
ML meets aerospace: challenges
of certifying airborne AI

Bastian Luettig *, Yassine Akhiat and Zamira Daw

Institute of Aircraft Systems, University of Stuttgart, Stuttgart, Germany

Artificial Intelligence (AI) technologies can potentially revolutionize the aerospace
industry with applications such as remote sensing data refinement, autonomous
landing, and drone-based agriculture. However, safety concerns have prevented
the widespread adoption of AI in commercial aviation. Currently, commercial
aircraft do not incorporate AI components, even in entertainment or ground
systems. This paper explores the intersection of AI and aerospace, focusing on
the challenges of certifying AI for airborne use, which may require a new
certification approach. We conducted a comprehensive literature review to
identify common AI-enabled aerospace applications, classifying them by the
criticality of the application and the complexity of the AI method. An applicability
analysis was conducted to assess how existing aerospace standards - for system
safety, software, and hardware - apply to machine learning technologies. In
addition, we conducted a gap analysis of machine learning development
methodologies to meet the stringent aspects of aviation certification. We
evaluate current efforts in AI certification by applying the EASA concept paper
and Overarching Properties (OPs) to a case study of an automated peripheral
detection system (ADIMA). Aerospace applications are expected to use a range of
methods tailored to different levels of criticality. Current aerospace standards are
not directly applicable due to themanner in which the behavior is specified by the
data, the uncertainty of the models, and the limitations of white box verification.
From a machine learning perspective, open research questions were identified
that address validation of intent and data-driven requirements, sufficiency of
verification, uncertainty quantification, generalization, and mitigation of
unintended behavior. For the ADIMA system, we demonstrated compliance
with EASA development processes and achieved key certification objectives.
However, many of the objectives are not applicable due to the human-centric
design. OPs helped us to identify and uncover several defeaters in the applied ML
technology. The results highlight the need for updated certification standards that
take into account the unique nature of AI and its failure types. Furthermore,
certification processes need to support the continuous evolution of AI
technologies. Key challenges remain in ensuring the safety and reliability of AI
systems, which calls for newmethodologies in the machine learning community.

KEYWORDS

artificial intelligence, aviation, certification, airborne, assurance, machine learning,
overarching properties

1 Introduction

Over the past decade, Artificial Intelligence (AI), especially Machine Learning
(ML), has rapidly advanced thanks to improved processing speed, specialized
hardware, data availability, and storage. Multiple sectors, like entertainment and
retail, have widely adopted AI, for these applications’ failures are non-catastrophic,

OPEN ACCESS

EDITED BY

Zhaodan Kong,
University of California, Davis, United States

REVIEWED BY

Tammer Barkouki,
University of California, Davis, United States
Gang Chen,
South China University of Technology, China

*CORRESPONDENCE

Bastian Luettig,
bastian.luettig@ils.uni-stuttgart.de

RECEIVED 06 August 2024
ACCEPTED 30 September 2024
PUBLISHED 14 November 2024

CITATION

Luettig B, Akhiat Y and Daw Z (2024) ML meets
aerospace: challenges of certifying airborne AI.
Front. Aerosp. Eng. 3:1475139.
doi: 10.3389/fpace.2024.1475139

COPYRIGHT

© 2024 Luettig, Akhiat and Daw. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Aerospace Engineering frontiersin.org01

TYPE Original Research
PUBLISHED 14 November 2024
DOI 10.3389/fpace.2024.1475139

https://www.frontiersin.org/articles/10.3389/fpace.2024.1475139/full
https://www.frontiersin.org/articles/10.3389/fpace.2024.1475139/full
https://orcid.org/0000-0002-9358-1611
https://orcid.org/0000-0002-9478-6328
https://orcid.org/0000-0003-2623-4959
https://crossmark.crossref.org/dialog/?doi=10.3389/fpace.2024.1475139&domain=pdf&date_stamp=2024-11-14
mailto:bastian.luettig@ils.uni-stuttgart.de
mailto:bastian.luettig@ils.uni-stuttgart.de
https://doi.org/10.3389/fpace.2024.1475139
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org/journals/aerospace-engineering#editorial-board
https://www.frontiersin.org/journals/aerospace-engineering#editorial-board
https://doi.org/10.3389/fpace.2024.1475139

emphasizing performance and usability over safety. In finance,
AI operations in stock trading, insurance, and banking face strict timing
constraints. While false positives in fraud detection can have serious
financial consequences, they do not threaten human life. The safety-
critical healthcare domain already employs AI applications. They aid in
diagnostic imaging, robotic surgery, clinical decision support, and
patient monitoring. These applications are typically less time-
sensitive and rely on explainability and human oversight for safety.
In the automotive industry, Tesla’s release of Fully Self-Driving
v12 marks a significant step toward end-to-end AI applications,
which are currently in beta testing in the U.S. The automotive
industry’s safety approach relies on millions of driving hours to
demonstrate system safety, with human drivers expected to
intervene if problems occur. However, failures regularly occur in
self-driving cars: in June 2021 - May 2022 alone, 400 crashes (US
Department of Transportation, 2022) occurred in the U.S. with partially
automated driver-assist systems. In both automotive and medical
devices, human oversight remains crucial for safety.

Despite the complexity of aircrafts as cyber-physical systems,
aviation has remained one of the safest transportation modes for
decades due to rigorous certification processes supported by
exacting standards for aircraft development, testing, operation,
maintenance, and inspection. These processes follow best
practices, including ARP4754B for system development,
ARP4761A for safety assessment, DO-178C for software, and
DO-254 for complex hardware components. These standards
introduce Design Assurance Levels (DAL) that categorize the
criticality of components based on the potential impact of their
failure, requiring the applicant to provide more assurance. This process
assumes human-designed systems with good intentions. While the
aviation industry aims to use AI to enhance operations, current
certification standards are not fully applicable to AI technologies.
Regulatory bodies are working on guidance for certifying AI-enabled
systems, but there is still insufficient practical experience to establish
best practices, unlike with software introduction in aviation. Integrating
AI into these processes is vital but challenging, as AI requires specific
adaptations. Delseny et al. (2021) reviewed the challenges of certifying
ML systems, primarily focusing on software aspects. In addition, this
paper addresses the aspects of systems, safety, and hardware.
Furthermore, current certification efforts were applied to a specific
case study.

AI-enabled aviation systems will become viable only when
the AI community understands how to achieve assurance
through certification and the aviation community
comprehends the safety nuances of AI to develop certification
standards that provide the necessary system-level assurance. In
this context, Machine Learning Operations (MLOps), a set of
practices for automating and optimizing the deployment and
maintenance of ML models in production, and Explainable AI
(XAI), a set of tools that enable users to understand and interpret
ML output, provide promising approaches that could bridge the
gap between AI and strict certification requirements. MLOps,
with its comprehensive capabilities in dataset versioning,
experiment tracking, and model registry throughout the entire
life cycle - from development and deployment to continuous
monitoring — is crucial for ensuring consistency and traceability
in certification processes. On the other hand, XAI can enhance
the interpretability of AI decisions, offering techniques such as

feature importance, local methods, and global methods that could
improve the explainability and transparency required for
certification (Angelov et al., 2021). XAI techniques are widely
used in medical assessment because they are crucial for ensuring
that AI-driven medical assessments are not only accurate but also
transparent and interpretable by doctors and end users, paving
the way for more widespread adoption of AI technologies in
healthcare (Loh et al., 2022; Samek et al., 2021).

This paper offers a comprehensive literature review of AI
applications in aviation to identify the methods used and their
criticality levels. Section three introduces the case study,
ADIMA, an AI-enabled system for automated peripheral
detection in integrated modular avionics (IMA). Systems
with varying criticality may use the ADIMA approach:
emergency lighting (DAL A) and cabin lighting (DAL D).
Using ADIMA, section three applies two main certification
approaches: the W-development process proposed by the
European Union Aviation Safety Agency (EASA) and the
Overarching Properties supported by the Federal Aviation
Administration (FAA). Section four examines the
applicability of current certification processes at the safety,
system, software, and hardware levels. Finally, we outline
open research questions that require attention to enable the
development of airworthy AI aviation systems.

2 Materials and methods

2.1 AI-enabled applications in aerospace

In this paper, AI refers to a machine’s capability to mimic
human intelligence or even surpass it in performing a given
task, such as prediction, recommendations, or reasoning, while
ML refers to the development of learning algorithms that allow
computers to evolve behaviors based on existing data. This
section identifies various applications and essential AI
technologies in aerospace engineering and analyzes their
levels of criticality. To achieve this, a comprehensive and
systematic literature review was performed. To select articles
for this review, the authors searched Scopus and Google Scholar
using the keywords “Artificial Intelligence in Aerospace,”
“Artificial intelligence,” and “Aerospace engineering.” The
initial search yielded 246 articles. After removing duplicates
and filtering for conference papers and peer-reviewed journal
articles from 2014 to 2024, 100 articles remained. A thorough
full-text screening further narrowed this to 70 articles for
detailed analysis. The study reveals several AI applications
for aerospace, with the main four being:

1. Predictive maintenance (34%): Uses data from aircraft
sensors to predict potential failures, enhancing reliability
and safety while reducing maintenance costs and downtime
(Stanton et al., 2023; Korvesis, 2017).

2. Air traffic management (4%): Manages aircraft movement
in the air and on the ground to ensure safe and efficient
traffic flow, involving air traffic controllers, pilots, airports,
and various technologies (Liu et al., 2019; Sridhar
et al., 2020).

Frontiers in Aerospace Engineering frontiersin.org02

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

3. Flight management and operation (39%): Involves planning,
executing, and monitoring flight phases, including route
planning, fuel management, navigation, and communication
with air traffic control. It optimizes flights, enhances safety, and
reduces operational costs, contributing to aviation
sustainability (Oehling and Barry, 2019).

4. Security and surveillance (23%): Aerospace systems rely
heavily on networks and software, making them targets
for cyber-attacks and security breaches. Machine
Learning enhances security by providing advanced
detection, prevention, and response mechanisms (Dave
et al., 2022).

Table 1 techniques highlights the application of AI/ML1 in
aerospace (Alzubaidi et al., 2021; Sarker, 2021). Predictive

TABLE 1 AI/ML methods used in different aerospace applications.

Area Paper Specific
application

ML method

Predictive maintenance Mathew et al. (2017) [1], Jiangyan et al. (2024), Baptista et al. (2021), Kefalas et al. (2021)
[2], Boujamza and Elhaq (2022) [3], Vollert and Theissler (2021), Wang et al. (2023) [4],
Zhang et al. (2019) [5], Li et al. (2018)

RUL LSTM, RFE

Janakiraman and Nielsen (2016) [6], Das et al. (2010) [7], Liu et al. (2023) [8], Zhao et al.
(2021a) [9], Lee et al. (2020) [10], Zhong et al. (2021) [11], Jalawkhan and Mustafa
(2021) [12], Corrado et al. (2021) [22]

Anomaly detection NB, LSTM

da Silva et al. (2022) [14], De Giorgi et al. (2018) [15] Engine Health monitoring ANN, SVM

Ayhan et al. (2013), Que et al. (2019) Real-time analysis RNN, LSTM,
AutoEncoder

Flight management and
operation

Baumann and Klingauf (2020) [16], Huang and Cheng (2022) [17] Fuel consumption
optimization

DT, NN

Kong et al. (2022) [18], Tang and Lai (2020) [19] Autonomous landing CNN, RL

Woo and Kim (2020) [20], Ouahouah et al. (2022) [21], Zhao et al. (2021b) [22] Collision avoidance CNN, RL

Fala et al. (2023) [23], Chin et al. (2019), Zhang et al. (2021) [24], Leško et al. (2023) [25],
Nanyonga et al. (2023) [26]

Flight phase prediction LSTM

Chen and Hu (2024) [27], Han et al. (2021) [28], Amit and Mohan (2021) [29], [30],
Ducoffe et al. (2023) [31]

Runway identification CNN

Nasoulis et al. (2023) Cabin pressurization
system

-

Air traffic management Lu et al. (2021) [32], Huo et al. (2020) [33], Rebollo and Balakrishnan (2014) [34] Delay prediction XGBoost, RF, Gradient
Boosting

Koch et al. (2019); Yang et al. (2019) Altitude control LSTM

Fadlullah et al. (2017), Kato et al. (2019) [35], Corrado et al. (2021) [13] Air Traffic Control (ATC) DNN

Bejarano et al. (2022) [36], Topal et al. (2023) [37], Giovanni et al. (2021) [38] Human-AI Teaming CNN, LSTM, ANN

Ma and Tian (2020) [39], Rohani et al. (2023) [40], Zeng et al. (2020) [41], Shi et al.
(2020) [42], Choi et al. (2021) [43], Schimpf et al. (2023) [44],Shi et al. (2018) [45], Jia
et al. (2022) [46]

Aircraft trajectory
prediction

CNN-LSTM

Security and surveillance Garcia et al. (2021), Dave et al. (2022) - -

Other applications Gaikwad et al. (2023) [47], Liu and Ferrari (2019) [48] Autonomous taxiing CNN, object detection

Muñoz-Esparza et al. (2020) [49], Chen et al. (2023) [50] Weather prediction RF, GBRT

Bejarano et al. (2022) Single pilot operation CNN, LSTM

Ducoffe et al. (2024), Lazzara et al. (2022),Heidari et al. (2024), Yondo et al. (2019),
Sommerwerk et al. (2016), Espinosa Barcenas et al. (2023), Biannic et al. (2016)

DDSM LSTM, MLP

Bauranov and Rakas (2021) UAM -

Shakhatreh et al. (2019), Mohsan et al. (2023), Yasin et al. (2020) UAVs Deep RL

1 AI-enabled methods used are the following: RFE:Recursive Feature

Elimination, NB:Naive Bayes, ANN: Artificial Neural Network, SVM:

Support Vector Machine, RNN: Recurrent Neural Network, DT: Decision

Tree, XGBoost: eXtreme Gradient Boosting, RL: Reinforcement Learning,

DNN: Deep Neural Network, GBRT: Gradient Boosting Decision Tree, MLP:

Multi-Layer Perceptron), UAM: Urban Air Mobility, UAV: Unmanned Aerial

Vehicle, LR: Linear Regression.

Frontiers in Aerospace Engineering frontiersin.org03

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

maintenance tasks, such as RemainingUseful Life (RUL) prediction and
anomaly detection, commonly employ Long Short-Term Memory
(LSTM) networks (Lindemann et al., 2021) and Random Forest
(RF) (Akhiat et al., 2021). In contrast, flight management and
operations—covering areas like aircraft trajectory prediction,
autonomous landing, and taxiing—often rely on Convolutional
Neural Networks (CNN). Meanwhile, air traffic management tasks
like delay prediction and altitude control use methods like XGBoost
(Chen and Guestrin, 2016) and LSTM. Researchers choose these
techniques based on their suitability for specific tasks and
compatibility with the available data. For example, LSTM is favored
in predictive maintenance for its ability to capture temporal
dependencies in time-series data. At the same time, CNNs are
preferred for efficient computer vision processing in applications
such as aircraft trajectory prediction and runway detection.

Figure 1 illustrates the relationship between methods’ complexity
and applications’ criticality. The level of assurance evidence required is
directly proportional to the application’s criticality, and the task’s
complexity further amplifies the challenge of providing this evidence.
The graphic demonstrates a wide range of criticality and complexity, with
criticality determined by the impact of potential failures and complexity
assessed based on the algorithm and the amount of data involved. From
the figure, it’s evident that there is a cluster of computer vision
applications that are both complex and critical. Among the
applications identified in the literature review, only three are classified
as hazardous in terms of criticality. For the introduction of AI-enabled

applications, those with low criticality and low complexity represent the
“low-hanging fruit.” However, it’s important to consider the business
value, as certifying thesemethods will incur additional costs. Applications
with low criticality but high complexity can serve as a testing ground for
validating current certification efforts and assurance methods for AI.
These efforts can then be applied to more critical applications that might
offer a higher business impact.

2.2 Aviation certification process

The certification process follows the Swiss cheese model, which
is widely used in aerospace. This model acknowledges system flaws
and incorporates multiple defense layers to mitigate risks. These layers,
including engineering designs, redundancy systems, maintenance
procedures, and training programs, significantly reduce the
likelihood of accidents. The system development process begins with
the specification of aircraft functions, subsequently allocating these to
specific systems and refining them further. At this stage, a
comprehensive safety assessment is conducted per ARP4761A
guidelines (SAE International, 1996) for civil airborne systems (see
Figure 2). This assessment identifies and classifies failure conditions by
their impact, ranging from catastrophic to no safety effect. The safety
engineer assigns a severity-dependent probability per flight hour for
each failure condition the system design must meet. Together, severity
and probability define the acceptable risk.

FIGURE 1
AI applications in aerospace: Criticality vs. Complexity, refer to Table 1 to match numbers to references.

Frontiers in Aerospace Engineering frontiersin.org04

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

Building on the safety assessment, safety requirements, criticality
levels, and failure information are key inputs for the system development
process. ARP4754B (International, 2023) provides comprehensive
guidance on system architecture, aircraft-level requirements, design,
implementation, verification, and validation, all focusing on safety.
This includes incorporating redundancy, Built-In Tests (BIT),
monitors, and DAL assignments. The system-level process outputs
crucial documents, such as system requirements and architectures.

System and subsystem requirements are allocated to specific
software and hardware items. The certification plan at the item level
specifies standards for demonstrating compliance, such as DO-178C
for software and DO-254 for hardware. Additionally, RTCA has
released supplements (DO-331, DO-332, DO-333). While Section
4.1 addresses the application of these standards to AI technologies,
new standards or certification processes must align with the existing
certification framework.

2.3 Certification efforts of ML applications

This section provides an overview of the initiatives currently
being pursued by regulatory agencies. EASA has chosen an
incremental approach for different autonomy levels with the
second version of the concept paper for Level 1 and 2 machine
learning applications currently under review (European Union
Aviation Safety Agency, 2024). The AI trustworthiness
framework comprises AI Assurance, Human Factors for AI, and
AI Safety Risk Mitigation. EASA extends the V development process
into a W-shape to ensure learning assurance, address data
management, model training, verification, and more. The

guidance sets high-level objectives for AI-based systems,
emphasizing the need to capture specific aspects in specifications
for learning assurance. Although the concept paper outlines
advanced means of compliance methods, it lacks detailed
guidelines for satisfying these objectives. The incremental
approach, presented in the EASA roadmaps, allows authorities
and applicants to evaluate the standard while applying it to lower
criticality and lower autonomy levels and to refine the details based
on the gained experience.

The FAA employs a bottom-up approach, collaborating closely
with applicants to gain practical experience before writing
guidelines. Since September 2023, the FAA has organized an AI
Roadmap and Technical ExchangeMeetings on AI/ML, where they
present progress, and experts in ML and aviation share their work
and discuss the needs and concerns of AI systems. To support this
approach, the Overarching Properties Working Group (OPWG),
in collaboration with NASA and the FAA, has developed a
framework known as the Overarching Properties (OPs) (NASA/
TM–2019–220292, 2019). The OPs consist of three high-level
properties designed to provide applicants with a flexible means
of proposing novel compliance methods. These properties include:
“Intent: the defined intended behavior is correct and complete with
respect to the desired behavior; Correctness: the implementation is
correct with respect to its defined intended behavior, under
foreseeable operating conditions; and Innocuity: any part of the
implementation that is not required by the defined intended
behavior has no unacceptable impact.” The OPs framework
allows applicants to propose customized compliance methods,
enabling authorities and applicants to gain practical experience
that informs future standards. Within OPs, arguments are

FIGURE 2
Overview of aviation certification process and standards integration.

Frontiers in Aerospace Engineering frontiersin.org05

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

decomposed until reaching a leaf argument, where premises are
supported by artifacts and require no further decomposition (Daw
et al., 2021).

The EUROCAE/SAE WG-114/G-34 is developing the ARP6983 to
guide AI-enabled system development, focusing initially on supervised
ML for lower criticality scenarios. It introduces the concept of an ML
Constituent (MLC), which includesMLmodels, traditional software, and
hardware items. The group isworking on providing guidance for defining
the Operational Design Domain (ODD) from the system level through
data selection to implementation, integrating ARP with other standards.

2.4 Case study ADIMA

This section presents the case study ADIMA. This case study
highlights the main challenges in certifying AI under classical software
certification standards. Section 2.4.1 to Section 2.4.4.5 describe the system
in detail, covering its architecture, functionality, data, and development
process. Due to the space limitations, the requirements, code, data and
arguments for the OPs are available in Github1

2.4.1 System description and development process
The AI-enabled ADIMA system enables automated peripheral

detection based on electrical properties using an autoencoder and a
classification network. The autoencoder consists of the encoder and
the decoder. The encoder reduces the features to a low-dimensional
latent space while the decoder reconstructs the data. In ADIMA, it
serves to detect input-anomalies using the mean squared error
(MSE) from input to output. On the other hand, the
classification network consists of an input layer, multiple hidden
layers, and an output layer with a softmax activation function that
returns probabilities for the detected classes. ADIMA operates on an
IMA platform composed of multiple IMA devices, each equipped
with I/O interfaces for connecting peripherals such as LEDs, sensors,

motors, or bus systems. Multiple systems share the IMA platform, and
wiring issuesmight occur. Hence, ADIMAmust behave robustly when
connecting peripherals other than LEDs. An IMA device executes
applications inside partitions that provide an ARINC653 compatible
API. This system supports highly safety-critical functions in emergency
lighting (DAL A) and less critical functions in cabin lighting (DAL D).
ADIMA’s primary goals are a) to determine if the connected peripheral
is among the list of acceptable peripherals and b) to identify a
peripheral without adding additional hardware. The LEDs, simple
peripherals used as proof of concept, exhibit distinct current-voltage
characteristics that vary by color (see Figure 3), allowing for precise
peripheral identification. For identifying peripherals, ADIMA
employs a data-centric approach by comparing the current-
voltage curves of peripherals to reference values obtained
from laboratory data. Instead of relying on a single point,
ADIMA uses the entire curve for comparison, as this tolerates
individual measurement errors.

During platform start, the system scans each IO, computes the
MSE, and, if acceptable, classifies the peripheral. It then assigns
suitable tasks, and during normal operation, it cyclically executes the
assigned tasks, which control the detected peripherals.

2.4.1.1 Operational concept and design framework
The ADIMA concept is defined in Scheme 1.

2.4.1.2 Safety assessment
The safety assessment (as per ARP4761A) requires a functional

hazard assessment. System functions:

• Detect peripheral type attached to an IO.
• Detect peripheral degradation attached to an IO.

There are three major failure modes: passive, wrong detection,
and out-of-control.

SCHEME 1 Operational concept and design framework.

System intent

Two different applications use ADIMA:

• ADIMA-Cabin Lighting system (ADIMA-CL) ensures the manufacturer installed the correct LED in the aircraft cabin. Non safety Critical. DAL D

• ADIMA-Emergency Lighting system (ADIMA-EL) ensures the manufacturer installed the correct LED in the aircraft’s emergency lights. Highly safety critical (CS25.812).
DAL A

Operation

ADIMA operates as follows:

1. During production, a worker connects LEDs to the avionics modules.

2. During each bootup, the system assesses the LEDs’ remaining lifetime and assigns a degradation class (fully operational, degraded, worn, defective, other).

3. For all worn, defective, and other classified peripherals, the system generates a maintenance report.

4. For all fully operational and degraded LEDs, the system automatically detects the connected LEDs to determine their color.

5. The system assigns the detected LEDs to the relevant functions according to their color and degradation class.

6. The system changes to the normal operation mode and executes the functions

Operation Domain (OD)

The system shall detect four distinct colors for LEDs of one manufacturer (red, green, blue, yellow) with an operational current of 40 mA and a voltage range of 2 V–4 V. The
system shall operate within a temperature range of 10°C–60°C in a humidity range of 20%–100%, and at a pressure range of 70 kPa–105 kPa

Operational Design Domain (ODD)

The ML constituent classifier accurately detects LED colors for known types with an operational current of up to 40 mA and a voltage range of 2 V–4 V

Frontiers in Aerospace Engineering frontiersin.org06

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

1. Passive Failure:
• Description: The system fails to detect any peripherals and
thus does not execute any desired functions.

• Effects:
a. ADIMA-CL: This failure has no safety effect, as

emergency lighting provides sufficient illumination.
(No Safety Effect)

b. ADIMA-EL: An entire passive system failure is
unacceptable (CS.25.812, e.g., due to a common mode
error). (Hazardous)

• Attribution: Peripheral failures or software errors cause
passive failures.

2. Wrong Detection:
• Description: The system incorrectly detects peripherals.
• Effects:

a. Incorrect LED color assignment, causing minor
inconvenience. (No Safety Effect)

b. Incorrectly uses a non-LED peripheral to execute a task.
Potential fire hazard. (Catastrophic)

c. Incorrectly identifies the health of an LED as broken.
Early Maintenance (Minor)

d. Incorrectly identifies the health of an LED as intact. LED is
not illuminated, although the system believes it is. (Major)

• Attribution: Peripheral failures/changes or software errors
cause wrong detection.

3. Out-of-Control:
• Description: The system erratically executes tasks on the
peripherals that were undefined beforehand.

• Effects:Out-of-limit commands to the peripherals. Potential
fire hazard. (Catastrophic)

• Attribution: Solely the underlying avionics hardware may
cause this failure condition; the relevant hardware safety
assessment covers it.

The assessment shows that ADIMA-EL must not fail due to
common mode/common cause errors—this requires a dissimilar

and redundant approach for individual parts of ADIMA-EL.
Wrong classification detection may lead to the system wrongly
using peripherals or open IOs for the ADIMA-EL, i.e., the system
is not working. Therefore, this failure condition must be
addressed with additional architectural means. ADIMA-EL is
designed to ensure no single point of failure and to ignore LEDs
that are not in good condition while reporting such issues for
maintenance.

2.4.1.3 System level requirements and architecture
HR-1: The system shall accurately identify each known LED

color and return an error when an unknown peripheral is connected.
The system shall predict the health of each LED with minimal 5%
false positives and less than 1% false negatives.Rationale Incorrect
detection may cause hazards: false positives can wrongly mark LEDs
as inactive, while false negatives can lead to improper system
execution, jeopardizing safety and functionality.

Each ADIMA system consists of a host module for task
allocation and multiple proxy modules for IO control (see
Figure 4). Each system, ADIMA-CL, and ADIMA-EL, has an
individual partition and access rights to specific IOs on each
module. Proxy modules detect their peripherals and send this
data to the host module, which then allocates tasks accordingly.

ADIMA supports multiple proxy modules in a system
(Figure 5): each records the LED curves using the Recorder and
transmits this data array to the Autoencoder to obtain the Mean
Squared Error (MSE). If the MSE is acceptable, i.e., the data array is
within IOD (Inside of Distribution), the Classifier uses the data array
to compute probabilities for the individual colors, which the
Detector then converts into an ID. Otherwise, the Logger will
store a maintenance message for this peripheral. The proxy
module then sends all data to the host module, in which the
Allocator takes the peripherals and allocated suitable tasks to the
modules and their peripherals. The Task Executor uses the resulting
configuration to run the tasks and send commands via the individual
IO Controllers to the peripherals.

FIGURE 3
Voltages over given currents for the LEDs with error bars. The dots indicate the mean value across all LED measurements; the line shows the
interpolated behavior between the measurements. The colored boxes indicate the first and third quartile, and the whiskers identify minimum and
maximum values.

Frontiers in Aerospace Engineering frontiersin.org07

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

This architecture limits the single-point failures to the host
module. ADIMA-EL must consist of at least two proxy modules.
A safe mode could then simply include the LEDs allocated to the
emergency lights to turn on when the host sends no further
commands. Multiple host modules can be implemented to
enhance reliability, employing a consensus mechanism to ensure
a consistent active status (Luithardt, 2017).

The ADIMA system’s design reduces common mode errors in
proxy modules by leveraging three strategies: module-specific live

electrical curve data, approach-specific autoencoders and classifiers
for fixed-voltage and fixed-current configurations, and dissimilar
hardware modules (types A and B). By utilizing module-specific
data, the system holds dynamic dissimilarity: the same error cannot
affect all modules due to differences in their inputs. Using unique
autoencoders and classifiers for each approach introduces software
dissimilarity, as each network is trained on specific data. Additionally,
incorporating different types of hardware modules provides hardware
dissimilarity: an error in hardware design does not affect all modules

FIGURE 4
Hardware architecture with one host module, the Avionics Data and Communication Network (ADCN), multiple proxy modules with their individual
peripherals.

FIGURE 5
ADIMA system architecture with software allocated to the proxy and host module, AI-enabled software in gray, classical software in blue.

Frontiers in Aerospace Engineering frontiersin.org08

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

simultaneously. Along with the system’s capability to trackmetrics such
as network confidence, autoencoder deviation, and input vectors, these
arguments contribute to robustness against common mode errors.

2.4.2 Data analysis
2.4.2.1 Training and validation data

A data set is defined by Equation 1 as: a given current ci results in
a voltage xi stored in x i together with the color label f(x i):

Fixed current :

c i �
c0
c1
..
.

cn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i

→

x0

x1

..

.

xn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i

� x v()
i

(1)

To account for manufacturing and measurement deviations, the
data includes 20 LEDs per color and 20 measurements per LED.
Given the equal data distribution across the colors, the dataset is
unbiased towards the classification task. Figure 3 shows the standard
deviation and the extreme values for each color and current. For a
detailed description of data for the fixed-voltage approach, refer to
Luettig et al. (2022).

2.4.2.2 Out-of-distribution data (OOD)
OOD refers to the data sampled from a different distribution

than one of the training data sets. For ADIMA, the primary
challenge in detection was determining whether the captured
curves corresponded to the intended devices. For ADIMA-EL, we
found that a passively failed detection is acceptable (Github/HR-
12) unless this is due to a common mode error (Github/HR-11).
The approaches ensemble training, garbage classes, and binary
decision networks did not reliably detect out-of-distribution
data. On the other hand, Autoencoders used in anomaly
detection significantly improved and effectively addressed the
OOD challenges in the tested cases (Luettig and Annighoefer,
2023). Training revealed the curves showing only a single distinct
feature among the four LED colors, which led to the conclusion

that one parameter suffices to describe the D(c) curves.Training
revealed the curves showing only a single distinct feature among
the four LED colors, which lead to the conclusion that one
parameter suffices to describe the D(c) curves.

To test the autoencoder’s functionality, supplementary testing
datasets were generated, including aged LEDs (1,600 rows, 400 per
color), motors (400 rows, 20 motors), empty IOs (400 rows, 10%
random noise), and physically broken LEDs (4 LEDs, 4 rows). This
data was not used for the autoencoder’s training or validation.

2.4.2.3 Operational design domain data (ODD)
To ensure adequate coverage of the ODD, we developed a

comprehensive list of potential ODD parameters. We evaluated their
influence on the LED electrical properties and ADIMA performance as
detailed in Table Github/ODD Parameters. For two parameters, cable
length and external temperature, we produced additional testing data:
one LED per color, covering the temperature range of 30°C to 65°C and
an additional cable length range of 0 m–0.8 m.

2.4.3 Model training, learning and implementation
2.4.3.1 ML constituent architecture and training
2.4.3.1.1 Classifier training. The autoencoder and classifier
were trained using Tensorflow 2.16.0rc0/Keras 3.0.5 in Python
3.12.4. For the classification network, a hyperparameter study
revealed suitable networks small enough to fit within the IMA
module’s partition (1MByte). The training and validation data
were randomly picked from the initial dataset (20 curves x
20 LEDs x 4 colors). The study showed that a single hidden
ReLU layer and a softmax output layer provide sufficient
accuracy on training and validation datasets. Additionally, ReLU
and a limited number of nodes bring the benefit of low computation
times and low memory usage. Luettig et al. (2022) details the
evaluated architectures, along with their respective validation
accuracies and the number of training epochs. Most
hyperparameters were fixed as specified in Table 2, while a
subset underwent additional hyperparameter optimization.

TABLE 2 Hyperparameters for classification network.

Fixed hyperparameters

Algorithm Feed Forward Neural Network (FFNN) Epochs Until 100% validation accuracy

Hardware AMD Ryzen 7 PRO 7840U CPU Batch Size 25

Training/Validation Split 80-20, randomized Initialization He Normal

Loss Function Categorical Cross-Entropy Output Layer Softmax

Learning Rate Default (0.001) Dropout Rate Not used

Early Stopping Not used Weight Decay Not used

Variable Hyperparameters

Activation Function e.g., ReLU, Sigmoid, Tanh Number of Layers e.g., 3, 5, 10

Number of Nodes per Layer e.g., 4, 10, 19, 99 Optimizer Adam, SGD

Hyperparameters for autoencoder

Loss Function Mean Squared Error (MSE) Accuracy Function Accuracy (MSE)

Input Normalization Divide by 4

Frontiers in Aerospace Engineering frontiersin.org09

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

2.4.3.1.2 Autoencoder training. A hyperparameter study was
conducted for autoencoder training, resulting in selecting a compact
network architecture with three hidden layers (5-2-5). This
configuration demonstrated favorable accuracy while minimizing
computational and memory demands. Autoencoder networks with
all sigmoid layers and Adam optimizer performed best in the study.
An important task is to normalize the input: for fixed currents:
x (v′)

i � x (v)
i /4 which yields ∀i � 0.n: 0≤ x(v′)

i ≤ 1. Table 2 shows the
hyperparameters of the autoencoder.

The training minimizes the MSE, which indicates whether the
data falls within or outside the training scenarios. This approach
necessitates establishing acceptable residual values. These provide
additional information about the extent of training data deviation,
indicating the degree of LED degradation. A study on testing data
for aged LEDs, failed LEDs, DC motors, and empty IO ports
determined that intact LEDs typically exhibit an MSE of ≤6 × 10−5,
aged LEDs that still work of ≤1 × 10−4, faulty LEDs that do not
work of ≤1 × 10−3, unknown peripherals of ≤1 × 10−1 and an
empty interface of ≥1 × 101. Still, these values highly depend on
the actual hardware and interfaces used, the actual autoencoder,
and its accuracy against the reference data.

2.4.3.2 Implementation
2.4.3.2.1 ML constituent. The implementation must comply
with requirements by the module’s hardware. The hardware features
real-time capabilities and a dated single-core PowerPC CPU. The
implementation consists of two components: model-independent
functions in traditional software, subject to DO-178C objectives, and
the network’s parameters, Parameter Data Items (PDI). A script
exports these parameters (biases, weights, node counts, and layers)
directly from the Tensorflow/Keras model into C structure data
(Luettig et al., 2022).

2.4.3.2.2 Implementation of classical software components.
The software blocks Recorder, Logger, IO Controller, Detector,
Allocator, and Task Executor fall into the traditional software
category manually developed in C and thus subject to DO-178C
objectives.

2.4.4 Verification
Development activities include verifying the data used for

training, validation, and testing, validating the trained model, and
finally, verifying the integrated and implemented application. The
activities are captured as Test Cases (TC).

2.4.4.1 Training, validation, and testing data
To ensure the data adequately covers the ODD, the data

acquisition process incorporates typical engineering variations.
This involved collecting data from different LEDs of the same
type and making (manufacturing deviation). Additionally,
multiple measurements per LED capture measurement deviations.

TC-1 Manually check variance and bias of training and
validation data.

2.4.4.2 Trained model
Validation of the autoencoder uses additionally acquired OOD

testing data for aged or faulty LEDs, wrong peripherals, and open IOs.
The autoencoder identified 14% LEDs labeled new as aged, which is
deemed acceptable, as the manufacturing deviation may also result in
a limited lifespan of the LED. Furthermore, the autoencoder identified
16.5% LEDs labeled aged as new, which is also acceptable, as the LED
still functions in that case. The artificial aging process applied out-of-
specificationcurrent to the LEDs. For the motors and other clear OOD
data, the autoencoder works correctly.

TC-2 Check the confusion matrix of the autoencoder for
misidentification on training, validation and testing data.

The classifier, on the other hand, shows perfect scores for the
training and validation data; see the confusion matrix in Figure 6
(left). The classifier detects all known peripherals correctly but fails
100% for motors and empty IOs. Moreover, when checking the
networks’ confidence, it is mostly 100% confident on its wrong
classification; see Figure 7 for confidence on correct and
misclassifications. When using aged data, the classifier starts to
misclassify the LED colors; see Figure 6 (right), which shows the
confusion matrix on aged peripherals. The classifier correctly
identified 83.3% peripherals. This highlights that the software
cannot rely solely on the classifier. Hence, the software needs to

FIGURE 6
Confusion matrices for training/validation data and OOD aged LED data.

Frontiers in Aerospace Engineering frontiersin.org10

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

remove such data early on. Furthermore, Figure 8 shows theMSE for
each dataset. Furthermore, it shows that a certain limit can be
defined when a component is aged and soon-to-be-broken, a device
is unknown, or an IO is open.

TC-3 Check the confusion matrix of the classifier for
misclassifications on training and validation data.

TC-4 Check the classifier’s confidence for misidentification on
training and validation data.

TC-5 Check the confusion matrix of the classifier for
misclassifications on OOD data.

2.4.4.3 Implemented application
The export script converts the trained model into C

parameter data, extracts each layer definition (activation

function, number of nodes, weights, biases), and generates a
C source file. The first verification step includes testing on a
PC and feeding against training and validation data to
expose programming errors. The second verification step
tests the actual target hardware with live data, considering
the different accuracies of laboratory equipment and
IMA hardware.

TC-6 Check the confusion matrix of the implemented
application for misclassifications and misidentifications on
training, validation, and testing data.

2.4.4.4 ADIMA system
The final verification step involves the actual integrated system

that consists of:

FIGURE 7
Confidence for correctly and incorrectly classified peripherals on OOD Aged Data.

FIGURE 8
Mean Square Error for autoencoder prediction. Light datapoints show training data, and dark datapoints show the results for aged components. The
y-axis is logarithmic, allowing all results to fit into one diagram.

Frontiers in Aerospace Engineering frontiersin.org11

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

1. 1 host partition on a VCE type B
2. 1 proxy partition on the VCE type B
3. 1 proxy partition on the VCE type A
4. 3 LEDs on VCE type A, 4 LEDs on VCE type B

The host partition executes the Allocator and Task Executor
shown in Figure 5, the two proxy partitions execute the
respective autoencoder and classifier, and the system needs to
correctly identify the possible tasks using the identified
peripherals. There are three possible tasks to allocate: Task 1
requires two red LEDs, Task 2 requires one red, one green, one
blue LED, and Task 3 requires two blue LEDs. Task 2 is the most
important, then follows Task 1 and Task 3. The tasks send
distinct commands to the LEDs so the observer can tell them
apart. All tests passed.

2.4.4.5 ODD robustness
Additional testing data was acquired to verify robustness with

ODD data for ADIMA-EL and ADIMA-CL. The data included both,
cable length (0.2 m.1 m) and environmental temperature
(20°C-65°C). Figure 9 shows an excerpt of the autoencoder
output for additional data. Evidently, the MSE values remain in
the same order of magnitude and thus prove no significant influence
of these variables on the autoencoder.

The classification network processes the additional testing
data (see confusion matrix in Figure 10). The findings indicated
a different type of green LED in the temperature measurement
data, which exhibits behavior similar to that of a blue LED. The
autoencoder did not catch the anomaly because the LED
behaves like a regular blue LED. For the cable length
measurement, the data includes an additional three nominal

FIGURE 9
Mean Square Error for autoencoder prediction on varied cable and temperatures, the y-axis is logarithmic, it shows the training data (light color) and
the environmentally altered cases (dark color).

FIGURE 10
Confusion matrices for ODD robustness data.

Frontiers in Aerospace Engineering frontiersin.org12

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

green LEDs, hence the surmount of data for this label. For the
temperature dependent measurement, the yellow LEDs show
some misclassification on higher temperatures. This requires
further inspection.

3 Results

This section demonstrates the compliance matrix of the ADIMA
development process for the EASA concept paper’s objectives and a
structured argument demonstrating how ADIMA holds the OPs.

3.1 EASA W-Process

This subsection presents a potential approach to how to fulfill
the latest guidelines from EASAEuropean Union Aviation Safety
Agency (EASA) (2024) with the help of the previously stated
activities during development. The section shows gaps and
provides specific assumptions. EASA has extended the W-process
outlined within CoDANN I and II (EASA and Daedalean, 2020;
EASA and Daedalean, 2024) with objectives to fulfill; see Section 2.3.
The approach resembles the RTCA DO-178C approach for software
development, i.e., design assurance. The objectives include well-
known good practices from ML and the safety-critical avionics
domain. This section will provide an excerpt on the means of
compliance. There is no specific ML hardware in the subsystem.
The developer must classify the AI-based subsystem as per CL-01.

CL-01: We consider the used AI as Level 3B because the system
is hidden from all potential crew; its impact is limited.

There are objectives already covered by specific sections that the
authors deem not applicable, so an objective may appear in the
compliance list and in the not applicable list. For three objectives,
multiple sections or test cases help in fulfilling these. We deem
Human-Factors requirements (HF) not applicable, as this system
does not actually interact with the Flight Crew. We apply the same
reasoning to the Explainability requirements (EXP), as ADIMA does
not target interactive explainability. Additionally, Ethics
requirements (ET) do not apply as there is no interaction with
the Flight Crew.

Table 3 provides an overview on how the objectives can be
covered by the means shown in this article. Not covered: CO-02, SA-
01, DA-03, DA-07.10, DM-08, LM-03, LM-04, LM-11, LM-14, LM-
16, IMP-02.06, IMP-12, QA-01.

Not applicable: CO-05, IS-03, ET-*, RU-01, RU-02, RU-03, SU-
01, SU-02, EXP-*, HF-*

From the list of uncovered objectives, some do not apply to a
DAL D system (ADIMA-CL): DM-08, LM-03, LM-04, LM-11,
LM-14, LM-16, IMP-12; others directly address writing plans,
validation or verification procedures, which lie outside of the
project scope. Select objectives require independence for higher
DAL systems (A&B); given the author’s organization, this could
not be satisfied. The process covers independence to some level by
shifting the analysis to other personnel: person 1 performed the
training/validation data acquisition, person 2 acquired the testing
and out-of-distribution data, and person 3 acquired the ODD
robustness data. Person 2 performed analysis and
implementation.

Working with the new EASA AI assurance guidelines proved
to be quite similar to working with the DO-178C and general
software development in the safety-critical domain. Due to the
ADIMA systems being fully autonomous, the guidelines are not
yet fully developed, and the community will find additional
objectives in version 3. The current objectives reflect good
practice in working with machine learning applications. The
overall assessment, just as the DO-178C approach, is based on
engineering judgment (safety assessment) and experience.
Currently, the development process must fulfill most
objectives for any software DAL. The guidelines focus on
explainability and human factors - specific to pilot support
systems and trace to any AI applications in the medial field
(Food and Drug Administration, 2021). In summary, we believe
that the guidelines provide a valid step towards integrating AI
applications in aircraft in the sense of applications that directly
support the pilot in flying while simultaneously providing
reasoning and explanation why the AI-based system makes a
specific suggestion. However, we cannot fully apply this to the
case study in Section 2.4.

3.2 OPRA

This subsection presents an OP-related argument (OPRA) for
the Machine Learning Component (MLC)-ADIMA system used in
ADIMA-EL, which has been assigned DAL A. The argument
structure is shown in Figure 11. Blue propositions represent
those addressed during the development process. Red dotted
propositions indicate those that the development process did not
address but are necessary to support OPs; thus, they pose as
defeaters in the argument. The OP-related argument is shown in
Scheme 2. Finally, this section provides a table of evidence that
supports the leaves of the argument.

MLC-ADIMA refers to the machine learning component within
the ADIMA System. While the OPRA provides compliance methods
for MLC-ADIMA, the rest of the system follows the existing standards.
Intent decomposes into high-level and low-level categories. High-level
Intent, reflecting high-level requirements, specifies what the MLC-
ADIMA needs to achieve by detailing the required performance
criteria, the ODD where these criteria must be met, and the
necessary data distributions. At the low-level Intent, we refine the
high-level intent by outlining non-functional requirements such as
memory and time allocation, model requirements, generalization
requirements, and data management. Model requirements define
properties of the training process, including hyperparameters,
training procedures, training data, and initialization. Generalization
requirements specify how to handle relevant data not seen during
training, both within and outside the ODD, using an autoencoder for
monitoring in and out-of-distribution data.

Correctness proposes a requirement-driven testing approach,
addressing the requirements defined in the Intent. It is important
to note that the test must clearly define testing data. The test cases
specify data distributions and evaluation metrics to support this
approach. All testing activities must be performed on the target
hardware using real data, not simulations. In MLC-ADIMA,
unintended behaviors resulting from the use of neural
networks are identified as issues related to stability,

Frontiers in Aerospace Engineering frontiersin.org13

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

T
A
B
LE

3
C
o
m
p
lian

ce
m
atrix

fo
r
A
D
IM

A
d
e
ve

lo
p
m
e
n
t
ag

ain
st

E
A
S
A
A
I
assu

ran
ce

o
b
je
ctive

s.

Se
ctio

n
O
b
je
ctive

CO� 03

CO� 04

CO� 06

CL� 01

SA� 02

SA� 03

IS� 01

IS� 02

ET� 04

ET� 06

DA� 01

DA� 02

DA� 04

DA� 05

DA� 06

DM� 01

DM� 02� SL

DM� 02� UL

DM� 03

DM� 04

DM� 05

DM� 06

DM� 07

LM� 01:08

LM� 01:08

LM� 09; 10; 12; 13

IMP� 01

IMP� 07

IMP� 08

IMP� 09

IMP� 10

IMP� 11

CM� 01

EXP� 04:09

2.4.1
x

2.4.1
x

x

2.4.1.2
x

x
x

x

2.4.1.3
x

2.4.1.3
x

x
x

x
x

x
x

2.4.2
x

2.4.3
x

x
x

x
x

x
x

x
x

2.4.3.2
x

x

2.4.4
x

x
x

2.4.4.2
x

2.4.4.4
x

2.4.4.5
x

T
C
-1

x

T
C
-6

x
x

x
x

FrontiersinAerospaceEngineeringfrontiersin.org 14

Luettigetal.10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

generalization, out-of-distribution data, data drift, and the
incompleteness of data or ODD. While the majority of these
issues are addressed in the Intent, additional activities have been
added to manage the remaining concerns. These activities

include demonstrating the model’s stability in the presence of
noise, understanding the model through sensitivity analysis using
explainability methods, and analyzing all outliers to provide
thorough reasoning.

FIGURE 11
OPRA for ADIMA-EL with defeaters highlighted in red dotted lines. Grey part is not necessary for ADIMA-CL.

Frontiers in Aerospace Engineering frontiersin.org15

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

SCHEME 2 OPs argument for ADIMA.

Bindings

Desired behavior (DeB): The ADIMA system shall identify devices, i.e., the color
of an LED using its electrical properties during runtime with an accuracy of 100%
(-1e-6). It must ensure reliability by eliminating any single point of failure.
Additionally, the system shall ignore LEDs that are not in good condition and
generate a report detailing the issue

Intended behavior (DIBa): The intended behaviors for DAL A are recorded by
relevant data, the required performance, memory requirements, and
generalization requirements. This is grouped as high-level intent plus low-level
intent.

Intended behavior (DIBd): The intended behaviors for DAL D are recorded by
data distribution and the required performance. This is grouped as high-level
intent. Device: Any peripheral connected to the IMA hardware module

Data: Refers to the input information used to train, test, and validate models. It
consists of arrays for current and voltage that represent electrical phenomena and
a label that indicates the color and health status of the LED. The current vs. voltage
curve is specific to each type of LED color, varies with age, and changes with the
health status of the LED

ODD: The Operational Design Domain defines the specific conditions and
environments where ADIMA is designed to operate as intended. Reference to
table. Representativeness of the data refers to how accurately a dataset reflects the
characteristics and diversity of the entire ODD

Foreseeable operational conditions (FOC): are defined by the ODD, and
additional possible conditions are not represented in the model development.

Implementation: Implementation is the integration of the entire ADIMA
application (classification network, autoencoder, and integration software) within
the ARINC653 partition on the actual IMA hardware module. All runtime data for
this implementation comes from the actual IMA module interfaces

Nominal conditions: LEDs from a given supplier defined in the ODD Off-
nominal conditions: LEDs from a given supplier are defined in the ODD but with
altered characteristics, including aging or cable breaks

Outside of ODD conditions: Any devices not specified in ODD, e.g., motors,
LEDs from other suppliers, or other LED colors

Intent

Believing

MLC-ADIMA holds the Intent OP{Intent}

Is justified by applying

MLC-ADIMA defined high level intended behavior is correct and complete with
respect to the DeB

To these premises

MLC-ADIMA defined high level intended behavior is correct and complete with
respect to the DeB {IT-HighIntent}

MLC-ADIMA defined low level intended behavior is correct and complete with the
high-level intent {IT-LowIntent}

Believing

MLC-ADIMA defined high level intended behavior is correct and complete with
respect to the DeB

To these premises

The ODD is correct and complete with respect of the DeB {IT-ODD}

Data requirements satisfy the ODD {IT-Data}.

MLC-ADIMA has an accuracy for 100% for data within the ODD {IT-Performance}

Believing

The ODD is correct and complete with respect of the DeB {IT-ODD}

To these premises

List of factors that can affect electrical phenomena {IT-ImpactElect}

List of factors that can affect machine learning model performance {IT-ML}

List of factors that do not impact the MLC-ADIMA estimation {IT-
NonImpactFullSet}

Definition of the ODD parameters (including ranges and distributions) for the subset
of factors that do affect performance {IT-ODDDef}

(Continued in next column)

SCHEME 2 (Continued) OPs argument for ADIMA.

Intent

Believing

Data is representative of the ODD {IT-Data}

To these premises

The data set is randomly divided into training (80%) and cross validation (20%) {IT-
Sets}

Training set and cross validation sets show the same data distribution of the ODD
{IT-Distribution}

20 measurements are acquired for the same device {IT-Measurement}

Believing

MLC-ADIMA defined low level intended behavior is correct and complete with the
high-level intent {IT-HighIntent}

To these premises

Non-functional requirements are correct and complete {IT-NonFunc}

Model requirements are correct and complete {IT-Model}

Generalization requirements are correct and complete {IT-Generalization}

Intent-Cont

Believing

Non-functional requirements are correct and complete {IT-NonFunc}

To these premises

Execution time requirements are correct and complete {IT-Time}

Memory requirements are correct and complete {IT-Mem}

Believing

Model requirements are correct and complete {IT-Model}

To these premises

Model initialization has been captured {IT-Ini}

Hyper-parameters provide a good balance between variance and bias {IT-HyperP}.

Risk of the training processing have been mitigated {IT-TrainingProcess}

Data satisfies intended distribution {IT-DataSatosfyReq}

Believing

Generalization requirements are correct and complete {IT-Generalization}

Is justified by applying

Any part of the executable MLC-ADIMA that is not required by the DIB has no
unacceptable impact

To these premises

Autoencoder within the MLC-ADIMA systems identifies off-nominal devices with a
false negative rate of x {IT-Autoencoder }

Monitoring requirements for identify changes within the ODD and the data
distribution {IT-Monitoring}

Relevant unseen data has been identified {IT-Unseedata}

Correctness

Believing

MLC-ADIMA holds the Correctness OP{Correctness}

Is justified by applying

MLC-ADIMA implementation is correct w.r.t DIB, under FOC

To these premises

MLC-ADIMA implementation satisfies performance requirements within Nominal
conditions {CR-Performance}

MLC-ADIMA implementation identifies off-nominal conditions and reports them
{CR-Abnormal}

(Continued on following page)

Frontiers in Aerospace Engineering frontiersin.org16

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

Defeater: “Definition of the ODD” refers to the challenge of
validating that the ODD is complete. Developers conducted an
exhaustive analysis to understand the factors affecting the
current/voltage curve, thereby specifying the ODD and the
data distribution required for training, as highlighted in the
defeater “Representativeness of the ODD.” Additionally,
defining corner and edge cases is challenging across multiple
dimensions, and finding data for these cases is difficult. In the
IT-model conclusion, the goal was to capture all parameters that
could affect the model’s behavior, enabling reviewers to assess the
adequacy of these parameters during validation. However, a
defeater arises since it remains unclear which parameters and
analysis methods are sufficient for effective validation. It is
necessary to identify devices outside the ODD. Developers
must first identify potential types of devices or situations (e.g.,
aging) to provide evidence that the system fulfills this
requirement. There are no guidelines for this process, making
it difficult to verify if developers missed any possibilities.
Although IT-Monitoring attempts to address this issue,
extending the ODD, particularly to include non-LED devices,
is not achievable with measurements alone; additional
information is required. These challenges emerged as two
defeaters in the Low-level intent. The defeater “Coverage
metrics” refers to the lack of quantitative metrics for the
sufficiency of testing data. In Innocuity, the aim is to capture
all possible causes of unintended behaviors and mitigate them
either during development or through analysis. However,
developers are uncertain whether all potential sources of
unintended behaviors have been covered.

The leaf conclusions are supported by multiple pieces of evidence,
with the quantity and depth of evidence varying according to the
DAL. Each piece of evidence is linked to its corresponding
certification plan. Table 4 demonstrates how ADIMA results map

to these leaf conclusions. The ADIMA repository contains the
complete list of evidence supporting each argument.

4 Discussion

This section discusses the findings on certification with respect
to the literature research and the case study. Section 4.1 outlines the
current certification practise and how this relates to AI-enabled
systems, Section 4.2 discusses the findings during application of
W-process and OPs towards the case-study and Section 4.3 provides
an overview on the upcoming challenges that the community still
needs to address.

4.1 Applicability of aviation certification
processes to AI systems

While AI is merely an implementation choice within aviation
systems, the current certification processes for AI might not be
directly applicable. This section aims to analyze the applicability of
current certifications standards to AI-enabled systems.

4.1.1 Safety considerations
Since ML is a software implementation choice, the initial

assumption might be that it only impacts software aspects.
However, unlike classical software, ML applications exhibit
probabilistic behaviors. ARP4761A (SAE International, 1996)
defines an error as “an omitted or incorrect action by a
manufacturer, crew member, or maintenance person, or a
mistake in requirements, design, or implementation.” Such errors
can lead to failures during the operation of the aircraft or system,
preventing it from behaving as intended. A requirement might
specify that an ML model needs to recognize an object with a
98% probability. During the verification process, testing results can
demonstrate that the model satisfies this requirement based on the
validation data set. Additional metrics, such as precision and recall2,
provide a deeper understanding of the model’s false positive and
negative behaviors. From a safety perspective, it is crucial to ensure
that the remaining 2% probability does not compromise system
safety. This assurance must also extend to unseen data (data not
included in the validation set). Accurately predicting the
performance of an ML model on unseen data remains an active
area of research. Requirements also define the operational design
domain, specifying where the system must meet performance
criteria. However, ML performance is not strictly bounded by the
operational design domain but rather by the data distribution for
which performance metrics are guaranteed. This distinction
becomes apparent in challenges such as data or concept drift.
During operation, data drift can cause the ML component to
deviate from its intended behavior, leading to failure. This can
occur even if the developer initially implemented and designed the
system perfectly, as environmental conditions may change. Like
hardware failures, this is a stochastic process occurring over time,

SCHEME 2 (Continued) OPs argument for ADIMA.

Correctness

MLC-ADIMA implementation is robust for outside of ODD conditions {CR-
Robustness}

MLC-ADIMA implementation can generalize with DeB {CR-Generalization}

Target hardware and real data are used for correctness activities {CR-
TargetHWData}

Innocuity

Believing

MLC-ADIMA holds the Innocuity OP{Innocuity}

Is justified by applying

Any part of the executable MLC-ADIMA that is not required by the DIB has no
unacceptable impact.

To these premises

Unintended behaviors caused by the implementation choice of using neuronal
networks are identified as stability, generalization, outside of distribution, data-drift,
incompleteness of the data or ODD {IO-UnIntBeh}.

MLC-ADIMA performance does not get affected by adding 10% of noise to Data
{IO-Stability}

MLC-ADIMA performance does not get affected by changes in the network {IO-
Sensitivity}

Outliers do not affect the safety of the system {IO-Outliers}

2 github.com/ils-stuttgart/adima

Frontiers in Aerospace Engineering frontiersin.org17

Luettig et al. 10.3389/fpace.2024.1475139

http://github.com/ils-stuttgart/adima
https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

but unlike hardware failures, it is not only related to aging. The safety
impact of deficient performance on unseen data can be mitigated
either by implementing a runtime monitor or by ensuring a very low
probability of such situations occurring. From a certification
perspective, two options are available:

1. Connect safety assessment and system requirements through
the requirement process and design assurance.

2. In addition to the first option, integrate the reliability values of
an ML-enabled system into the safety assessment process, such
as through Failure Tree Analysis (FTA).

Option 1 requires no changes to the current safety standards.
However, option 2 would necessitate extending the standards to
include methods for calculating and integrating reliability values
into the safety assessment process. Currently, reliability is
determined using operational data, distribution functions, and
Monte Carlo simulations to calculate the probability per flight

hours. For ML methods, calculating reliability remains an open
research question.

Redundancy and monitoring are common architectural
mitigations that allow combining lower DAL subsystems to
achieve a higher DAL for the overall system (a.k.a. DALgebra).
However, standards need to evaluate whether this approach is
applicable to ML-enabled systems, considering the lack of proof
that independence can be maintained and whether non-performing
components can be reliably identified.

4.1.2 System considerations
The next challenge is to address the system itself, ensuring that

mitigation mechanisms and criticality allocation remain effective for
ML-enabled systems. Aircraft systems employ redundancy to
achieve high availability, allowing for dispatchability with
malfunctioning components. To ensure that redundant
components do not fail simultaneously, they must adhere to the
independence principle, which mandates that these components do

TABLE 4 Traceability for OP leafs to development and assessment.

Leaf argument Description Section

IT-ML List of factors that can affect machine learning model performance 2.4.1

IT-ODDef Definition of the ODD parameters (including ranges and distributions) for the subset of factors that do affect performance 2.4.1

IT-NonImpact FullSet List of factors that do not impact the MLC-ADIMA estimation 2.4.2, 2.4.4.5

IT-ImpactElect List of factors that can affect electrical phenomena 2.4.2, 2.4.4.5

IT-Sets The data set is randomly divided into training (80%) and cross validation (20%) 2.4.3

IT-Distribution Training set and cross validation sets show the same data distribution of the ODD 2.4.1

IT-Measurement 20 measurements are acquired for the same device 2.4.2

IT-Mem Memory requirements are correct and complete 2.4.3.2

IT-Time Execution time requirements are correct and complete 2.4.3.2

IT-Training Process Risk of the training processing have been mitigated 2.4.3

IT-Data SatisfyReq Data satisfies intended distribution 2.4.1

IT-HyperP Hyper-parameters provide a good balance between variance and bias 2.4.3

IT-Ini Model initialization has been captured 2.4.3

IT-Unseendata Relevant unseen data has been identified 2.4.2

IT-Autoencoder Autoencoder within the MLC-ADIMA systems identifies off-nominal devices with a false negative rate of x 2.4.4.2

IT-Monitoring Monitoring requirements for identify changes within the ODD and the data distribution –

CR-Abnormal MLC-ADIMA implementation identifies and reports off-nominal conditions 2.4.1, 2.4.1.3

CR-Performance MLC-ADIMA implementation satisfies performance requirements within Nominal conditions 2.4.4.2

CR-Robustness MLC-ADIMA implementation is robust for outside of ODD conditions 2.4.4.5

CR-Generalization MLC-ADIMA implementation can generalize with DeB 2.4.4.2

CR-TargetHWData Target hardware and real data are used for correctness activities 2.4.4.4

IO-UnIntBeh Unintended behaviors caused by the implementation choice of using neuronal networks are identified as stability, generalization,
outside of distribution, data-drift, incompleteness of the data or ODD

2.4.4.2

CR-Outliers Outliers do not affect the safety of the system 2.4.4.2

CR-Stability MLC-ADIMA performance does not get affected by adding 10% of noise to Data

CR-Sensitivity MLC-ADIMA performance does not get affected by changes in the network

Frontiers in Aerospace Engineering frontiersin.org18

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

not share common points of failure. For software-based
components, dissimilarity reduces common points of failure by
utilizing different processing units, compilers, programming
languages, or development methodologies. This approach
decreases the probability of an undetected or dangerous system
failure due to common software bugs. In the context of ML, this
raises the question of how to effectively ensure model dissimilarity in
all aspects of ML systems, including training data, hyperparameters,
model topology, and initialization.

Runtime assurance can ensure safety by switching to a more
straightforward, safer system if a malfunction is detected. However,
implementing such monitoring in ML systems is challenging due to
the complexity of mapping inputs to outputs, making it difficult to
develop dissimilar backup systems or estimate performance
reduction. ML algorithms can provide confidence values, but these
can be unreliable for unseen data (Hendrycks et al., 2021). Alternative
approaches, such as detecting ODD data using distance measures,
autoencoders, or trained networks, are under active research.

4.1.3 Software considerations
Software regulations, defined in DO-178C, rely upon the

foundational principles of specification, division of concerns,
traceability, compliance, and verification. Specification in
software development consists of three levels. System-level
requirements outline the overall intent of the software. High-level
requirements (HLR) combine this intent with architectural
considerations, addressing safety implications. Low-level
requirements focus on specific design details, guiding the actual
coding and integration of system components. This enables the
division of concerns, thereby allowing developers to effectively
address concerns at each stage of development and validation.
Furthermore, the developer must provide DAL-dependent
assurance for each level of requirements. For instance, DAL D
may only require assurance at the HLR stage, whereas from DAL
C onwards, the objectives cover assurance at all levels. In the context
of ML, behavior specifications are not directly outlined; instead, they
are defined indirectly through datasets, metrics, and algorithms.
Therefore, the community needs to extend standards to address how
this intermediate specification of behaviors is managed,
subsequently impacting the required level of assurance.

Traceability is the ability to link various artifacts throughout the
software lifecycle, encompassing requirements, design,
implementation, testing, and maintenance, thereby enabling
quality assurance and compliance verification. In traditional
software development, traceability connects requirements directly
to system behavior, ensuring that each requirement is addressed in
the final product. Once traceability is established, validation
activities ensure that lower-level artifacts (e.g., test cases) comply
with the higher-level artifacts from which they were derived. For ML
systems, while we can define requirements, traceability extends from
high-level requirements to data requirements and performance
requirements. The actual data then serves as the low-level
requirement layer. This involves refining these requirements into
specific datasets, statistical analyses, hyperparameters, and
validation metrics. Despite this, there remains a gap between the
specified requirements and the actual behavior of the ML system,
highlighting the complexity and challenges in ensuring traceability
within ML projects. Furthermore, in the context of ML, this involves

methods that validate datasets to ensure they meet specified
requirements and that the testing datasets effectively exercise and
fulfill those requirements.

Verification, as focused on testing in DO-178C, is approached
from two primary perspectives: top-down and bottom-up. The top-
down approach emphasizes requirement-based testing, ensuring
that all specified requirements are met through tests that exercise
the requirements using nominal inputs and assess component
robustness under off-nominal inputs. In the context of verifying
ML systems, properties of nominal and off-nominal test datasets
(e.g., distribution) need to be defined. Due to the nature of ML, the
compliance of properties such as stability and generalization, in
addition to robustness, must be validated. The bottom-up
approach analyzes the implementation structure to detect
unintended behaviors, incomplete requirements, or missing
tests. Implementation coverage is assessed through structural
coverage metrics such as statement coverage or modified
condition/decision coverage (MC/DC). In software standards,
these metrics provide a means to measure the sufficiency of
testing, which depends on the DAL. In the context of ML,
determining metrics for the sufficiency of testing remains an
open question. Similarly, for coverage metrics, studies have
shown that using neurons as analogies for lines of code does
not provide the same coverage of the behavior.

4.1.4 Hardware considerations
In hardware development, a critical consideration is whether the

hardware item is simple or complex. Hardware incorporating
microprocessors or FPGAs is generally classified as complex,
necessitating design assurance in compliance with RTCA DO-254.
However, a hardware item may be deemed simple, allowing the
developer to bypass design assurance requirements, even for ASICs
or PLDs. To justify this classification, it must be demonstrated that a
comprehensive combination of deterministic tests and analyses
appropriate to the design assurance level ensures correct functional
performance under all foreseeable operating conditions with no
anomalous behavior (RTCA, Inc, 2000). For most AI-accelerating
devices, it is essential to assume their complexity and develop them in
accordance with Design Assurance per DO-254. A recent study (Iqbal
et al., 2024) identified various approaches to integrating AI into
Integrated Modular Avionics (IMA):

1. The model is computed within an ARINC653 partition (see
case study ADIMA 2.4).

2. The model runs on dedicated ML hardware inside the
IMA module.

3. The model runs on dedicated ML hardware outside the
IMA module.

For option (1), there is no need to modify the development
approach or re-certify, as it utilizes existing avionics-grade
hardware. However, this comes with limitations in computational
power, memory, and processing time3. Option (2) requires

3 this measures the ability of the model to correctly identify all relevant

instances within a dataset, true positives/(true positives + false negatives)

Frontiers in Aerospace Engineering frontiersin.org19

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

modifying the avionics hardware to include an additional
component and re-certifying it against the highest targeted DAL,
typically DAL A for IMA hardware. Certification for highly complex
ML-focused hardware presents significant challenges, including
multi-core processors, non-deterministic hardware features (e.g.,
speculative branch execution), new memory technologies, and the
reluctance of hardware vendors to disclose the internal architecture
of these devices. Option (3) allows for a reduction in the DAL,
requiring compliance only with the DAL of the specific component
utilizing the ML model. The device resides outside the original,
highly safety-critical module, connecting via CAN or another bus,
enabling the avionics module to function as a gatekeeper to mitigate
potential damage from a faulty ML hardware module.

4.1.5 Probabilistic systems considerations
Some systems in the aviation industry have probabilistic

requirements, such as the Global Positioning System (GPS) and
the Instrument Landing System (ILS). According to AC 20-138, GPS
accuracy is based on measuring distances to satellites and their
known locations, with a required route/terminal accuracy of
0.124 nautical miles at a 95% probability for Visual Flight Rules
(VFR) use. This probabilistic approach acknowledges that GPS is
affected by equipment and geometric factors, with some errors
mitigated through mathematical models. GPS equipment for VFR
use does not need TSO-C129 authorization but must not interfere
with other required systems or create hazards. It is crucial that the
system warns the user promptly when GPS data should not be used.
However, pilots have reported issues with GPS not indicating system
failures, exacerbated by increasing GPS jamming in certain areas.

CS-AWO Issue 2 sets standards for certifying aircraft and
equipment for safe operation under various weather conditions,
focusing on precise landing capabilities in low visibility. These
standards include acceptable probabilities for exceeding limits,
such as a touchdown within 60 m of the runway threshold,
targeting a probability of 10−6. Compliance requires a flight test
program that covers a range of weights, center-of-gravity positions,
xLS ground facility characteristics, airplane configurations, and
wind speeds, involving three ILS facilities with evenly distributed
approaches. Due to the impracticality of numerous approaches, a
90% confidence level is required. Compliance can be shown using
the continuous method or the pass or fail method. The continuous
method involves 30 approaches and records deviations to calculate
success probabilities, while the pass or fail method, suitable when
recording equipment is not possible, requires at least 46 successful
approaches, with approval based on approach success.

These two systems illustrate different approaches aviation has
used to manage performance uncertainty caused by external
conditions. This is akin to machine learning, where data can
deviate from intended distributions due to external factors. The
aviation domain needs to offer similar guidance for demonstrating
sufficiency through testing or ensuring that ML failures do not
impact safety, as is done with these systems.

4.1.6 Certification process consideration
Certification authorities provide regulations to ensure safety and

reliability in aviation. However, the means of compliance with these
regulations are defined through standards developed by a consensus
of international experts, including applicants, tool vendors, OEMs,

and academia. These standards offer established frameworks that
outline objectives and recommended activities to achieve the
necessary assurance for compliance. In addition, applicants can
propose novel means of compliance, though this introduces
significant risks, as there is no certainty of acceptance by the
certification authorities. The standards are typically based on best
development practices, yet the aviation sector lacks sufficient
practices to fully inform these standards, creating a “chicken and
egg” dilemma where certification is required before flight, but
practices need to be established through flying experience.
Aviation faces more stringent safety demands than the
automotive industry, which has addressed this through beta
versions. Furthermore, developing these standards can span
several years, posing a challenge to keep pace with the rapid
advancements in machine learning, raising the risk that
standards may become obsolete by the time they are published.

Once a system is certified, software cannot be updated without
triggering a re-certification, which can be time-consuming and
costly. In contrast, continuous development is vital for machine
learning to ensure models remain accurate, relevant, and robust in
dynamic environments. It allows regular updates to manage
changing data patterns, improve performance through
hyperparameter tuning and algorithm advancements, and address
model degradation due to concept drift. In the context of
certification, standards should also provide guidance for
continuous re-certification of the system, balancing model
efficiency—particularly for elements that impact system
safety—and thorough system verification.

4.1.7 Tool qualification considerations
DO-330 (Tool Qualification Considerations) addresses the

qualification of tools used in the software development process
(RTCAInc, 2011). The primary focus of DO-330 includes code
generation, verification and validation support, and other
automation activities related to development artifacts. According
to DO-330, the qualification of a tool is necessary when DO-178C
processes are eliminated, reduced, or automated using software tools
without subsequent verification of the tool’s outputRTCA, Inc.
(2011a). To determine the Tool Qualification Level (TQL), the
developer first needs to define the Tool Criteria:

Criteria 1: A tool whose output is part of the resulting software and
thus could insert an error (RTCAInc, 2011).
Criteria 2: A tool that automates verification processes such that
faulty output could lead to the elimination or reduction of
development or verification processes.
Criteria 3: A tool that, within the scope of its intended use, could
fail to detect an error (RTCAInc, 2011).

Together with the target resulting software DAL, the TQL is
assigned a value from 1 to 5, which determines the objectives that the
tool must cover.

In non-AI-based applications, the number of tools requiring
qualification is typically small: code generators, validation tools, and
verification tools. The development of ML applications introduces
complexity due to the increased number of tools involved. Tools for
managing datasets, training algorithms, validating models, and
deploying them on target hardware — along with any conversion

Frontiers in Aerospace Engineering frontiersin.org20

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

processes that may be required— are essential for machine learning
research. Developers also utilize tools to detect outliers and
create tests.

There are difficulties in classifying these tools using the criteria
from above. For instance, a data management tool may not generate
software output, automate processes, or detect errors, yet it plays a
crucial role in storing data and associated verification results. The
obvious solution here is to verify the output of such a tool - because
this is the clear line to not qualifying a tool. However, this approach
becomes futile when dealing with thousands of datasets - or requires
a qualified checker-tool.

4.2 Applying W-process and overarching
properties to ADIMA

Currently, the EASA guidelines do not fully encompass
automated AI-enabled systems. Since their primary focus is on
human-machine interaction, a significant gap exists for systems
like the case study. We are unsure if these are applicable to this type
of function, especially for AI levels. Notably, the number of
objectives to be covered does not vary significantly with the
associated DAL. The gap between DAL A and DAL D
applications is small. There is no difference between DAL A and
B, and the differences between DAL B and C primarily stem from
independence requirements.

From a technical perspective, we lack reliable methods to fulfill
specific objectives, such as DM-08: The applicant should perform a
data verification step to confirm the appropriateness of the defined
ODD and of the data sets used for the training, validation, and
verification of the ML model. While verifying that the testing data
remains independent during development and has not been used
during training is clear, finding sufficient data to entirely reflect the
ODD and still be appropriate for actual deployment is significantly
more challenging. This difficulty shows especially when asking, how
much is enough?. We believe the guidelines provide a valid step
towards integrating AI applications in aircraft, especially those that
directly support the pilot by providing reasoning and explanation
for AI-based system suggestions. However, these guidelines cannot
be fully applied to systems as small as ADIMA (Section 2.4). In
addition, the standard should be evaluated for AI-enabled systems
where AI is a minor contributor and does not directly affect aircraft
controls or interact with the flight crew.

Unlike traditional standards, OPs provide applicants with
significant flexibility to propose novel means of compliance.
While this flexibility can increase the complexity of the
certification process—since the authority must first approve the
Means of Compliance (MoC)—it is particularly valuable in
emerging technologies like machine learning, where no
established certification standards exist. OPs enable a
collaborative agreement between applicants and authorities,
allowing for an MoC tailored to a specific system. The OPRA
framework helps identify gaps in machine learning technologies,
such as verification, that limit their use in safety-critical applications.
Technological gaps of the ML technology are discussed in detail in
the next section. In contrast to the EASA-W, OPs can propose a
tailored set of evidence (equivalent to an objective) specific to the
application. Additionally, OPs do not require the creation of a

separate item for the machine learning component, enabling the
use of advanced MoCs only where needed while still ensuring
compliance with the well-established DO-178C standard for the
rest of the software.

4.3 Limitations of ML/AI technology

In addition to the limitations of current certification standards
and processes highlighted in the previous section, the development
of ML technologies still needs to offer methods that fully guarantee
system safety. Therefore, this section delves into the inherent
challenges in ML technology that must first be addressed by the
research community. By overcoming these technological challenges,
regulatory authorities can develop a robust and feasible means of
compliance for ML systems supported by validated methods.

4.3.1 Specification
SpecifyingML systems presents a significant challenge due to the

complex nature of their behavior, influenced by the data and
learning algorithms, including hyperparameters, initialization,
and loss functions. Currently, there are no established best
practices for describing both functional and non-functional
requirements for ML, particularly in capturing the learning
process, model architecture, and handling issues like dead nodes
(Ahmed et al., 2023). The ODD has emerged as a critical tool for
specifying data requirements for data acquisition and testing. While
covering the entire ODD can be extensive, leveraging corner and
edge cases to limit the parameter space is a strategy. However, this
can only be done automatically within a limited number of
dimensions. Therefore, eliciting the ODD from domain experts
can help reduce the parameter space and identify relevant cases.
However, this remains challenging due to a need for clear
terminology, methods to assess completeness, identification of all
relevant scenarios, and undocumented assumptions (Heyn et al.,
2022). Furthermore, data requirements should also capture
implementation limitations, such as the differing corner cases for
computer vision algorithms using RGB versus infrared images. Due
to these challenges in defining the ODD, operational data is used to
validate and update the specification, showing reliable results in
autonomous processes. Nevertheless, this process does not work well
for off-nominal conditions.

4.3.2 Data dependence
The performance of anMLmodel heavily depends on the quality

of its training data. The model reflects the training data, i.e., any bias,
incompleteness, or noise will lead to unreliable predictions.
Ensuring that the training data is representative of real-world
scenarios is crucial but often difficult to achieve. Verification
methods must account for these data-related issues, adding
another layer of complexity to the process. In addition to the
traceability gap between requirements and datasets, the numerous
data transformations, model iterations, and deployment
environments of complex ML systems further complicate
traceability. ML model development encompasses multiple steps,
including data preprocessing, feature engineering, model training,
and continuous learning. Tracking the lineage and transformations
of data and models through these phases is crucial for verification.

Frontiers in Aerospace Engineering frontiersin.org21

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

This lack of traceability makes it challenging to reproduce results
and identify the sources of errors or biases in the model.

4.3.3 Verification
Requirement-based testing (RBT) is a method where test cases

are derived directly from requirement specifications to ensure that
the system meets its specified requirements. In both classical
software and machine learning systems, a significant portion of
the effort is focused on identifying relevant test cases. The literature
outlines various techniques to create scenarios, enhance training
data for robustness, and validate data properties. However, a
universally accepted method to ensure the sufficiency and quality
of these test cases is still lacking. As neural networks grow in size and
complexity, the number of parameters and possible states increases
exponentially, necessitating significant computational resources for
verification. Furthermore, formal verification methods are often
constrained by the types of network activations and architectures
supported. Techniques designed for specific activation functions,
such as ReLU, may not extend efficiently to others, like sigmoid or
tanh, without significant compromises (EASA and Daedalean, 2020;
Katz et al., 2017; Grimm et al., 2024). Additionally, while MLmodels
typically provide statistical guarantees, these may not always be
adequate for safety-critical applications, where even a single
misclassification can lead to severe consequences.

Structural testing, also known as white-box testing, involves
examining the internal structure of software to identify unintended
behaviors. Metrics like MC/DC help guide the extent of testing
required. Neuron coverage has proven ineffective for coverage
methods and thus implies ML being a black box. However,
explainability local methods, such as LIME, SHAP, sensitivity
analysis, and saliency maps, can partially bring light to the black
box. These methods focus on understanding and debugging, often
providing only local explanations rather than driving
comprehensive testing (Bodria et al., 2023). Global XAI methods,
such as surrogate models that approximate the behavior of a
complex system, feature importance metrics across entire
datasets, and inherently interpretable models like decision trees
and rule-based algorithms, offer valuable insights into the overall
behavior of AI models, making them potentially useful for
certification. However, these methods can sometimes result in
overgeneralized explanations as they may not accurately reveal
the nuances of how the model behaves in specific edge cases or
extreme scenarios. This means the explanations could overlook
important details about the model’s response under unusual
conditions, which may lead to unintended behaviors. In addition,
another challenge with feature importance lies in its potential
unreliability, as the ranking of features can vary significantly
depending on the model’s complexity (Akhiat et al., 2021). This
variability can introduce inconsistencies, making it difficult to
establish a stable and trustworthy basis for certification, where
consistent and interpretable feature rankings are crucial.

Data-driven approaches could be used to identify unintended
behaviors, specifically by detecting data within the ODD but outside
the training data distribution. Despite these advancements, the
methods still require human input to classify undesired behavior.

During model training, developers must balance achieving high
accuracy on training data, which can lead to overfitting, and
ensuring the model can generalize well to unseen data.

Generalization depends on several factors, including the quality of
the data, the training process, and the test data used. Although
theoretical definitions of generalization bounds and their direct
connections to model complexity metrics can be misleading (MLEAP
Consortium, 2024), practical methods to enhance generalization exist.
The efficacy of thesemethods needs to be evaluated and implemented on
a case-by-case basis, requiring further research.

4.3.4 Safety-driven development
Currently, training in machine learning is primarily focused on

minimizing loss, which is directly related to performance. Training
methods should emphasize safety and robustness for safety-critical
applications rather than just performance. Henne et al. (2020) have
analyzed the relationship between training properties and safety
performance.

Additionally, assessing the reliability ofML estimations is crucial
for ensuring safety. Confidence scores aim to provide a reliability
measurement for ML models. However, they have been shown to be
inadequate for unseen data (Hendrycks et al., 2021). Therefore, new
uncertainty quantification methods have been developed to address
this issue (Grewal et al., 2024). Techniques such as Monte Carlo
dropout and deep ensembles look promising in providing reliable
uncertainty measurements.

Due to the limitations of ML verification methods, run-time
assurance has emerged as an approach to ensure the safety and
reliability of a system during its operation by continuously
monitoring its performance and behavior in real-time to detect and
mitigate potential safety violations. However, to ensure safety, the safety
and performance requirements must be clearly measurable, and there
must be a less complex and easily verifiable safe backup function. This
has proven challenging for complex systems Cofer et al. (2020).

4.3.5 Non-determinism
Non-determinism refers to the property of certain algorithms

where the result can vary despite the same input and internal
conditions. This behavior is often due to system abstractions
(e.g., race conditions in operating systems that can cause
applications to behave non-deterministically). Verification of
these algorithms is challenging due to their unpredictable
outcomes, making reproduction and test coverage difficult. For
this reason, safety-critical systems often strive to avoid or tightly
control such behavior. Non-determinism appears in ML in the
following aspects 1) Inference: Small variations in input data,
such as imperceptible noise in images, can lead to different
neural network outputs. Therefore, monitoring and logging
system behavior is key to identifying non-deterministic behavior.
Sensitivity analysis, robustness checks, and formal verification
techniques can help evaluate these effects. 2) Hardware
Execution: GPUs used for complex ML algorithms can introduce
non-determinism due to parallel processing and hardware-specific
optimizations. 3) Development: Variations during training due to
setting random seeds, controlling data shuffling, and specifying
architectures. Even with controlled randomness, variations in
model performance must be rigorously evaluated to ensure they
don’t compromise system security. Once the sources and effects of
non-determinism are identified, formal verification, testing, and
analysis must be used to demonstrate that the system’s non-
determinism is predictable and remains within an acceptable range.

Frontiers in Aerospace Engineering frontiersin.org22

Luettig et al. 10.3389/fpace.2024.1475139

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

4.3.6 Transfer learning and COTS
Deep learning requires vast amounts of labeled data to achieve

high performance, making data an invaluable resource and often
costly due to manual labeling. Sharing data can reduce the
competitive advantage, although withholding it can limit safety
due to the necessity of extensive datasets. The lack of
standardized benchmarks for assessing verification methods in
academia presents significant challenges. Without these
benchmarks, it is difficult to objectively compare the performance
of various methods, which hinders progress and innovation in the
field as researchers struggle to identify the most effective techniques
and understand their limitations. Transfer learning, a technique
where a pre-trained model developed for a specific task serves as a
starting point for a related task, offers advantages such as reduced
data requirements and training time. However, it also presents risks,
including privacy concerns, potential negative transfer that can
degrade performance, and challenges in measuring transferability
and interpretability across domains (Zhuang et al., 2021). The
reusability of models and transfer learning will be crucial for
developing Commercial Off-The-Shelf (COTS) systems. Like
classical software, it is vital to determine the type of information
that needs to flow to the system integrator to ensure training
assumptions are respected during integration and how much
operational design domain information from the system integrator
needs to be communicated to the COTS developer for training.
Whether this process will resemble current software integration
practices or require more extensive interaction remains uncertain.

4.3.7 Continuous development
MLOps (Kreuzberger et al., 2023) aims to facilitate the creation of

machine learning products by leveraging automated workflows that
integrate development and operations. Beyond improving efficiency,
MLOps addresses safety concerns related to model performance
degradation, which can result from insufficient training data and the
dynamic, ever-changing system environment. MLOps requires
continuous monitoring, training, and evaluation to mitigate these
issues. Identifying model degradation, often through detecting model
drift, remains challenging (Bayram et al., 2022). Traditional point-in-
time certifications withmanual audits are insufficient forMLOps due to
the frequent changes in ML systems (Granlund et al., 2021). Therefore,
it is essential to establish requirements and regulations for when
retraining should occur and the extent of verification needed before
and after deployment.

5 Conclusion

The integration of AI in aerospace offers significant potential but
requires rigorous attention to safety and certification. Our literature
review highlights AI’s pivotal role in predictive maintenance, anomaly
detection, engine health monitoring, fuel consumption optimization,
collision avoidance, aircraft trajectory prediction, and autonomous
flight operations.We observed complex AI methods in high-criticality
systems and simpler AI methods in low-criticality systems.

To advance the certification of AI-enabled aviation systems, we
assessed existing aviation certification standards and examined their
applicability to ML technologies. Current standards must expand to
address AI’s unique challenges, especially its probabilistic behavior.

Standards must identify new failure causes, assess the applicability of
architectural mechanisms to ML, integrate ML-specific methods for
specification, traceability, and verification, and accommodate ML-
accelerating hardware. Furthermore, the certification process must
become more agile, supporting iterative updates to ensure continuous
safety assurance.

We applied current certification efforts for certifying ML-
aviation systems, such as EASA concept paper 2.0 and
Overarching Properties (OPs), to ADIMA, an AI-enabled
peripherical detection system used for DAL A to D systems.
Although we found alignment with several objectives, the
concept paper focuses too heavily on pilot support, emphasizing
explainability and human factors, which is not relevant or applicable
for all applications. The created OP argument revealed critical
defeaters due to missing technological methods.

Drawing from our experience applying certification efforts and
analysis of ML technology, we identified the need for further
research in critical areas: specifying intended behavior for
validation, improving verification methods (particularly testing
sufficiency), developing training methods and model architectures
that prioritize safety over performance, and validating knowledge
transfer in the face of data limitations.

Future work should focus on creating adaptive standards and
developing inherently safer, more transparent ML methods.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://github.com/ils-stuttgart/adima.

Author contributions

BL: Conceptualization, Data curation, Investigation,
Methodology, Project administration, Resources, Software,
Supervision, Validation, Visualization, Writing–original draft,
Writing–review and editing. YA: Conceptualization, Data curation,
Investigation, Methodology, Project administration, Resources,
Software, Supervision, Validation, Visualization, Writing–original
draft, Writing–review and editing. ZD: Conceptualization, Data
curation, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization,
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Aerospace Engineering frontiersin.org23

Luettig et al. 10.3389/fpace.2024.1475139

https://github.com/ils-stuttgart/adima
https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ahmed, S., Imtiaz, S. M., Khairunnesa, S. S., Cruz, B. D., and Rajan, H. (2023). “Design
by contract for deep learning APIs,” in Proceedings of the 31st ACM joint European
software engineering conference and symposium on the foundations of software
engineering (New York, NY, USA: Association for Computing Machinery), 94–106.
ESEC/FSE 2023. doi:10.1145/3611643.3616247

Akhiat, Y., Manzali, Y., Chahhou, M., and Zinedine, A. (2021). A new noisy random
forest based method for feature selection. Cybern. Inf. Technol. 21, 10–28. doi:10.2478/
cait-2021-0016

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al.
(2021). Review of deep learning: concepts, CNN architectures, challenges, applications,
future directions. J. big Data 8, 53–74. doi:10.1186/s40537-021-00444-8

Amit, R. A., and Mohan, C. K. (2021). A robust airport runway detection network
based on R-CNN using remote sensing images. IEEE Aerosp. Electron. Syst. Mag. 36,
4–20. doi:10.1109/maes.2021.3088477

Angelov, P. P., Soares, E. A., Jiang, R., Arnold, N. I., and Atkinson, P. M. (2021).
Explainable artificial intelligence: an analytical review.Wiley Interdiscip. Rev. Data Min.
Knowl. Discov. 11, e1424. doi:10.1002/widm.1424

Ayhan, S., Pesce, J., Comitz, P., Sweet, D., Bliesner, S., and Gerberick, G. (2013).
“Predictive analytics with aviation big data,” in 2013 Integrated Communications,
Navigation and Surveillance Conference (ICNS), Herndon, VA, United States, 22-
25 April 2013, 1–13. doi:10.1109/ICNSurv.2013.6548556

Baptista, M. L., Henriques, E. M., and Prendinger, H. (2021). Classification
prognostics approaches in aviation. Measurement 182, 109756. doi:10.1016/j.
measurement.2021.109756

Baumann, S., and Klingauf, U. (2020). Modeling of aircraft fuel consumption using
machine learning algorithms. CEAS Aeronautical J. 11, 277–287. doi:10.1007/s13272-
019-00422-0

Bauranov, A., and Rakas, J. (2021). Designing airspace for urban air mobility: a review
of concepts and approaches. Prog. Aerosp. Sci. 125, 100726. doi:10.1016/j.paerosci.2021.
100726

Bayram, F., Ahmed, B. S., and Kassler, A. (2022). From concept drift to model
degradation: an overview on performance-aware drift detectors. Knowledge-Based Syst.
245, 108632. doi:10.1016/j.knosys.2022.108632

Bejarano, C., Vázquez, A. L. R., Colomer, A., Cantero, J., Ferreira, A., Moens, L., et al.
(2022). Harvis: dynamic rerouting assistant using deep learning techniques for single
pilot operations (spo). Transp. Res. Procedia 66, 262–269. doi:10.1016/j.trpro.2022.
12.026

Biannic, J., Hardier, G., Roos, C., Seren, C., and Verdier, L. (2016). Surrogate models
for aircraft flight control: some off-line and embedded applications. Aerosp. Lab.–1.
doi:10.12762/2016.AL12-14

Bodria, F., Giannotti, F., Guidotti, R., Naretto, F., Pedreschi, D., and Rinzivillo, S.
(2023). Benchmarking and survey of explanation methods for black box models. Data
Min. Knowl. Discov. 37, 1719–1778. doi:10.1007/s10618-023-00933-9

Boujamza, A., and Elhaq, S. L. (2022). Attention-based LSTM for remaining useful life
estimation of aircraft engines. IFAC-PapersOnLine 55, 450–455. doi:10.1016/j.ifacol.
2022.07.353

Chen, C.-J., Huang, C.-N., and Yang, S.-M. (2023). Application of deep learning to
multivariate aviation weather forecasting by long short-term memory. J. Intelligent and
Fuzzy Syst. 44, 4987–4997. doi:10.3233/jifs-223183

Chen, M., and Hu, Y. (2024). An image-based runway detection method for fixed-
wing aircraft based on deep neural network. IET Image Process. 18, 1939–1949. doi:10.
1049/ipr2.13087

Chen, T., and Guestrin, C. (2016). “XGBoost: a scalable tree boosting system,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, USA, August 13-17, 2016, 785–794. doi:10.1145/
2939672.2939785

Chin, H.-J., Payan, A., Johnson, C., and Mavris, D. N. (2019). Phases of flight
identification for rotorcraft operations. AIAA Scitech 2019 Forum, 0139. doi:10.2514/6.
2019-0139

Choi, H.-C., Deng, C., and Hwang, I. (2021). Hybrid machine learning and
estimation-based flight trajectory prediction in terminal airspace. IEEE Access 9,
151186–151197. doi:10.1109/access.2021.3126117

Cofer, D., Amundson, I., Sattigeri, R., Passi, A., Boggs, C., Smith, E., et al. (2020).
“Run-time assurance for learning-enabled systems,” in NASA formal methods. NFM
2020. Lecture Notes in Computer Science. Editors R. Lee, S. Jha, A. Mavridou, and

D. Giannakopoulou (Cham: Springer International Publishing) 12229. doi:10.1007/
978-3-030-55754-6_21

Corrado, S. J., Puranik, T. G., Pinon-Fischer, O. J., Mavris, D., Rose, R., Williams, J.,
et al. (2021). Deep autoencoder for anomaly detection in terminal airspace operations.
AIAA Aviat. 2021 Forum, 2405. doi:10.2514/6.2021-2405

Das, S., Matthews, B. L., Srivastava, A. N., and Oza, N. C. (2010). “Multiple kernel
learning for heterogeneous anomaly detection: algorithm and aviation safety case
study,” in Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, 47–56. doi:10.1145/1835804.1835813

da Silva, F. C., Grinet, M., and Silva, A. R. (2022). A machine learning approach to
forecasting turbofan engine health using real flight data. AIAA SCITECH 2022 Forum,
0491. doi:10.2514/6.2022-0491

Dave, G., Choudhary, G., Sihag, V., You, I., and Choo, K.-K. R. (2022). Cyber security
challenges in aviation communication, navigation, and surveillance. Comput. and Secur.
112, 102516. doi:10.1016/j.cose.2021.102516

Daw, Z., Beecher, S., Holloway, M., and Graydon, M. (2021). Overarching properties
as means of compliance: an industrial case study. IEEE/AIAA 40th Digital Avionics
Systems Conference (DASC), San Antonio, TX, United States 5, 1–10. doi:10.1109/
DASC52595.2021.9594298

De Giorgi, M. G., Campilongo, S., and Ficarella, A. (2018). A diagnostics tool for aero-
engines health monitoring using machine learning technique. Energy Procedia 148,
860–867. doi:10.1016/j.egypro.2018.08.109

Delseny, H., Gabreau, C., Gauffriau, A., Beaudouin, B., Ponsolle, L., Alecu, L., et al.
(2021). White paper machine learning in certified systems. doi:10.48550/arXiv.2103.
10529

Ducoffe, M., Carrere, M., Féliers, L., Gauffriau, A., Mussot, V., Pagetti, C., et al. (2023).
Lard–landing approach runway detection–dataset for vision based landing. arXiv
preprint arXiv:2304.09938. doi:10.48550/arXiv.2304.09938

Ducoffe, M., Povéda, G., Galametz, A., Boumazouza, R., Martin, M.-C., Baris, J., et al.
(2024). “Surrogate neural networks local stability for aircraft predictive maintenance”,
in Formal Methods for Industrial Critical Systems. Cham: Springer Nature Switzerland,
245–258.

EASA and Daedalean (2020). Concepts of Design Assurance for Neural Networks
(CoDANN). Available at: https://www.easa.europa.eu/en/document-library/general-
publications/concepts-design-assurance-neural-networks-codann.

EASA and Daedalean (2024). Concepts of design assurance for neural networks
(CoDANN) II with appendix B.

Espinosa Barcenas, O. U., Quijada Pioquinto, J. G., Kurkina, E., and Lukyanov, O.
(2023). Surrogate aerodynamic wing modeling based on a multilayer perceptron.
Aerospace 10, 149. doi:10.3390/aerospace10020149

European Union Aviation Safety Agency (EASA) (2024). EASA Artificial Intelligence
(AI) Concept Paper Issue 2: Guidance for Level 1&2 machine learning applications.
General Publ. Issue 02. Available at: https://www.easa.europa.eu/en/document-library/
general-publications/easa-artificial-intelligence-concept-paper-issue-2.

Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., et al. (2017). State-
of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent
network traffic control systems. IEEE Commun. Surv. and Tutorials 19, 2432–2455.
doi:10.1109/COMST.2017.2707140

Fala, N., Georgalis, G., and Arzamani, N. (2023). Study on machine learning methods
for general aviation flight phase identification. J. Aerosp. Inf. Syst. 20, 636–647. doi:10.
2514/1.i011246

Food and Drug Administration (2021). Good machine learning practice for medical
device development: guiding principles. U. S. Food Drug Adm. Available at: https://
www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-
practice-medical-device-development-guiding-principles.

Gaikwad, P., Mukhopadhyay, A., Muraleedharan, A., Mitra, M., and Biswas, P.
(2023). Developing a computer vision based system for autonomous taxiing of aircraft.
Aviation 27, 248–258. doi:10.3846/aviation.2023.20588

Garcia, A. B., Babiceanu, R. F., and Seker, R. (2021). “Artificial intelligence and
machine learning approaches for aviation cybersecurity: an overview,” in
2021 Integrated Communications Navigation and Surveillance Conference (ICNS),
Dulles, VA, United States, 19-23 April 2021, 1–8. doi:10.1109/ICNS52807.2021.9441594

Granlund, T., Stirbu, V., and Mikkonen, T. (2021). Towards regulatory-compliant
MLOps: oravizio’s journey from a machine learning experiment to a deployed certified
medical product. SN Comput. Sci. 2, 342. doi:10.1007/s42979-021-00726-1

Frontiers in Aerospace Engineering frontiersin.org24

Luettig et al. 10.3389/fpace.2024.1475139

https://doi.org/10.1145/3611643.3616247
https://doi.org/10.2478/cait-2021-0016
https://doi.org/10.2478/cait-2021-0016
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1109/maes.2021.3088477
https://doi.org/10.1002/widm.1424
https://doi.org/10.1109/ICNSurv.2013.6548556
https://doi.org/10.1016/j.measurement.2021.109756
https://doi.org/10.1016/j.measurement.2021.109756
https://doi.org/10.1007/s13272-019-00422-0
https://doi.org/10.1007/s13272-019-00422-0
https://doi.org/10.1016/j.paerosci.2021.100726
https://doi.org/10.1016/j.paerosci.2021.100726
https://doi.org/10.1016/j.knosys.2022.108632
https://doi.org/10.1016/j.trpro.2022.12.026
https://doi.org/10.1016/j.trpro.2022.12.026
https://doi.org/10.12762/2016.AL12-14
https://doi.org/10.1007/s10618-023-00933-9
https://doi.org/10.1016/j.ifacol.2022.07.353
https://doi.org/10.1016/j.ifacol.2022.07.353
https://doi.org/10.3233/jifs-223183
https://doi.org/10.1049/ipr2.13087
https://doi.org/10.1049/ipr2.13087
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.2514/6.2019-0139
https://doi.org/10.2514/6.2019-0139
https://doi.org/10.1109/access.2021.3126117
https://doi.org/10.1007/978-3-030-55754-6_21
https://doi.org/10.1007/978-3-030-55754-6_21
https://doi.org/10.2514/6.2021-2405
https://doi.org/10.1145/1835804.1835813
https://doi.org/10.2514/6.2022-0491
https://doi.org/10.1016/j.cose.2021.102516
https://doi.org/10.1109/DASC52595.2021.9594298
https://doi.org/10.1109/DASC52595.2021.9594298
https://doi.org/10.1016/j.egypro.2018.08.109
https://doi.org/10.48550/arXiv.2103.10529
https://doi.org/10.48550/arXiv.2103.10529
https://doi.org/10.48550/arXiv.2304.09938
https://www.easa.europa.eu/en/document-library/general-publications/concepts-design-assurance-neural-networks-codann
https://www.easa.europa.eu/en/document-library/general-publications/concepts-design-assurance-neural-networks-codann
https://doi.org/10.3390/aerospace10020149
https://www.easa.europa.eu/en/document-library/general-publications/easa-artificial-intelligence-concept-paper-issue-2
https://www.easa.europa.eu/en/document-library/general-publications/easa-artificial-intelligence-concept-paper-issue-2
https://doi.org/10.1109/COMST.2017.2707140
https://doi.org/10.2514/1.i011246
https://doi.org/10.2514/1.i011246
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://doi.org/10.3846/aviation.2023.20588
https://doi.org/10.1109/ICNS52807.2021.9441594
https://doi.org/10.1007/s42979-021-00726-1
https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

Grewal, R., Tonella, P., and Stocco, A. (2024). “Predicting safety misbehaviours in
autonomous driving systems using uncertainty quantification,” in 2024 IEEE
Conference on Software Testing, Verification and Validation (ICST), Toronto, ON,
Canada, 28, 70, 81. doi:10.1109/icst60714.2024.00016

Grimm, D., Tollner, D., Kraus, D., Török, Á., Sax, E., and Szalay, Z. (2024). A
numerical verification method for multi-class feed-forward neural networks. Expert
Syst. Appl. 247, 123345. doi:10.1016/j.eswa.2024.123345

Giovanni, B., Martino, F. B., Anna, C., Calin, C., Luuk, V. D., and Peter, D. L. (2021).
Neural network based runway landing guidance for general aviation autoland. doi:10.
21949/1524481

Han, P., Liu, Y., and Cheng, Z. (2021). “Airport runway detection based on a
combination of complex convolution and ResNet for PolSAR images,” in 2021 SAR
in Big Data Era (BIGSARDATA), Nanjing, China, 1–4. doi:10.1109/
BIGSARDATA53212.2021.9574366

Heidari, A., Werthen-Brabants, L., Dhaene, T., Couckuyt, I., Onur, C., van Gils, P.,
et al. (2024). Data-driven surrogate modeling for the flammability reduction system.
AIAA SCITECH 2024 Forum, 0785. doi:10.2514/6.2024-0785

Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and Song, D. (2021). “Natural
adversarial examples,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 15262–15271. Available at: https://arxiv.org/abs/1907.07174.

Henne, M., Schwaiger, A., Roscher, K., and Weiss, G. (2020). Benchmarking
uncertainty estimation methods for deep learning with safety-related metrics.
SafeAI@AAAI, 83–90.

Heyn, H.-M., Subbiah, P., Linder, J., Knauss, E., and Eriksson, O. (2022). “Setting AI
in context: a case study on defining the context and operational design domain for
automated driving,” in Requirements engineering: foundation for software quality.
Editors V. Gervasi and A. Vogelsang (Cham: Springer International Publishing),
199–215. doi:10.1007/978-3-030-98464-9_16

Huang, C., and Cheng, X. (2022). Estimation of aircraft fuel consumption by
modeling flight data from avionics systems. J. Air Transp. Manag. 99, 102181.
doi:10.1016/j.jairtraman.2022.102181

Huo, J., Keung, K. L., Lee, C. K. M., Ng, K. K. H., and Li, K. (2020). “The prediction of
flight delay: big data-driven machine learning approach,” in 2020 IEEE International
Conference on Industrial Engineering and Engineering Management (IEEM), USA, 14-
17 Dec. 2020, 190–194. doi:10.1109/IEEM45057.2020.9309919

Intelligence, A., and Learning, M. (2021). Based software as a medical device (samd)
action plan. Food Drug Adm., 2021–2106.

SAE International (2023). Guidelines for development of civil aircraft and systems. b
edn. Warrendale, PA: SAE International. ARP 4754B.

Iqbal, Z., Lehmann, M., Luettig, B., Ayyildiz, R., Bobrzik, T., Vardanega, T., et al.
(2024). “Introducing ML to IMA technology – system perspective,” in Proceedings of the
43rd digital avionics systems conference (DASC), San diego, CA.

Jalawkhan, M. S., and Mustafa, T. K. (2021). “Anomaly detection in flight data using
the naïve bayes classifier,” in 2021 7th International Conference on Contemporary
Information Technology and Mathematics (ICCITM), Mosul, Iraq, 26–30. doi:10.1109/
ICCITM53167.2021.9677655

Janakiraman, V. M., and Nielsen, D. (2016). “Anomaly detection in aviation data using
extreme learning machines,” in 2016 international joint conference on neural networks
(IJCNN), Vancouver, BC, Canada, 1993–2000. doi:10.1109/IJCNN.2016.7727444

Jia, P., Chen, H., Zhang, L., and Han, D. (2022). Attention-LSTM based prediction
model for aircraft 4-D trajectory. Sci. Rep. 12, 15533. doi:10.1038/s41598-022-19794-1

Jiangyan, Z., Ma, J., and Wu, J. (2024). A regularized constrained two-stream
convolution augmented transformer for aircraft engine remaining useful life
prediction. Eng. Appl. Artif. Intell. 133, 108161. doi:10.1016/j.engappai.2024.108161

Jiuxiang, G., Ma, L., Shahroudy, A., Shuai, B., et al. (2018). Recent advances in
convolutional neural networks. Pattern Recognit. 77, 354. doi:10.1016/j.patcog.2017.
10.013

Kato, N., Fadlullah, Z. M., Tang, F., Mao, B., Tani, S., Okamura, A., et al. (2019).
Optimizing space-air-ground integrated networks by artificial intelligence. IEEE Wirel.
Commun. 26, 140–147. doi:10.1109/MWC.2018.1800365

Katz, G., Barrett, C., Dill, D. L., Julian, K., and Kochenderfer, M. J. (2017). “Reluplex:
an efficient smt solver for verifying deep neural networks,” in Computer Aided
Verification. CAV 2017. Lecture Notes in Computer Science, Editor R. Majumdar
and V. Kunčak (Springer, Cham), 10426. doi:10.1007/978-3-319-63387-9_5

Kefalas, M., Baratchi, M., Apostolidis, A., van den Herik, D., and Bäck, T. (2021).
“Automated machine learning for remaining useful life estimation of aircraft engines,”
in 2021 IEEE international conference on prognostics and health management (ICPHM),
Detroit (Romulus), MI, Unite States, 1–9. doi:10.1109/ICPHM51084.2021.9486549

Koch, W., Mancuso, R., West, R., and Bestavros, A. (2019). Reinforcement learning
for uav attitude control. ACM Trans. Cyber-Physical Syst. 3, 1–21. doi:10.1145/3301273

Kong, Y., Zhang, X., and Mahadevan, S. (2022). Bayesian deep learning for aircraft
hard landing safety assessment. IEEE Trans. intelligent Transp. Syst. 23, 17062–17076.
doi:10.1109/tits.2022.3162566

Korvesis, P. (2017). Machine learning for predictive maintenance in aviation. Theses,
Univ. Paris Saclay (COmUE).

Kreuzberger, D., Kühl, N., and Hirschl, S. (2023). Machine learning operations
(MLOps): overview, definition, and architecture. IEEE Access 11, 31866–31879.
Conference Name: IEEE Access. doi:10.1109/ACCESS.2023.3262138

Lazzara, M., Chevalier, M., Colombo, M., Garcia, J. G., Lapeyre, C., and Teste, O.
(2022). Surrogate modelling for an aircraft dynamic landing loads simulation using an
lstm autoencoder-based dimensionality reduction approach. Aerosp. Sci. Technol. 126,
107629. doi:10.1016/j.ast.2022.107629

Lee, H., Li, G., Rai, A., and Chattopadhyay, A. (2020). Real-time anomaly detection
framework using a support vector regression for the safety monitoring of commercial
aircraft. Adv. Eng. Inf. 44, 101071. doi:10.1016/j.aei.2020.101071

Leško, J., Andoga, R., Bréda, R., Hlinková, M., and Fözö, L. (2023). Flight phase
classification for small unmanned aerial vehicles. Aviation 27, 75–85. doi:10.3846/
aviation.2023.18909

Li, X., Ding, Q., and Sun, J.-Q. (2018). Remaining useful life estimation in prognostics
using deep convolution neural networks. Reliab. Eng. and Syst. Saf. 172, 1–11. doi:10.
1016/j.ress.2017.11.021

Lindemann, B., Müller, T., Vietz, H., Jazdi, N., and Weyrich, M. (2021). A survey on
long short-term memory networks for time series prediction. Procedia CIRP 99,
650–655. doi:10.1016/j.procir.2021.03.088

Lingrui, L., and Xin, W. (2024). Towards smart aviation with sustainable
development: artificial intelligence insights into the airline and advanced air
mobility industries. Decis. Support Syst. Sustain. Comput., 187–204doi. doi:10.1016/
B978-0-443-23597-9.00009-3

Liu, C., and Ferrari, S. (2019). Vision-guided planning and control for autonomous
taxiing via convolutional neural networks. AIAA Scitech 2019 Forum 50, 0928. doi:10.
2514/6.2019-0928

Liu, L., Tian, L., Kang, Z., and Wan, T. (2023). Spacecraft anomaly detection with
attention temporal convolution networks. Neural Comput. Appl. 35, 9753–9761. doi:10.
1007/s00521-023-08213-9

Liu, Y., Liu, Y., Hansen, M., Pozdnukhov, A., and Zhang, D. (2019). Using machine
learning to analyze air traffic management actions: ground delay program case study.
Transp. Res. Part E Logist. Transp. Rev. 131, 80–95. doi:10.1016/j.tre.2019.09.012

Loh, H. W., Ooi, C. P., Seoni, S., Barua, P. D., Molinari, F., and Acharya, U. R. (2022).
Application of explainable artificial intelligence for healthcare: a systematic review of the
last decade (2011–2022). Comput. Methods Programs Biomed. 226, 107161. doi:10.1016/
j.cmpb.2022.107161

Lu, M., Peng, W., He, M., and Teng, Y. (2021). Flight delay prediction using gradient
boosting machine learning classifiers. J. Quantum Comput. 3, 1–12. doi:10.32604/jqc.
2021.016315

Luettig, B., and Annighoefer, B. (2023). “Using autoencoders to identify aged, faulty
and unknown peripherals in the adaptive ima system,” in 2023 IEEE/AIAA 42nd Digital
Avionics Systems Conference (DASC), Barcelona, Spain, October 5, 2023, 1–9. doi:10.
1109/DASC58513.2023.10311122

Luettig, B., Dallmann, J., and Annighoefer, B. (2022). “ADIMA: automatic
configuration by peripheral detection and adaptive distributed task execution for
integrated modular avionics platforms,” in 2022 IEEE/AIAA 41st Digital Avionics
Systems Conference (DASC), USA, 18-22 Sept. 2022, 1–10. doi:10.1109/DASC55683.
2022.9925885

Luithardt, P. (2017). Formale Validierung eines Verfahrens zur konsistenten Master/
Shadow-Festlegung in einem verteilten, nicht uhrensynchronen Avioniksystem.
phdthesis: Universität Stuttgart.

Ma, L., and Tian, S. (2020). A hybrid CNN-LSTM model for aircraft 4D trajectory
prediction. IEEE access 8, 134668–134680. doi:10.1109/access.2020.3010963

Mathew, V., Toby, T., Singh, V., Rao, B. M., and Kumar, M. G. (2017). “Prediction of
remaining useful lifetime (rul) of turbofan engine using machine learning,” in
2017 IEEE international conference on circuits and systems (ICCS),
Thiruvananthapuram, India, 306–311. doi:10.1109/ICCS1.2017.8326010

MLEAP Consortium (2024). EASA research – machine learning application
approval (MLEAP) final report. European Union Aviation Safety Agency. Available
at : https://www.easa.europa.eu/en/research-projects/machine-learning-
application-approval.

Mohsan, S. A. H., Othman, N. Q. H., Li, Y., Alsharif, M. H., and Khan, M. A. (2023).
Unmanned aerial vehicles (uavs): practical aspects, applications, open challenges,
security issues, and future trends. Intell. Serv. Robot. 16, 109–137. doi:10.1007/
s11370-022-00452-4

Muñoz-Esparza, D., Sharman, R. D., and Deierling, W. (2020). Aviation
turbulence forecasting at upper levels with machine learning techniques based
on regression trees. J. Appl. Meteorology Climatol. 59, 1883–1899. doi:10.1175/
jamc-d-20-0116.1

Nanyonga, A., Wasswa, H., and Wild, G. (2023). “Phase of flight classification in
aviation safety using lstm, gru, and bilstm: a case study with asn dataset,” in
2023 International Conference on High Performance Big Data and Intelligent
Systems (HDIS) (Los Alamitos, CA, United States: IEEE), 24–28. doi:10.1109/
HDIS60872.2023.10499521

NASA/TM–2019–220292 (2019). Understanding the overarching properties.
Tech. Rep.

Frontiers in Aerospace Engineering frontiersin.org25

Luettig et al. 10.3389/fpace.2024.1475139

https://doi.org/10.1109/icst60714.2024.00016
https://doi.org/10.1016/j.eswa.2024.123345
https://doi.org/10.21949/1524481
https://doi.org/10.21949/1524481
https://doi.org/10.1109/BIGSARDATA53212.2021.9574366
https://doi.org/10.1109/BIGSARDATA53212.2021.9574366
https://doi.org/10.2514/6.2024-0785
https://arxiv.org/abs/1907.07174
https://doi.org/10.1007/978-3-030-98464-9_16
https://doi.org/10.1016/j.jairtraman.2022.102181
https://doi.org/10.1109/IEEM45057.2020.9309919
https://doi.org/10.1109/ICCITM53167.2021.9677655
https://doi.org/10.1109/ICCITM53167.2021.9677655
https://doi.org/10.1109/IJCNN.2016.7727444
https://doi.org/10.1038/s41598-022-19794-1
https://doi.org/10.1016/j.engappai.2024.108161
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1109/MWC.2018.1800365
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1109/ICPHM51084.2021.9486549
https://doi.org/10.1145/3301273
https://doi.org/10.1109/tits.2022.3162566
https://doi.org/10.1109/ACCESS.2023.3262138
https://doi.org/10.1016/j.ast.2022.107629
https://doi.org/10.1016/j.aei.2020.101071
https://doi.org/10.3846/aviation.2023.18909
https://doi.org/10.3846/aviation.2023.18909
https://doi.org/10.1016/j.ress.2017.11.021
https://doi.org/10.1016/j.ress.2017.11.021
https://doi.org/10.1016/j.procir.2021.03.088
https://doi.org/10.1016/B978-0-443-23597-9.00009-3
https://doi.org/10.1016/B978-0-443-23597-9.00009-3
https://doi.org/10.2514/6.2019-0928
https://doi.org/10.2514/6.2019-0928
https://doi.org/10.1007/s00521-023-08213-9
https://doi.org/10.1007/s00521-023-08213-9
https://doi.org/10.1016/j.tre.2019.09.012
https://doi.org/10.1016/j.cmpb.2022.107161
https://doi.org/10.1016/j.cmpb.2022.107161
https://doi.org/10.32604/jqc.2021.016315
https://doi.org/10.32604/jqc.2021.016315
https://doi.org/10.1109/DASC58513.2023.10311122
https://doi.org/10.1109/DASC58513.2023.10311122
https://doi.org/10.1109/DASC55683.2022.9925885
https://doi.org/10.1109/DASC55683.2022.9925885
https://doi.org/10.1109/access.2020.3010963
https://doi.org/10.1109/ICCS1.2017.8326010
https://www.easa.europa.eu/en/research-projects/machine-learning-application-approval
https://www.easa.europa.eu/en/research-projects/machine-learning-application-approval
https://doi.org/10.1007/s11370-022-00452-4
https://doi.org/10.1007/s11370-022-00452-4
https://doi.org/10.1175/jamc-d-20-0116.1
https://doi.org/10.1175/jamc-d-20-0116.1
https://doi.org/10.1109/HDIS60872.2023.10499521
https://doi.org/10.1109/HDIS60872.2023.10499521
https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

Nasoulis, C. P., Mantziou, S., Gkoutzamanis, V. G., and Kalfas, A. I. (2023). Test rig
design considerations to detect volatile organic compounds in aircraft cabins. J. Phys.
Conf. Ser. 2511, 012012. doi:10.1088/1742-6596/2511/1/012012

Oehling, J., and Barry, D. J. (2019). Using machine learning methods in airline flight
data monitoring to generate new operational safety knowledge from existing data. Saf.
Sci. 114, 89–104. doi:10.1016/j.ssci.2018.12.018

Ouahouah, S., Bagaa, M., Prados-Garzon, J., and Taleb, T. (2022). Deep-
reinforcement-learning-based collision avoidance in uav environment. IEEE Internet
Things J. 9, 4015–4030. doi:10.1109/JIOT.2021.3118949

Que, Z., Liu, Y., Guo, C., Niu, X., Zhu, Y., and Luk, W. (2019). “Real-time anomaly
detection for flight testing using autoencoder and LSTM,” in 2019 International
Conference on Field-Programmable Technology (ICFPT), Tianjin, China, 379–382.
doi:10.1109/ICFPT47387.2019.00072

Rebollo, J. J., and Balakrishnan, H. (2014). Characterization and prediction of air
traffic delays. Transp. Res. Part C Emerg. Technol. 44, 231–241. doi:10.1016/j.trc.2014.
04.007

Rohani, A. S., Puranik, T. G., and Kalyanam, K. M. (2023). “Machine learning
approach for aircraft performance model parameter estimation for trajectory prediction
applications,” in 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC),
Barcelona, Spain, 1–9. doi:10.1109/DASC58513.2023.10311271

RTCA, Inc (2000). Design assurance guidance for airborne electronic hardware. Tech.
Rep. DO-254, Radio Tech. Comm. Aeronautics.

RTCA, Inc (2011). RTCA DO-330: software tool qualification considerations. Tech.
Rep. DO-330.

SAE International (1996).Guidelines andmethods for conducting the safety assessment
process on civil airborne systems and equipment. Warrendale, PA, USA: Tech.
Rep. ARP4761, Society of Automotive Engineers.

Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., and Müller, K.-R. (2021).
Explaining deep neural networks and beyond: a review of methods and applications.
Proc. IEEE 109, 247–278. doi:10.1109/JPROC.2021.3060483

Sarker, I. H. (2021). Deep learning: a comprehensive overview on techniques,
taxonomy, applications and research directions. SN Comput. Sci. 2, 420. doi:10.
1007/s42979-021-00815-1

Schimpf, N., Wang, Z., Li, S., Knoblock, E. J., Li, H., and Apaza, R. D. (2023). A
generalized approach to aircraft trajectory prediction via supervised deep learning. IEEE
Access 11, 116183–116195. doi:10.1109/access.2023.3325053

Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., et al.
(2019). Unmanned aerial vehicles (UAVs): a survey on civil applications and key
research challenges. IEEE Access 7, 48572–48634. doi:10.1109/access.2019.2909530

Shi, Z., Xu, M., and Pan, Q. (2020). 4-D flight trajectory prediction with constrained lstm
network. IEEE Trans. intelligent Transp. Syst. 22, 7242–7255. doi:10.1109/tits.2020.3004807

Shi, Z., Xu, M., Pan, Q., Yan, B., and Zhang, H. (2018). “LSTM-based flight trajectory
prediction,” in 2018 International joint conference on neural networks (IJCNN), Brazil,
Jul. 08 - 13, 2018 (IEEE), 1–8. doi:10.1109/IJCNN.2018.8489734

Sommerwerk, K., Michels, B., Lindhorst, K., Haupt, M., and Horst, P. (2016).
Application of efficient surrogate modeling to aeroelastic analyses of an aircraft
wing. Aerosp. Sci. Technol. 55, 314–323. doi:10.1016/j.ast.2016.06.011

Sridhar, B., Chatterji, G. B., and Evans, A. D. (2020). Lessons learned in the
application of machine learning techniques to air traffic management. AIAA Aviat.
2020 FORUM, 2882. doi:10.2514/6.2020-2882

Stanton, I., Munir, K., Ikram, A., and El-Bakry, M. (2023). Predictive maintenance
analytics and implementation for aircraft: challenges and opportunities. Syst. Eng. 26,
216–237. doi:10.1002/sys.21651

Tang, C., and Lai, Y.-C. (2020). “Deep reinforcement learning automatic landing
control of fixed-wing aircraft using deep deterministic policy gradient,” in 2020
International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece,
1–9. doi:10.1109/ICUAS48674.2020.9213987

Topal, B., Çarkacıoğlu, L., and Töreyin, B. U. (2023). “Machine learning prediction
based UI for aircraft cockpit,” in 2023 14th International Conference on Electrical and
Electronics Engineering (ELECO), Bursa, Turkiye, 1–5. doi:10.1109/ELECO60389.2023.
10416080

US Department of Transportation (2022). Summary report: standing general order on
crash reporting for level 2 advanced driver assistance systems. Tech. Rep. Natl. Highw.
Traffic Saf. Adm.

Vollert, S., and Theissler, A. (2021). “Challenges of machine learning-based RUL
prognosis: a review on NASA’s C-MAPSS data set,” in 2021 26th IEEE international
conference on emerging technologies and factory automation (ETFA), Vasteras, Sweden,
1–8. doi:10.1109/ETFA45728.2021.9613682

Wang, H., Zhang, Z., Li, X., Deng, X., and Jiang, W. (2023). Comprehensive dynamic
structure graph neural network for aero-engine remaining useful life prediction. IEEE
Trans. Instrum. Meas. 72, 1–16. doi:10.1109/tim.2023.3322481

Woo, J., and Kim, N. (2020). Collision avoidance for an unmanned surface vehicle
using deep reinforcement learning. Ocean. Eng. 199, 107001. doi:10.1016/j.oceaneng.
2020.107001

Yang, K., Bi, M., Liu, Y., and Zhang, Y. (2019). “LSTM-based deep learning
model for civil aircraft position and attitude prediction approach,” in 2019 Chinese
control conference (CCC), Guangzhou, China, 8689–8694. doi:10.23919/ChiCC.
2019.8865874

Yasin, J. N., Mohamed, S. A., Haghbayan, M.-H., Heikkonen, J., Tenhunen, H.,
and Plosila, J. (2020). Unmanned aerial vehicles (UAVs): collision avoidance
systems and approaches. IEEE access 8, 105139–105155. doi:10.1109/access.
2020.3000064

Yondo, R., Bobrowski, K., Andrés, E., and Valero, E. (2019). A review of surrogate
modeling techniques for aerodynamic analysis and optimization: current limitations
and future challenges in industry. Adv. Evol. deterministic methods Des. Optim. control
Eng. Sci., 19–33. doi:10.1007/978-3-319-89988-6_2

Zeng, W., Quan, Z., Zhao, Z., Xie, C., and Lu, X. (2020). A deep learning approach for
aircraft trajectory prediction in terminal airspace. IEEE Access 8, 151250–151266.
doi:10.1109/access.2020.3016289

Zhang, Q., Mott, J. H., Johnson, M. E., and Springer, J. A. (2021). Development of a
reliable method for general aviation flight phase identification. IEEE Trans. Intelligent
Transp. Syst. 23, 11729–11738. doi:10.1109/tits.2021.3106774

Zhang, W., Jin, F., Zhang, G., Zhao, B., and Hou, Y. (2019). “Aero-engine remaining
useful life estimation based on 1-dimensional FCN-LSTM neural networks,” in 2019
Chinese Control Conference (CCC), Guangzhou, China, 4913–4918. doi:10.23919/
ChiCC.2019.8866118

Zhao, W., Li, L., Alam, S., and Wang, Y. (2021a). An incremental clustering method
for anomaly detection in flight data. Transp. Res. Part C Emerg. Technol. 132, 103406.
doi:10.1016/j.trc.2021.103406

Zhao, Y., Guo, J., Bai, C., and Zheng, H. (2021b). Reinforcement learning-based
collision avoidance guidance algorithm for fixed-wing uavs. Complexity 2021, 8818013.
doi:10.1155/2021/8818013

Zhong, J., Zhang, Y., Wang, J., Luo, C., and Miao, Q. (2021). Unmanned aerial vehicle
flight data anomaly detection and recovery prediction based on spatio-temporal
correlation. IEEE Trans. Reliab. 71, 457–468. doi:10.1109/tr.2021.3134369

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2021). A comprehensive
survey on transfer learning. Proc. IEEE 109, 43–76. doi:10.1109/JPROC.2020.3004555

Frontiers in Aerospace Engineering frontiersin.org26

Luettig et al. 10.3389/fpace.2024.1475139

https://doi.org/10.1088/1742-6596/2511/1/012012
https://doi.org/10.1016/j.ssci.2018.12.018
https://doi.org/10.1109/JIOT.2021.3118949
https://doi.org/10.1109/ICFPT47387.2019.00072
https://doi.org/10.1016/j.trc.2014.04.007
https://doi.org/10.1016/j.trc.2014.04.007
https://doi.org/10.1109/DASC58513.2023.10311271
https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1109/access.2023.3325053
https://doi.org/10.1109/access.2019.2909530
https://doi.org/10.1109/tits.2020.3004807
https://doi.org/10.1109/IJCNN.2018.8489734
https://doi.org/10.1016/j.ast.2016.06.011
https://doi.org/10.2514/6.2020-2882
https://doi.org/10.1002/sys.21651
https://doi.org/10.1109/ICUAS48674.2020.9213987
https://doi.org/10.1109/ELECO60389.2023.10416080
https://doi.org/10.1109/ELECO60389.2023.10416080
https://doi.org/10.1109/ETFA45728.2021.9613682
https://doi.org/10.1109/tim.2023.3322481
https://doi.org/10.1016/j.oceaneng.2020.107001
https://doi.org/10.1016/j.oceaneng.2020.107001
https://doi.org/10.23919/ChiCC.2019.8865874
https://doi.org/10.23919/ChiCC.2019.8865874
https://doi.org/10.1109/access.2020.3000064
https://doi.org/10.1109/access.2020.3000064
https://doi.org/10.1007/978-3-319-89988-6_2
https://doi.org/10.1109/access.2020.3016289
https://doi.org/10.1109/tits.2021.3106774
https://doi.org/10.23919/ChiCC.2019.8866118
https://doi.org/10.23919/ChiCC.2019.8866118
https://doi.org/10.1016/j.trc.2021.103406
https://doi.org/10.1155/2021/8818013
https://doi.org/10.1109/tr.2021.3134369
https://doi.org/10.1109/JPROC.2020.3004555
https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2024.1475139

	ML meets aerospace: challenges of certifying airborne AI
	1 Introduction
	2 Materials and methods
	2.1 AI-enabled applications in aerospace
	2.2 Aviation certification process
	2.3 Certification efforts of ML applications
	2.4 Case study ADIMA
	2.4.1.1 Operational concept and design framework
	2.4.1.2 Safety assessment
	2.4.1.3 System level requirements and architecture
	2.4.2 Data analysis
	2.4.2.1 Training and validation data
	2.4.2.2 Out-of-distribution data (OOD)
	2.4.2.3 Operational design domain data (ODD)
	2.4.3 Model training, learning and implementation
	2.4.3.1 ML constituent architecture and training
	2.4.3.2 Implementation
	2.4.4 Verification
	2.4.4.1 Training, validation, and testing data
	2.4.4.2 Trained model
	2.4.4.3 Implemented application
	2.4.4.4 ADIMA system
	2.4.4.5 ODD robustness

	3 Results
	3.1 EASA W-Process
	3.2 OPRA

	4 Discussion
	4.1 Applicability of aviation certification processes to AI systems
	4.1.1 Safety considerations
	4.1.2 System considerations
	4.1.3 Software considerations
	4.1.4 Hardware considerations
	4.1.5 Probabilistic systems considerations
	4.1.6 Certification process consideration
	4.1.7 Tool qualification considerations

	4.2 Applying W-process and overarching properties to ADIMA
	4.3 Limitations of ML/AI technology
	4.3.1 Specification
	4.3.2 Data dependence
	4.3.3 Verification
	4.3.4 Safety-driven development
	4.3.5 Non-determinism
	4.3.6 Transfer learning and COTS
	4.3.7 Continuous development

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

