AUTHOR=Zhang Hongyan , Wang Zhaoyang , Li Yanyan , Han Jiaojiao , Cui Chenxi , Lu Chenyang , Zhou Jun , Cheong Lingzhi , Li Ye , Sun Tingting , Zhang Dijun , Su Xiurong TITLE=Sex-Based Differences in Gut Microbiota Composition in Response to Tuna Oil and Algae Oil Supplementation in a D-galactose-Induced Aging Mouse Model JOURNAL=Frontiers in Aging Neuroscience VOLUME=10 YEAR=2018 URL=https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2018.00187 DOI=10.3389/fnagi.2018.00187 ISSN=1663-4365 ABSTRACT=
Our previous work indicated that a mixture of tuna oil and algae oil treatment in male mice effectively relieved D-galactose (D-gal)-induced aging and resulted in gut microbiota alterations, and that the best anti-aging effects were observed for a tuna oil to algae oil ratio of 1:2. However, the possibility of a sex-based difference in the anti-aging effect of the tuna oil and algae oil mixture or gut microbiota variation, has rarely been investigated. In this study, the anti-aging effect of an oil mixture (1:2) in male and female mice was measured, and oil treatment improved the learning and cognition of mice that were damaged by D-gal, increased the activities of anti-oxidative enzymes, and decreased the level of MDA, which acted as a hallmark of oxidative damage to lipids. Male mice showed better anti-aging effects than female mice with a specific oil mixture ratio, and the clinical drug donepezil showed a similar or better effect on aging alleviation than oil treatments in both sexes. On the other hand, the same oil treatment led to different gut microbiota composition alterations in male and female mice. Redundancy analysis (RDA) identified 31 and 30 key operational taxonomic units (OTUs) in the male and female mice, respectively, and only three of these OTUs overlapped. Moreover, the abundance of