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Air traffic inefficiencies lead to excess fuel burn, emissions and air traffic controller
(ATCo) workload. Various stakeholders have developed metrics to assess the
operation performance. Most metrics compare the actual trajectories to some
benchmark ones to calculate excess time or distance. This research is inspired by
cellular automata (CA) and develops a combined time-distance lateral
inefficiency and predictability metric using discrete space and time mapping
on published flight routes. The analysis is focused on Tokyo International Airport,
but uses only track data and published routes, which makes it easily applicable to
any other hub airport worldwide. The mapping and velocity analyses are used to
investigate when and where ATCos are most likely to intervene to provide save
separation. A metric which can be adjusted to evaluate both traffic flow
predictability and efficiency is proposed. This metric can be applied to better
understand current traffic and enable future improvements towards seamless air
traffic flow management.
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1 Introduction

Demand and capacity imbalance at major hub airports causes additional airborne
delays, fuel burn, emissions and air traffic controller (ATCo) workload increase. Such
demand and capacity balance is controlled through both strategic and tactical means. At a
strategic level, air traffic flow management (ATFM) uses initiatives such as ground delay
programs (GDP) and long-range ATFM when the projected demand is going to be greater
than the available airport or airspace capacity. When GDP are active, flights subject to GDP
are held on the ground prior to take-off to relief some of the projected pressure at the arrival
airport, thus helping manage high demand peaks. Uncertainties in the departure and flight
times, weather predictions and other traffic lead to changes in the four-dimensional
trajectory planned originally prior to take-off. Such real-world constraints and
uncertainties impact negatively the flight efficiency.

Research on air traffic congestions and efforts to quantify the performance of the air
traffic management (ATM) system are not new. Many organizations and researchers have
identified the need for traffic modeling in order to clarify the mechanisms of air traffic
control (ATC), measure traffic efficiency and complexity and identify areas for
improvement in real-world operations. Several key efforts in establishing ATM system-
wide key performance indicators (KPIs) are worth mentioning. The Civil Aviation
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Organization’s (ICAO) Manual on Global Performance of the Air
Navigation System (International Civil Aviation Organization,
2009) laid the foundation of data-driven processes in ATM
operation evaluation. A benchmark document prepared and
published by the Civil Air Navigation Services Organisation
(CANSO) (CANSO, 2023) aims to provide a set of recommended
KPIs for measuring ATM operational performance to enable
stakeholders to identify areas for improvements and evaluate the
effect of various ATM initiatives. Generally speaking, inefficiencies
are expressed as the differences between the actual flight and a
nominal benchmark flight. Depending on the purpose of the
evaluation, the metric is either distance or time. One of the main
metrics used by EUROCONTROL in their annual performance
review report is the additional time, for example,
(EUROCONTROL, 2022). The benchmark flight can be the great
circle distance (EUROCONTROL/FAA, 2013), a minimum cost
flight (note that the cost can be either time or fuel, or a
combination of both (Airbus, 1998)), or the flight described in
the flight plan and filed prior to departure by the airline.

Fuel-based efficiency metrics have also gained attention due to
commitment of the aviation industry to achieve net-zero flying by
2050 (McKinsey&Company, 2023). Prats et al. (Prats et al., 2018;
Prats et al., 2019) analyzed historical flight trajectory data and
proposed a set of new performance indicators aiming to capture
the environmental impact of aircraft operations. Their research
relies on simulated trajectories to determine the baseline against
which all real trajectories are compared to and does not use any
confidential data to estimate the fuel burn, thus making it
applicable to a wide range of airspaces where track data is
available. Prats’ research highlights the importance of the speed
profile, i.e., the aircraft might be flying along their optimal profile
in the spatial domain, such as speeding up or slowing down, which
cannot be captured by a distance-based metric. In such a case, a
combination with a time-based metric is necessary. On a strategic
planning level, the work of Kuljanin et al. (2021) analyzed the
differences between the reference trajectory assuming full free-
route airspace and actual aircraft trajectories to demonstrate the
potential of free-route airspace when applied in Europe. Thie
research highlighted the importance of the reference trajectory.
The current work opts for analyzing the traffic in respect to current
flight operations, but the proposed methods can be applied to any
lateral reference routes as well, as proposed by Kuljanin et al.,
for example.

Furthermore, many metrics describe a single flight phase-gate
departure, taxi-out, take-off, departure terminal, enroute, arrival,
and taxi-in. Liu, et al., 2021 analyze distance-based en route
inefficiencies and explore their causal relations with multiple
sources including convective weather, wind, miles-in-trail
restrictions, airspace flow programs and special activity airspace.
Lemetti et al. (2023) analyzed pre- and post-Covid-19 pandemic
flight historical data focusing on arrivals at Stockholm Arlanda and
Gothenburg Landvetter airports to conclude that weather has a
stronger influence than traffic intensity on the vertical efficiency,
while traffic intensity has stronger effect on the lateral efficiency. The
current research investigates latter inefficiencies considering other
traffic in the same airspace, which is in line with the results of
Lemetti’s research.

However, as acknowledged by CANSO’s KPIs (CANSO, 2023)
recommendations, there is an interdependency between the
different flight phases and delays in one of the phases can be
traced back to others, and delays can propagate. Most of the
efficiency-related KPIs compare an actual time or distance to a
scheduled one to determine excess time or distance, thus evaluating
the predictability and variability of the flight. This analysis requires
two data sets-the actual flight track data set and the flight plan data
set. In many cases, however, the flight plans are not readily available
for research purposes, so a substitute is necessary. This makes the
utilization of the above flight metric challenging. To overcome this
issue, traffic models can be applied to generate nominal benchmark
flight trajectories. Most trajectory models require the description of
the state of the aircraft made by solving the dynamics of each
individual aircraft, and are therefore Lagrangian (Bayen et al., 2006).
The aircraft dynamics model requires weather prediction data.
Traffic flow simulations involve modeling of entire flows of
aircraft, not just a single aircraft, so an aggregate model of traffic
flow that does not model each individual aircraft trajectory is more
efficient computationally and allows for long-term planning.
Aggregate traffic flow models (Linear Dynamic System Models,
Eulerian Models, and Partial Differential Equation Models, to
name a few) are efficient for congested airspaces and large-scale
flow modelling, as their computational time does not depend on the
number of aircraft in the system, as noted by Sridhar, et al., 2006.
These models, however, cannot capture well the sector-like and ATC
specific behavior which the system experiences.

Research by Tom G. Reynolds, 2014 demonstrated how using
metrics based on both track extensions and fuel inefficiencies can be
used to indicate where the largest scope for improvement is.
Reynolds concludes that lateral ground track extension-based
metrics are easy to implement, but cannot accurately estimate
operational inefficiencies such as additional fuel burn and CO2

emissions. Fuel-based metrics overcome this issue, but are
significantly more complex to calculate. This research focuses on
lateral inefficiencies and proposes a combined time-distance lateral
inefficiency analysis using discrete space and time mapping on
published flight routes. Note that according to Prats’ research
(Prats, Dalmau and Barrado, Identifying the Sources of Flight
Inefficiency from Historical Aircraft Trajectories 2019), in the
European airspace fuel inefficiencies in the vertical and
horizontal dimensions have similar effect on the overall flight
inefficiency, so considering only the lateral inefficiencies in this
research addresses only partly the trajectory inefficiency issue.
Similar approach, however, can be applied to the vertical
dimension as well, so this research demonstrates the validity of
the research methodology. Most excess distance metrics consider
only the total distance flown without taking into account the specific
mechanism in which such extensions were conducted. The proposed
mapping-based metrics can reflect the way the distance and time
adjustments have been made to keep aircraft safely separated. Flow
management through time-based metering, or slowing down the
aircraft to absorb delay instead of putting them in a holding pattern
or vectoring cannot be evaluated with the traditional excess distance
metric. The proposed mapping describes both temporal and spatial
trajectory characteristics and can therefore be applied to such ATM
initiatives as well.
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The rest of the manuscript is organized as follows. Section 2
presents results from the preliminary analysis and explains the
motivation for applying the cellular automata model to the
current work. The mapping which governs all of the obtained
results is discussed in Section 3. Velocity analysis, correlations
with other traffic and metric proposal are presented in Section 4.
These are followed by discussions on potential applications in
Section 5. The last Section 6 provides concluding remarks.

2 Preliminary analysis

2.1 Initial analysis on route deviations

As a first step in analyzing traffic inefficiencies, the authors
focused on Tokyo International Airport (Haneda) Runway 34L
arrivals and identified where most of the vectoring was initiated.
Using track data for 9561 flights from July 2019 to March 2020, the
initial deviation point was calculated by comparing the actual

trajectory flown to the published route for each flight. Only
deviations lasting longer than 30 s and 1 NM from the route
were considered. Once the initial deviation point for all flights
was calculated, these points were plotted on a cell of 0.1 deg in
the north-south and 0.125 deg in the east-west directions. The
results are shown in Figure 1. The red lines indicate the routes
for the west arrivals considered here. A large number of deviations
were detected near the beginning of each route, circled in the
magenta. These deviations, however, most likely started prior to
this point in airspace out of the scope of the enroute basic routes.
Apart from these areas, most deviations initiated in the area circled
in black, which is near the entry point of a sector preceding the
Tokyo Approach Control Area (Tokyo ACA). The initial analysis
revealed the dependency on deviations on airspace structure, but
could not explain why such deviations occurred, so the authors

FIGURE 1
Initial deviation points for west arrivals.

FIGURE 2
Lateral tracks of Hiroshima-Haneda flights on a week of
July 2019.

FIGURE 3
Trajectory mapping concept.

FIGURE 4
PMS area, Tokyo Approach Control Area (ACA) and
incoming flows.
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concluded that another approach was necessary to evaluate the
traffic inefficiencies.

2.2 The Nagel–Schreckenberg cellular
automata and its Relevance to the
current research

This research is inspired by cellular automata (CA), in particular
the Nagel–Schreckenberg (NS) model l (Nagel and Schreckenberg,
1992). Using CA, airspace can be coarse-grained into cells, with each
cell having two discrete states-either empty or occupied by an
aircraft. In CA, time advances with discrete steps. At each time
step, the progress of each aircraft, i.e., how many cells it will go

forward, is updated based on the neighboring cells’ availability and
position updating rules. Aircraft movement properties like constant
speed movement, acceleration and crash avoidance can all be
modeled with the appropriate speed decision algorithm. The
most well-known application of CA to traffic modeling is in
ground traffic simulations. Merging lanes aside, in the spatial
domain these simulations are often one-dimensional- the vehicle
can either stop or proceed to the next cell towards its destination.
There are multiple applications of cellular automata to ground
taxiing modeling (Mori, 2012; Mazur and Schreckenberg, 2018).
In the case of airborne air traffic however, and terminal area air
traffic in particular, such modeling is not straightforward, as a lot of
vectoring, or path stretching in the lateral plane exists. In other
words, aircraft do not follow their planned route, but are often
deviated in the lateral direction by ATC so that the necessary
separation requirements are met. This can be seen from sample
tracks for Hiroshima-Tokyo International (Haneda) flights from a
week of July 2019, as shown in Figure 2. The published route is
shown in red, and the actual lateral trajectories are shown in blue. To
overcome this major obstacle, this study proposes mapping of each
actual track data set (actual flight trajectory, available from CARATS
Open Data, published by Japan Civil Aviation Bureau) on the
nominal route determined by the departure-arrival airport pair.
The nominal route data is obtained from Japan Aeronautical
Information Service Center database (Ministry of Land, 2019).
Past research proposed mapping on the most common route
found in a specific data set (Andreeva-Mori, 2021), but
discussions with pilots and air traffic controllers suggested the
use of nominal routes instead.

Once the routes which are analogous to roads for the ground
traffic are determined, these routes need to be discretized in cells
so that the aircraft proceeds a certain number of cells at each
step. The size of the cells is optimized so that non-vectored

FIGURE 5
Distance between the Top of Descent and Tokyo ACA entry
points for Runway 34L arrivals.

FIGURE 6
Mapping methods and areas. (A) Mapping methods considered. (B) Enroute and transitional mapping areas. (C) Sample trajectory mapping.
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flights, i.e., flights with trajectories which are close to the
nominal routes and experienced neither path stretching nor
short-cuts, proceed 1 cell at a time. This size optimization is
important for the CA, as it helps derive simple rules, thus
allowing to model complicated interactions later and also aids
explainability.

The CA-inspired analysis of air traffic is performed following the
steps below:

1 Identify and select city-pair routes in analogy to roads in the
CA model.

2 Use real past radar data to identify the right size of the cell (cf.
velocity in the CA model)—the main assumption being that

nominal flights, i.e., flights which experience little interference
from other traffic should move 1 cell every time unit.

3 Model the movements of non-nominal flights based on the
nominal route and cell size assumptions established in steps
1 and 2. The trajectory of each flight is mapped on its nominal
route. Consider a sample flight (blue) and basic route (grey cells)
as the ones shown in Figure 3.Assume trajectory data is available
every 10 s. Each of the data points in the original trajectory is
mapped to the nominal route, either using the shortest distance
or any other projection algorithm. Assume for each trajectory
point i, the distance between this point and each cell of the basic
route is calculated. Trajectory point i is then mapped to the
closest cell determined by the minimum distance. For example, in

FIGURE 7
Cell sizes of non-vectored SPENS and SELNO flights.

FIGURE 8
Velocity histograms.
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the trajectory sample shown in Figure 3, point i = 3 is closest to
cell #2, so it is mapped there. Iterating this process over all
trajectory points creates mapping [1 2 2 3 3 4 5 6 7 8 8 9 10 10 11
12]. The example presented here uses closest distance to map the
trajectory to the basic route, but other mapping algorithms are
also possible, as discussed later in this research.

4 Analyze the mapped velocities of each flight and the entire traffic
flow, and propose a metric to characterize the traffic on each day.

3 Mapping

3.1 Flight radar data

Analysis in this research is based on CARATS Open Data (July
2019- March 2020), route surveillance radar flight track data
released by Japan Civil Aviation Bureau (Oka, 2019). Data is
available for a week of flights every month, i.e., altogether
12 weeks of data per year, for about 4000 flights per day on
average. The radar data for each flight consists of pseudo flight
number, aircraft type, as well as latitude, longitude and altitude data
recorded every 10 s, on average.

3.2 Selection of nominal routes

In the case of ground traffic, vehicles follow roads, so their
movement is limited by the road network. In the case of air traffic,
however, even though air routes still exist, many flights experience
shortcuts or path stretching so that safe spacing with other traffic is

maintained. Early research considered defining the routes based on the
track data only, by identifying the routes which were most commonly
used (Andreeva-Mori, 2021). The major disadvantage of this approach
is the lack of consistency and explainability. Alternatively, using flight
plans would be ideal, but since these are not available, this research opts
for published routes. Each flight plan can be divided into three main
parts-departure, enroute and arrival. Each flight to be operated under
instrument flight rules (IFR) files a flight plan containing information
on all three phases. The enroute plan is based on routes published in the
relevant enroute charts for the airspace which is used, and consists of a
list of navigational fixes (waypoints and intersections) connected by
published routes. The route depends on the city pair, but similar to
ground traffic, there might be more than a single option and the
particular enroute choice depends on the airline, weather and traffic.
This research uses information published in AIS Japan as of June 2019
(Ministry of Land, Infrastructure, Transport and Tourism n.d.). This
research is focused on Tokyo International (Haneda) Airport west
arrivals, which under north wind conditions land at runway 34L. The
portion of the flight from take-off until the first enroute point is
described by a set of flight legs referred to as a standard instrument
departure (SID) and a transition. In most cases, each airport has
multiple SIDs and the one to be used by each flight depends on the
runway configuration, weather conditions, noise restrictions and
interference with other traffic (Heffar et al., 2021). Similarly, a
standard terminal arrival route (STAR) connects the last waypoint
of the enroute to the first waypoint of the final approach to the arrival
airport. Flights arriving at Haneda Airport Runway 34L enter Tokyo
Approach Control Area (Tokyo ACA) at 5 waypoints- SPENS, SELNO,
TOPIT, DOLBA and LALID. TOPIT is used by flights coming from
Hachijojima, a small island on the south of Tokyo, whereas DOLBA

FIGURE 9
Velocity profiles and lateral tracks for non-vectored (orange) and vectored (green) flights. Upper panel: the horizontal axis shows time, vertical axis
shows cell movements per unit time, i.e., velocity. Lower panels: lateral tracks of the corresponding flights.
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and LALID aremainly used by international flights coming fromNorth
America. These three waypoints combined are used by a limited
number of flights every day, so this research focuses only on SPENS
and SELNO arrivals. Furthermore, the current analysis is limited to the
area 150 NM from Haneda Airport, as shown in Figure 4. Haneda
Airport introduced Point Merge System (PMS) in July 2019, making
Haneda the 18th airport worldwide to adopt this arrivals sequencing
method (EUROCONTROL, 2022; Supporting European Aviation,
2023). This research models traffic using PMS arrivals via OSHIMA
(XAC) 1A/1K and AKSEL 1A/1K for SPENS and SELNO respectively.

3.3 Cell definition and sizing

The size of the cells is important to accurately analyze traffic flow
and merges. In the traditional cellular automata, the vehicle
proceeds 1 cell at a time when no other traffic interferences are
present. If the cells are too big, the aircraft will stay in the same cell
for multiple time units and jump to the next cell at once. On the
other hand, if the cells are too small, the aircraft will move too many
cells ahead at a time, which could unnecessarily complicate the
model. The optimal cell size depends on the ground speed of the
aircraft. Each flight reaches its maximum speed in the enroute phase,
which is usually executed at a more or less constant speed. During
the descent in the vicinity of Haneda Airport, the speed decreases.

With proper rule definitions, various speeds can be modeled within
CA even for vehicles not interfering with other traffic, but this
complicates the model. This research defines the cell size so that
non-vectored (nominal) flights proceed 1 cell per unit time (velocity
is 1) regardless of their flight phase. The current analysis is based on
the ground speed of the aircraft, but in reality wind conditions and
different speed airspeed profiles can be reasons for non-vectored
flights’ velocity to appear faster or slower than 1. For example,
increasing the speed enroute to minimize the arrival delay to
compensate for any accumulated delays from previous flights
with the same aircraft on a single day is an illustration of this
phenomenon. In this example, the flight will have a velocity larger
than 1 even though it may be following the basic route. Another
example is a flight on a day with strong tail wind. Similarly, in such a
case the velocity will exceed 1 as well. The current investigation is an
initial research on the potential of CA-based mapping to evaluate
flight efficiency and does not model the above influences explicitly,
as they are part of a follow-up publication. The data used in this
paper, however, covers a wide range of meteorological conditions
(July 2019 to March 2020), which helps us define an average cell size
appropriate for the current investigation. Weather, in particular
wind, will be modeled by adjusting the cell size for each day based on
the meteorological data available. Wind data will be used to obtain
null-wind simulated trajectory times, i.e., an estimation of the flight
time had there been no wind, which will be used to calculate the

FIGURE 10
A sample time-space diagram for the traffic on 14 Sep 2019, 16:40-17:00.
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optimal cell size. A similar approach was adopted in the author’s
past work to estimate basic flight times (Andreeva-Mori and
Onji, 2022).

To account for decelerations at arrival, 2 cell sizes are defined-
enroute cell size, which is applied to the phase from 150 NM our of
Haneda Airport to Tokyo ACA area entry waypoints (either SPENS
or SELNO), and the transition phase, applied from SPENS/SELNO
to the first waypoint in the arc-shaped route of the PMS. Analysis
results conducted for the data available from July 2019 to March
2020 focusing on the lateral distance between the top of descent
(ToD, i.e., the end of the enroute phase) and Tokyo ACA entry fix
are shown in the histogram in Figure 5. This distance is assumed
positive when ToD is prior to Tokyo ACA entry fix and negative
otherwise. As seen from the histogram, 97.4% of the flights have
started descent prior to entering Tokyo ACA. This figure does not
vary much among the two major fixes either-it stands at 97.5% for
SPENS and 98.3%. The above results show that for SPENS and
SELNO fixes more than 97% of RWY34L arrivals cross these entry
fixes after the completion of the enroute phase. Note, however, that
there is a significant variation in the position of the ToD so this is
expected to cause variations in the velocities when the traffic is
modeled by constant-size cells.

The flight radar data is available every 10 s on average. The cell
sizes for both the enroute and transition areas are determined so that
non-vectored flights proceed 1 cell at every time step, i.e., every 10 s.
First, the original flight radar data is pre-processed to create data
with one data point every 10 s. Second, the deviation from the
nominal route is calculated. Next, based on the calculated deviation
non-vectored flights are selected. Finally, these are used to define the
cell size in each phase, enroute and transitional. The data pre-
processing makes two corrections to the original data-first, the initial
trajectory point is interpolated so that it coincides exactly with the
150 NM border of the target airspace, and second, the time interval
between every two data points is adjusted to 10 s exactly. Deviations
from the nominal route are calculated after the original lateral
trajectories are mapped on the corresponding nominal route.
Two mapping methods are considered- 1) mapping
perpendicular to the flight leg of the nominal route, and 2)
mapping parallel to the meridian. In the case of mapping
method 1), some portions of the trajectory near the end of the
flight legs are often mapped incorrectly (see Panel (a) of Figure 6), so
in this paper mapping method 2) is used. The data points of the
trajectory subject to mapping are defined as follows-the enroute
mapping starts from the point nearest to the 150 NM border an ends

FIGURE 11
Sample average velocity profiles.
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with the point which longitude does not exceed the longitude of the
corresponding Tokyo ACA entry fix (either SPENS or SELNO); the
transitional mapping starts with the point following the last point of
the enroute mapping and ends with the last point which longitude
does not exceed the longitude of the last nominal route point. This is
illustrated in Panel (b) of Figure 6. Once all trajectories are mapped,
the distance between each point between the original trajectory

point and its projection on the nominal route is calculated. When
the deviation is less than 1 NM for 95% of all data points in the phase
(either enroute or transitional), the flight is considered non-
vectored, or unimpeded. The cell size for both phases for both
SPENS and SELNO streams is determined so that non-vectored
flights’ velocity is 1 cell per 10 s.

From all flights on SPENS routes, 726 meet the non-vectored
requirements in the enroute phase and 3008 in the transitional
phase. The lateral flight distances over each step for these flights are
summarized in the histograms in the left panel of Figure 7. For
SELNO flights, there are 58 non-vectored enroute flights and
238 non-vectored transitional flights. The flight distances over
each 10 s are shown in the right panel of Figure 7. The average
values, highlighted in yellow, are selected as cell sizes for each route.
Note that in this paper velocity is used to describe the aircraft
movement per unit time, in accordance with the language used in
the Nagel–Schreckenberg (NS) Cellular Automata model.

4 Velocity analysis

4.1 Single flight analysis

The average velocities on each day of traffic for which more than
400 flights used runway 34 L for arrivals are calculated. The
threshold used to differentiate impeded, or vectored flights, is
defined as the 25th percentile of the mean velocities of all flights

FIGURE 12
Dependency of the velocity on the number of empty cells ahead.

FIGURE 13
Velocity distributions over 52 sample days.
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on that day, is determined for each day and shown in the histograms
in Figure 8. Consider 12 Sep 2019 as a sample day of traffic. For this
day, the velocity threshold at SPENS is 0.89. There were 279 flights
arriving via SPENS on this day. The velocity profiles and original
flight tracks of flight 51 to 78 are shown in Figure 9. The horizontal
axis shows cell numbers and the vertical axis indicates velocity,
i.e., cell movements per time step of 10 s. Slow flights with average
velocity of less than the threshold of 0.89 cells/time step are shown in
red. For the remaining flights, for the majority of the time they move
at a velocity 1 cell/time step. Note that cell No.1 here is the first cell
after the flight has entered the 150 NM area. The grey vertical line
indicates the mapping at SPENS, which is the end of the enroute and
the start of the transitional phase. The original trajectories are shown
to verify the accuracy of the proposed analysis. As seen from the
figure, the trajectories of most flights with near-1 velocity are almost
non-vectored, whereas slow flights are characterized by significant
path-stretching. The mean velocity of the flight can be used as an
efficiency and traffic impediment metric.

4.2 Multiple flight velocity analysis

4.2.1 Full traffic space-time diagrams
The traffic on each day can be visualized by time-space

diagrams such as the one in Figure 10. The vertical axis shows
the time, and the horizontal one shows the cell number, with Cell
0 being the final cell of the transitional phase. Note that due to the
different length of nominal routes and the definition of the first
enroute data point to be mapped (see Section 3.3), the initial point
varies for each flight. Unimpeded flights proceed 1 cell per unit
time. Short-cuts/accelerations are expressed as “skipped cells,” and
vectoring/decelerations are shown as vertical line segments. SPENS
arrivals are shown in blue, and SELNO arrivals are shown in light
green. The distance in cells to the preceding flight can be calculated
from the horizonal axis at any given time. A sample diagram for the
traffic on 14 September 2019, 16:40-17:00 is shown in Figure 10.

“A” denotes SPENS flights, and “B” denotes SELNO flights. For
example, at 16:40, flights 3A and 4A are 12 cells apart and this
separation is more or less maintained until they reach Cell 0. On the
other hand, at 16:40 flights 7A and 8A, both arriving via SPENS, are
only 5 cells apart, but at 16:52 they are already 11 cells apart. In this
interval, flight 8A has zero velocity at 10 cells and velocity of 2 once,
whereas flight 7A has zero velocity at 6 cells and velocity of 2 at
2 cells, which results in increased separation. Furthermore, for these
two flights in particular, the adjustments seem to have been made
prior to cell 35. Note that for most flights the enroute phase ends
between cells 40 and 50, so these results indicate that ATCo have
spaced these two flights before they crossed SPENS, i.e., prior to
their entering Tokyo ACA. This is clearly not the case for flights
from different flows, as seen for the case of flights 9A, 2B, and 3B.
Both SELNO flights, 2B and 3B are only 3 cells apart at 16:40 and
maintain more or less the same small separation until 16:48, when
one of the flights is gradually slowed down to provide increased
separation which reaches 12 cells at 16:56. At this time, however,
the SPENS flight 9A and SELNO flight 3B are only 1 cell apart,
which indicates that ATCo have not considered merging SELNO
and SPENS traffic yet.

4.2.2 Deceleration analysis
Similar to the single lane Nagel–Schreckenberg cellular

automata, the example above demonstrates that deceleration
depends on the number of cells to the preceding aircraft. The
main difference between the current mapping and the NS model
is that the physical location of a cell i on each of the SPENS and
SELNO routes might differ, as these include several branches which
were not modelled individually. Furthermore, the current mapping
represents dimensionally reduced vectored trajectories, which were
originally laterally deconflicted. Therefore, strictly speaking, aircraft
can be in the same or a nearby cell at the same time on a single
stream and not violate the safety separation standards.

The velocity profiles of all flights can be used to generate an
overall ground speed distribution over all cells. The average

FIGURE 14
Several lateral trajectory profiles from pseudo day No. 18.
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velocities for four sample days are shown in Figure 11. Note that cell
zero is the one at the end of the mapping range and closest to the
arrival airport. The red line indicates the median location of the
transition fix for each flight, and the blue rectangle shows the 25th
and 75th percentile of the locations. For example, on 11 November
2019 most flights transitioned at cell No. 69, and half of all flights
transitioned between cell No. 58 and 76. Note that the cell size
changes after the transition, as indicated in Figure 7. The grey-
shaded area in the left of the figures indicate areas with a small
amount of data, so the sudden dive should be disregarded. The
average velocities depend greatly on the cell number. The velocity is
more or less stable between cells 120 and 60, with some days
(November 11 and December 09) experiencing more fluctuations
than others. It drops after that, but this may be partly due to the
change in the cell size as well. The drop, however, does not happen
right after the transition point, so it could be said that at least some of
the decelerations after cell 60 and prior to cell 40 are due to ATC
interventions. These results agree with the results from the initial
analysis presented in Section 2 as well. The velocity increases at cell
40, which is the area near OSHIMA on the SPENS stream and
gradually decreases after this. This velocity analysis indicates that
ATCs merge traffic and make separation adjustments at two main
areas-prior to entering Tokyo ACA and shortly after this entry. This
operation style is reflecting the current airspace structure and
indicates the potential for improvement towards seamless ATM.

Analysis of the velocity versus the distance between the aircraft
and the preceding one is conducted using the proposed mapping.
Note that as in the time-space graph presented in the previous
section, a velocity of 1 cell is the nominal one, velocity of zero
indicates deceleration, and velocities of 2 and higher indicate
acceleration. Sample results for September 12 and November
12 are shown in Figure 12. Note that the number of flights on
both days are almost the same- 401 (279 via SPENS and 122 via
SELNO) flights on September 12, and 406 (275 via SPENS and
131 via SELNO) flights on November 12. Boxplots are drawn based
on the entire dataset and each SPENS and SELNO subsets. The red
line in the middle of each box is the median, and the bottom and top
of each box (shown in blue) are the 25th and 75th percentiles,
respectively. Outliers are shown in red. The confidence interval is
shown by the notch. Note that in all cases, the velocity increases as
the number of empty cells ahead increases. Since the data includes
non-congested times like early mornings, for example, some of the
outliers have very high values reaching 100 cells, which exceeds
16 min of separation. Analysis of the single flows through SPENS
and SELNO shows that the distance to the preceding aircraft is
generally larger in the SELNO stream, but this is partly due to the
smaller number of aircraft in this stream. The medians for the
velocity = 1 group are 11 cells for SPENS and 19 for SELNO on
September 12, and 13 cells for SPENS and 21 for SELNO on Nov12.
The medians for the velocity = 0 group, which corresponds to
deceleration, or vectoring, are 9 cells for SPENS and 13 for SELNO
on September 12, and 8 cells for SPENS and 14 for SELNO on
Nov12. Similarly, the medians for the acceleration case expressed by
velocity = 2, are 13.5 cells for SPENS and 20 for SELNO on
September 12, and 17 cells for SPENS and 25 for SELNO on
Nov12. Note that on November 12 some flights had negative
velocity, which means they moved back a cell (velocity = −1) or

two (velocity = −2). These are irregular traffic flow cases, which
describe holding patterns, for example.

The histograms on the right of the boxplots illustrate the
distributions which can be used to describe each of the velocities.
The histogram of velocity 0 is shifted to the left of the nominal
histogram (velocity 1) and the histogram of velocity 2 is shifted to
the right of the nominal one, which indicates that deceleration
occurs when the distance to the preceding flight is smaller than the
nominal one, and acceleration occurs when more empty cells are
available ahead.

Each flight can be described by the number of cells with
velocities equal to −2, −1, 0, 1, and 2. A flight with a large number
of cells with velocity 1 is one which performs close to the original
route and is very predictable, a valuable characteristic for time-
based air traffic management. Furthermore, for each day the
percentage of cells with corresponding velocities equal to −2, −1,
0, 1, and 2 can be determined. The results of the traffic for
52 sample days are shown in Figure 13. The nominal velocity of
1 is predominant on all days, but the percentage varies between
78% and 88%. Velocity of 1 provides a high predictability of the
trajectory and in the context of overall traffic flow control and
time-based flow management is preferable. On the contrary,
velocity of 0 occurs between 6% and 16% for the sample data
set. Note that the day with minimum value for cells with velocity
0 experiences the maximum value for velocity 2, i.e., many flights
were able to fly shorter routes than the nominal ones. Most days
are characterised by very small values for cells with negative
velocities. There are three notable exceptions, i.e., pseudo day No.
7, 18, and 39, when more than 1.4% of the cells had negative
velocities. The disturbances in the traffic on those 3 days seem
more significant, and this is supported by the lateral trajectories
of the flights as well. A sample of 12 flights which were put into
holding patterns on pseudo day 18 are shown in Figure 14.

5 Discussion on potential applications

The proposed mapping, and the velocity-cell analysis in
particular, can be used to reveal where ATC intervenes to
merge and separate traffic, and evaluate how close the
operations are to the seamless ATM, promoted by ICAO and
aimed to ensure safe and efficient air transport (International
Civil Aviation Organization ICAO, 2019). The correlation
between velocity and empty cells ahead can be further
quantified by distribution models and applied to real traffic
modeling based on cellular automata. A major application of
the proposed mapping is traffic inefficiency and predictability
evaluation. Orderly and predictable traffic is described by
velocity 1 cell/unit time over all cells and times. Traditional
path stretching or vectoring is described by velocity 0 cell/unit
time, holding is expressed by fluctuating negative and positive
velocity patterns, and direct routes and accelerations are mapped
by velocity of 2 or higher. Assigning relative weights to each of
these characteristics and summing over all flights results in a
traffic metric, as shown in Eq. 1 below.

TrafficMetric � ∑imax

i�imin
wivi (1)
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In the metric above, wi are the weights assigned to each velocity
and vi is the relative percentage of cells with speed i over the target
spatial and temporal mapping interval. Assume large values of the
metric are better than small ones, and one wishes to prioritize
predictability. In such a case, the highest weight should be assigned
to w1. If time is prioritized, then shortcuts will be evaluated higher,
so wi≥ 2 will be of the largest values. Holding patterns and vectoring
can be evaluated separately by assigning different values for wi≤−1
and w0. The most significant advantage of the proposed metric is
that it can capture both the spatial and temporal traffic
characteristics, and is simple to calculate based on track data and
published routes only.

6 Concluding remarks

This research introduced how a discrete and spatial mapping
inspired from cellular automata can be used to evaluate air traffic
predictability and inefficiencies. Unveiling where, when, and what
type of inefficiencies occur can benefit post-operational analysis and
provide insight into potential improvements. A traffic metric
adjustable to the stakeholder’s needs, for example, focusing on
either traffic predictability, key for trajectory-based operations, or
flight efficiency, essential for sustainable traffic was also proposed.
The results from the research can be further expanded to investigate
the correlation between adverse-weather and traffic inefficiencies,
but the current work provides the necessary platform for such
analysis and is therefore considered beneficial to inform the
relevant stakeholders.
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