore its underlying mechanisms. Forty-five male Kunming mice (15 months old) were randomly divided into three groups: aged sham, 5 Hz rTMS, and 25 Hz rTMS. Two sessions of 5 Hz or 25 Hz rTMS comprising 1,000 pulses in 10 trains were delivered once a day for 14 consecutive days. The aged sham group was treated by the reverse side of the coil. In the adult sham group, 15 male Kunming mice (3 months old) were treated the same way as the aged sham group. A Morris water maze (MWM) was conducted following the stimulation, and synaptic ultrastructure was observed through a transmission electron microscope. HF-rTMS improved spatial learning and memory impairment in the aged mice, and 5 Hz was more significant than 25 Hz. Synaptic plasticity-associated gene profiles were modified by HF-rTMS, especially neurotrophin signaling pathways and cyclic adenosine monophosphate response element binding protein (CREB) cofactors. Compared to the aged sham group, synaptic plasticity-associated proteins, i.e., synaptophysin (SYN) and postsynaptic density (PSD)-95 were increased; brain-derived neurotrophic factor (BDNF) and phosphorylated CREB (pCREB) significantly increased after the 5 Hz HF-rTMS treatment. Collectively, our results suggest that HF-rTMS ameliorated cognitive deficits in naturally aged mice. The 5 Hz rTMS treatment significantly enhanced synaptic structural plasticity and activated the BDNF/CREB pathway in the hippocampus.