AUTHOR=Trias Emiliano , Beilby Pamela R. , Kovacs Mariángeles , Ibarburu Sofía , Varela Valentina , Barreto-Núñez Romina , Bradford Samuel C. , Beckman Joseph S. , Barbeito Luis TITLE=Emergence of Microglia Bearing Senescence Markers During Paralysis Progression in a Rat Model of Inherited ALS JOURNAL=Frontiers in Aging Neuroscience VOLUME=11 YEAR=2019 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2019.00042 DOI=10.3389/fnagi.2019.00042 ISSN=1663-4365 ABSTRACT=
Age is a recognized risk factor for amyotrophic lateral sclerosis (ALS), a paralytic disease characterized by progressive loss of motor neurons and neuroinflammation. A hallmark of aging is the accumulation of senescent cells. Yet, the pathogenic role of cellular senescence in ALS remains poorly understood. In rats bearing the ALS-linked SOD1G93A mutation, microgliosis contribute to motor neuron death, and its pharmacologic downregulation results in increased survival. Here, we have explored whether gliosis and motor neuron loss were associated with cellular senescence in the spinal cord during paralysis progression. In the lumbar spinal cord of symptomatic SOD1G93A rats, numerous cells displayed nuclear p16INK4a as well as loss of nuclear Lamin B1 expression, two recognized senescence-associated markers. The number of p16INK4a-positive nuclei increased by four-fold while Lamin B1-negative nuclei increased by 1,2-fold, respect to non-transgenic or asymptomatic transgenic rats. p16INK4a-positive nuclei and Lamin B1-negative nuclei were typically localized in a subset of hypertrophic Iba1-positive microglia, occasionally exhibiting nuclear giant multinucleated cell aggregates and abnormal nuclear morphology. Next, we analyzed senescence markers in cell cultures of microglia obtained from the spinal cord of symptomatic SOD1G93A rats. Although microglia actively proliferated in cultures, a subset of them developed senescence markers after few days