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In this paper, a conflict detection system for small Unmanned Aerial Vehicles
(sUAS), composed of an interacting multiple model state predictor and a
Haversine-distance based conflict detector, is proposed. The conflict detection
system was developed and tested via a random recursive simulation in the ROS-
Gazebo physics engine environment. The simulation consisted of ten small
unmanned aerial vehicles flying along randomly assigned way-point navigation
missions within a confined airspace. Way-points are generated from a uniform
distribution and then sent to each vehicle. The interacting multiple model state
predictor runs on a ground-based system and only has access to current vehicle
positional information. It does not have access to the future way-points of
individual vehicles. The state predictor is based on Kalman filters that utilize
constant velocity, constant acceleration, and constant turn models. It
generates near-future position estimates for all vehicles operating within an
airspace. These models are probabilistically fused together and projected into
the near-future to generate state predictions. These state predictions are then
passed to the Haversine distance-based conflict detection algorithm to compare
state estimates and identify probable conflicts. The conflicts are detected and
flagged based on tunable threshold values which compare distances between
predictions for the vehicles operating within the airspace. This paper discusses the
development of the random recursive simulation for the ROS-Gazebo framework
and the derivation of the interacting multiple model along-with the Haversine-
based future conflict detector. The results are presented via simulation to highlight
mid-air conflict detection application for sUAS operations in theNational Airspace.
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1 Introduction

The number of aircraft taking to the skies increases each year. All aircraft using the
National Airspace (NAS) must share the airspace to ensure safety. Users of the national
airspace include: large cargo and passenger planes, helicopters, small private aircraft,
Unmanned Aerial Vehicles (UAV’s) and small Unmanned Aerial Systems (sUAS). These
aircraft are operated by a range of groups including large airlines and companies,
government agencies, military, and even recreational pilots. The Federal Aviation
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Administration (FAA) and air traffic controllers (ATC) monitor the
airspace and provide guidance to pilots of manned aircraft and large
UAVs. ATC is responsible for directing aircraft to avoid conflicts
and collisions when in controlled airspace. According to Kraus
(2008), the basis for the air traffic control system has been in
place since 1935 and has been continually evolving to meet new
challenges associated with the introduction of new technology and
increases in airspace usage. Air traffic is expected to increase, causing
a 1.5 percent growth in activity each year in FAA and contractors air
control towers between 2022 and 2042 FAA (2022). Even with
continued evolution of air traffic management, current human in the
loop approaches will not work for sUAS due to the number of sUAS
aircraft operating within the national airspace, difficulties detecting
vehicles with current infrastructure and the lack of historic flight
data. ATC alone will not be able to manage sUAS traffic as they are
integrated into the NAS.

The FAA will need to develop a UAV Traffic Management
(UTM) system for sUAS which will effectively do the same job ATC
does for manned traffic in real-time. The system will need to have
Detect-And-Avoid (DAA) that enables a sUAS to respond to
deviations from filed flight plans and identify and resolve
conflicts as they occur and not only from a pre-planning point of
view. This real-time conflict detection system will need to be
automated to eliminate the reliance on ATC operators as more
sUAS operate for commercial purposes within the NAS. Historic
examples of commercial sUAS operations have been limited to
visual line of sight operations with few vehicles going beyond
visual line of sight (BVLOS). This primarily was due to issues
with vehicle range, battery life and restrictions imposed by the
FAA. As sUAS technology has matured, we are seeing more
commercial operators trying to use sUAS with increasing
autonomy and more frequently in BVLOS applications. Primary
applications for long range BVLOS applications include package
delivery, construction site surveying (Venkatesh et al., 2018),
agricultural applications (Nagchaudhuri et al., 2018) and even
controlling disease transmission through management of
mosquito populations (Wyngaard et al., 2018).

Current sUAS integration efforts by the FAA have been limited
to imposing limitations and restrictions on sUAS operations. These
restrictions have primarily been to ensure safety between manned
and unmanned traffic and to keep the civilian population safe. These
limitations include altitude restrictions, restricted areas around
airports and not allowing sUAS to fly above people. The FAA
has not implemented anything to assist in real-time conflict
mitigation between sUAS as they operate in their allocated
airspace or any type of minimum separation distance between
vehicles. The FAA is currently working with National
Aeronautics and Space Administration (NASA) to develop a
UTM system. As seen in NAS (2021), the UTM system in
development has gone through several technical demonstration
levels to show its ability to handle sUAS operating in urban
environments. The focus of the UTM system being developed by
NASA and the FAA is dependent on pre-planning flights, dividing
the airspace into pre-allocated operating areas, and sharing data
between operators and FAA systems.

Other examples of conflict and collision avoidance techniques
which have been developed for sUAS integration into the NAS
include pre-planning algorithms. Pre-planning algorithms are

typically based on optimization algorithms such as genetic
algorithms, optimal control (Filippis and Guglieri, 2012), A* and
its variations (Zollars et al., 2018), mixed integer linear
programming (Galea et al., 2018), or dynamic programming.
These algorithms cannot guarantee collision free paths because of
inaccuracies within the models such as wind, dynamic conditions,
and unexpected events. Pre-planning algorithms requires additional
space being allocated to aircraft then is necessary to account for the
uncertainties and can be complex problems to solve for large
numbers of sUAS in a given airspace.

In an attempt to minimize the short comings of pre-planning
algorithms, an online path predictor is being developed which builds
upon the UTM system NASA and the FAA developed by
Chakrabarty et al. (2019). This system depends on vehicles
working within the flight area allocated by the UTM system. It
relies on point-to-point communications between vehicles to
identify and solve conflicts. Point-to-point vehicle
communications may not be a reliable system as legacy aircraft
might not be able to be retrofitted to meet these requirements.
Another example of point to point vehicle communication based
collision avoidance can be seen in Fabra et al. (2018). This paper
again used frequent position updates between systems to identify
collisions. Again, this system may not work if legacy vehicles are
being flown that do not have point to point communication
capabilities.

The paper presented here focuses on the application of a
combined path predicting and conflict detector system for
sUAS traffic management. The conflict detector builds upon the
near-future predictions generated by an Interacting Multiple
Model based method presented in our earlier paper Wells et al.
(2021a). Other approaches to path predicting for sUAS include
multiple model path predictions as seen in Wells et al. (2021b) and
Machine Learning based approaches seen in Conte et al. (2021).
The conflict detector presented here is geometric based and relies
on the Haversine algorithm to convert predicted latitude and
longitude points into a straight-line distance measured in
meters. Several other geometric based conflict detection
algorithms have been implemented and can be seen in Costea
et al. (2020) and Qu et al. (2019). These studies have been based on
both manned and unmanned traffic and draw a three-dimensional
(3-D) volume around the aircraft. Other aircraft’s trajectories are
then examined to see if they cross into the safety zone. If the safety
zone is likely to be breached, a conflict will occur. Another
geometric based approach was seen in Kim H. et al. (2021a).
This paper focused on vehicles which did not share flight
information and relied on onboard radar measurements. It used
the closest point of approach to determine if a conflict is likely.
This algorithm assumes that velocity of sUAS remains constant
when calculating the closest point of approach. As seen in Wang
et al. (2019), Geometric based approaches are not limited to multi-
rotor applications and have been applied to conflict detection for
fixed wing aircraft as well.

Collision detection approaches involving machine learning and
AI have also been explored. One such algorithm is based on the
improved dragon fly algorithm (Ni et al., 2020). This algorithm uses
biologically inspired neural networks to plan a vehicles path in real-
time, however the collision detection aspect still depends on a
geometric based approach.
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The conflict detection algorithm we used is based on the
Haverine algorithm. The Haversine algorithm is able to
convert Global Position System (GPS) coordinates to a
distance measured in meters between two points by assuming
the Earth is a perfect sphere with a known radius to find the great
circle distance. This assumption introduces some errors to the
system, however, according to Kim et al. (2021b) it enables
quicker calculations when compared to more complex
algorithms. As seen in Cao et al. (2011), the Haversine
algorithm has been used several times in aviation for
calculating distance between manned aircraft to ensure
separation. The Haversine algorithm was even used with
machine learning algorithms by Kim et al. (2021c) to calculate
distances for estimating arrival times for manned aircraft.

The key contributions of this paper are: i) the development of an
IMM based path predictor for sUAS operating within the NAS;
ii) and the development of a Haversine-based conflict detection
system which builds upon the future position predictions
generated from the IMM. The combination of the IMM and
the conflict detector presented in this work is similar to current
manned air traffic management, however it does not require
humans to be in the loop and currently does not reroute
vehicles in conflict. Applying this system to the NAS will
help ensure sUAS are able to operate safely as they fly
BVLOS missions. Finding a way to safely handle sUAS
traffic is one of the largest problems preventing the
widespread use of sUAS within the NAS. The conflicts we
detect will eventually be used to reroute vehicles in
impending conflict, however vehicle rerouting is outside of
the scope of this paper. The system’s ability to detect conflicts is
advantageous because increased time allows for automated
rerouting algorithms to generate new solutions that are
more optimal than last minute reactions to vehicles entering
a conflict. Another contribution of this paper is the
development of a random recursive simulation within the
Robot Operating System (ROS)-Gazebo framework. While
using the PX4 simulation itself is not novel, the process we
developed and associated waypoint generation process has not
shown up in our literature survey. The approach we outline in
this paper can be used for testing other algorithms which
require vehicles to fly random way-points within a given
area to simulate multi-vehicles flying unknown missions
similar to what will be seen within the NAS. The ROS-
Gazebo physics engine paired with the PX4 autopilot is a
widely used, open-source simulation platform for testing
flight algorithms for vehicles. With the inclusion of the
random way-point generator presented here, the simulation
framework can be expanded to simulate sUAS operations in the
NAS. The random way-point generator could be used as a
benchmark for rapid simulation of multiple aircraft operating
in the NAS.

The rest of this paper is organized in the followingmanner. Section
2 describes the problem formulation and the primary assumptions for
developing the proposed system. Section 3 covers the simulation setup,
the IMM path predictor and the Haversine conflict detector. Section 4
shows the simulation results from the path prediction and conflict
detectors with ROS-Gazebo based simulations. Section 5 covers the
concluding remarks and future work.

2 Problem formulation

The objective of this work is to develop a system which is capable
of estimating future positions of sUAS and then identifying likely
conflicts based off these estimates. The work presented in this paper
is looking at vehicle-to-vehicle conflicts. To develop this system,
several assumptions had to be made about the nature of the vehicles.
In addition, for the simulation setup, some constraints were placed
on how the vehicles would operate. Besides the vehicle assumptions
and operation constraints, we also had to define what we will be
considering a conflict.

The constraints we placed on vehicle operations for the
development of the simulation consisted of a semi-synchronous
approach to assigning way-points and ensuring altitude separation.
To test the system, we developed a random way-point generator to
simulate vehicles flying unknown paths. The random way-point
generator operates in a semi-synchronous fashion meaning new
way-points are not assigned until all vehicles have reached their
previous way-points. Vehicles do not reach way-points at the same
time and are required to hold its position until a new way-point is
assigned. This semi-synchronous approach was taken for ease of
data analysis and data recording without affecting the ability to
generate data under different scenarios. After every vehicle reaches
their assigned way-point, the conflict and final way-point data is
saved. Another constraint we put on the vehicle operations consisted
of forced altitude separation. The forced altitude separation was
done to ensure vehicles would not actually collide during the testing
which would require the restart of the system and loss of data due to
incomplete testing. For the results presented in this work, we have
removed the altitude portion from the conflict detector calculations.
By removing the altitude portion of the calculations, the vehicles
appear to be fly at the same altitudes to the algorithms.

A vehicular related assumption we made in the development of
this work was that the vehicles we dealt with are assumed to be
cooperative in nature and are sharing their fused position data. The
IMM is using position information which consists of fused GPS and
Inertial Measurement Unit (IMU) data instead of the stand-alone
GPS data because of its higher frequency. Data fusion is done
onboard the vehicle already for state estimation on the flight
computer. The use of the fused position data does not present
any extra calculations for the vehicle. Sharing the data with a
ground-based system is also a very realistic assumption as sUAS
are typically equipped with high speed data communications and
telemetry links. We are also only using vehicle position information
and not any information on vehicle intent or desired way-points as
these types of data are less likely to be openly shared over telemetry
or high-speed communications networks. It may be noted that, in
cases where such sharing of information is not possible, onboard
sensors that provide relative positional information of other sUAS
can be used.

When working on the conflict detection portion of this work, we
had to determine what would be considered a conflict. We have
defined a conflict as two vehicles coming within 5 m of each other.
This conflict threshold value was chosen based on typical size of
multi-rotor based unmanned aerial vehicles and typical positional
errors from GPS-based systems. The conflict threshold value is a
parameter which can be changed in the future if GPS positional
information improves, vehicles become lager, allowable maximum
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speed of vehicles increases, the system sensitivity needs to be
changed, or a separation requirement is imposed. The goal of the
system is to identify conflicts before they occur which could allow for
the vehicles to reroute.

3 System development and
implementation

In this section, we discuss the development of the system we
have implemented. The system consists of the subsystem seen in
Figure 1. For this system, there is one way-point (WP) generator
which provides random unique way-points to all vehicles. For each
vehicle in the simulation, there is a corresponding interacting
multiple model path predictor running on a ground-based
system. The last part of the system consists of one conflict
detector which uses the path predictions from each of the
interacting multiple models to detect conflicts. Each of these
subsystems will be discussed in the following subsections. The
first subsystem we will discuss is the ROS-Gazebo based random
recursive way-point generator and the simulation setup. This
subsystem was implemented to test the later modules. The
second subsection is a review of the interacting multiple model
state predictor. This was previously published inWells et al. (2021a),
however is reproduced here for completeness. The final subsection
covers the Haversine-based conflict detector. It includes theory on
how the system works and how the thresholds for conflicts were
derived.

3.1 Random recursive simulation setup

To test this system, a random recursive simulationwas developed for
use in the ROS-Gazebo environment. We are using ten multi-rotor
vehicles in the simulation to simulate sUAS operating within a specified
airspace. For this system, all vehicles are assigned random unique way-
points in a semi-synchronous fashion. The vehicles are semi-
synchronous which means new way-points will not be assigned to
the vehicles until all of the other vehicles have reached their current
respective way-points, however all vehicles arrive at their assigned way-

points at different times. After a vehicle arrives at the way-point, it holds
the position until a new way-point is received. It may be noted that we
took a semi-synchronous approachwhen developing this simulation for
analysis and data collection purposes, and our proposed method does
not impose this requirement. The vehicles move in a linear motion
between way-points. Based on geometry, a vehicle pair can have a
maximum of one conflict per simulation iteration. This holds true even
if vehicles are operating on a co-linear trajectory due to the dynamics of
the system and the simulation setup. The simulation is continuous with
the end of the previous simulation iteration being used as the starting
point of the next simulation iteration. A simulation iteration starts with
the assignment of the random way-points to the vehicles. A simulation
iteration ends once all vehicles have reached their assigned way-points.
This approach simulates a way-point navigation mission with multiple
way-points and intermediate stops. In addition to simulating a way-
point navigation mission, while a vehicle is waiting for its new way-
point, it becomes equivalent to a vehicle hovering in the national
airspace that other vehicles will still need to avoid. Multi-rotor vehicles
moving to a way-point and then hovering at the way-point is a very
realistic task for delivery of packages, photography and building
inspections, thus making this approach a valid model of the national
airspace even with the constraints put in for data collection and analysis
purposes. In addition to the way-pointmessages, the randomway-point
generator also sends a message once all vehicles have reached their
desired way-points. This message is used in the conflict detector as the
signal to save the current conflict data. This signal is triggered once all
vehicles are within approximately 2 m of the desired way-point.

while WP_Count ≤ 9 do

if All Vehicles at WPs then

Save Prev. WPs

Send Complete signal to Conflict Detector

Generate New Way-points

WP_count=WP_count+1

else

Publish previous WPs

end if

end while

Algorithm 1: Random Way-point Generator Pseudo Code.

FIGURE 1
Block diagram for proposed system.
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We use the ROS-Gazebo physics-based engine to simulate
multi-rotor systems. The vehicles use the default PX4 way-point
and attitude controllers to achieve the desired position and velocity
set points. Vehicles are restricted to a maximum horizontal velocity
of 12m/s. The velocity of the aircraft is set by the position controller
and is dependent on how far the vehicle is from the way-point.

As previously mentioned in the first paragraph of 3.1, new way-
points for the random recursive way-point generator are randomly
selected from a continuous uniform distribution. We select latitude
and longitude way-points independently from the probability
distributions described in Eqs 1, 2. The variables a and b in Eqs
1, 2 are the upper and lower bounds for the latitude and longitude
points. The upper and lower latitude bounds we selected were
39.1576569° and 39.150874°. The upper and lower longitude
bounds we selected were −84.7832447° and −84.7908162°. The
resulting bounded flight area is a .75 km by .65 km rectangle and
can be seen in Figure 2.

Prob.Dist.LatWP �
1

b − a
, for a≤x≤ b

0, otherwise

⎧⎪⎨⎪⎩ (1)

Prob.Dist.LonWP �
1

b − a
, for a≤x≤ b

0, otherwise

⎧⎪⎨⎪⎩ (2)

While the latitude and longitude way-points were
randomly selected, the altitude component of the way-points
were manually set and kept constant for each vehicle. The
altitude was set manually to ensure separation between the
vehicles which allowed them to complete their flights without
crashing. Each run of the simulation consisted of the
10 vehicles flying 9 randomly assigned way-points. The
vehicles publish their fused GPS-IMU position data as they
fly between way-points.

3.2 Interacting multiple model

In this section, we discuss the background information of the
interacting multiple model and go through the different sub-
modules of the IMM system [please see our previous work Wells
et al. (2021a) for details and additional results on this]. The
interacting multiple model is a filtering technique for systems
with unknown underlying models. It was first developed by
Bloom (1984), however its popularity increased after its
publication by Bloom and Bar-Shalom (1988). The interacting
multiple model we are presenting in this paper is capable of
estimating the vehicle’s 9 states shown in Eq. 3. The full 9 states
the IMM calculates is for the more general application of this system.
For this paper, we are narrowing our focus to only predicting the
latitude and longitude position states. The altitude component of the
state vector is still being predicted, however, it is not used in the
conflict detection process. The IMM can estimate these states
through a recursive process where the previous state outputs are
used as the new state inputs for each iteration of the IMM. The
IMMs are constantly iterating while the simulation is running and
the IMM iterations are independent of the simulation iterations
discussed in the previous section. In each IMM iteration, the states
are mixed based on previous model probability, updated and
corrected through a position measurement, and then mixed
again. The probability based mixing and model updating is
accomplished through several different sub-modules which can
be seen in Figure 3. The system consists of a state pre-mixing
sub-module, three independent Kalman Filters, model combination
sub-module, model probability sub-module and a future position
predictor sub-module. The first sub-module in the system is pre-
mixing. Pre-mixing uses previous state estimates and the probability
of switching models between IMM iterations to regenerate new
initial states. These new states and any measurement updates which
were received are then used as inputs to the three Kalman filters. The
three Kalman filters included in the IMM presented here consist of a
constant velocity model, a constant acceleration model and a

FIGURE 2
Allocated airspace for testing.
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constant turn model. The Kalman filters generate new state
estimates, measurement residuals and covariance matrices for the
vehicles current motion. The covariance matrices and measurement
residuals from each of the Kalman filters are then passed to the
updating model probability sub-module. This module updates the
model probability for each motion model generated from the
Kalman Filter by calculating the current likelihood state and
using the previous model probability. The probability for each
model is then used in the state estimate combiner sub-module.
This sub-module uses the model probabilities to create the
combined state estimates and associated covariances for the
system. The mixed state estimate and mixed covariance matrix is
then used in the predicting future position sub-module where the
state is projected into the near future. The rest of this section covers
each of the different sub-modules in more detail and goes through
the equations for the system.

StateVector � lat, lon, alt, _lat, _lon, _alt, €lat, €lon, €alt[ ]T (3)

3.2.1 Pre-mixing
The first sub-module of the IMM is pre-mixing. The pre-mixing

sub-module uses the state estimates and the previous model
probabilities as inputs and calculates pre-mixed state and
covariance matrix as outputs. Equations 4–7 are the equations
for the pre-mixing step. Equation 4 uses the previous model
probability (μ(j)k−1) and a model switching probability (πji) to
generate three model probability predictions (μ̂k|k−1). The indices
i and j both range from 1 to 3 and correspond to the three different
motion models used later in the Kalman filtering portion of the
IMM. The IMM is a recursive function. The subscript k indicates the
current time step while k − 1 indicates the previous time step. The
model switching probability (πji) seen in (4) is a parameter matrix

which consists of user defined probabilities that correspond to
switching from the current model to a new model or staying
with the same model for the next IMM iteration. After finding
the predicted model probability, a mixing weight (μj|ik−1) is calculated
in Eq. 5. The mixing weight calculation uses the previous model
probability, the switching probability, and the predicted model
probability. The mixing weight is then used as a weighted sum to
calculate new, pre-mixed state vector (�x(j)

kZ|k−1) and covariance
matrices (�P(j)

k−1|k−1) from the previous state vector r (x̂(j)
k−1|k−1) and

covariance matrices (P̂(j)
k−1|k−1) in Eqs 6, 7, respectively. The pre-

mixing sub-module passes the pre-mixed model state vector and
pre-mixed covariance matrix to the Kalman filter sub-modules. The
predicted model probability is passed to the Model Probability sub-
module.

μ̂ i( )
k|k−1 � ∑3

j�1
πjiμ

j( )
k−1 (4)

μj|ik−1 �
πjiμ

j( )
k−1

μ̂k|k−1
(5)

�x i( )
k−1|k−1 � ∑3

j�1
x̂

j( )
k−1|k−1μ

j|i
k−1 (6)

�P
i( )

k−1|k−1 � ∑3
j�1

P̂
j( )

k−1|k−1 +/λk−1λ
T
k−1( )μ j|i( )

k−1 (7)

where, λk−1 � (�x(i)
k−1|k−1 − x̂(j)

k−1|k−1).

3.2.2 Kalman filter
The next sub-module in the IMM is the bank of Kalman filters.

Variations of the IMM use different filtering techniques such as
extended Kalman filters (EKF) (Li and Bar-Shalom, 1993),
unscented Kalman filters (UKF) (Gao et al., 2017) or even

FIGURE 3
Flow chart for interacting multiple model.
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particle filters (Boers, 2003). We used standard Kalman Filters (KF)
for this IMM because we are treating the trajectory models as linear.
The three models we are using consist of the constant velocity
model, the constant acceleration model, and the constant turn
model. In the actual system, the KF process is repeated for each
motion model. For brevity, we will go through the KF model once
and discuss the different motion models in the subsections below.
All three Kalman filters use the mixed state and covariance matrix
from the pre-mixing module as inputs. The inputs to the Kalman
filter are used in Eqs 8, 9 to find new predicted state vector (x̂(i)

k|k−1)
and predicted covarinace matrix (P̂(i)

k|k−1). The predictions are found
by using a state transition matrix (A). The state transition matrix
represents the motion model used in each of the different Kalman
filters. The state transition matrix is indexed by “i.” The index i
ranges from 1 to 3 and represents the three different motion models
used in the IMM. In the state transition matrices, the “dt” term
represents the time elapsed since the previous iteration of the
Kalman filter. A Gaussian process noise parameter (Q) is added
in Eq. 9. State and covariance predictions will continue until a new
measurement is received. Once a position measurement from
the sUAS is received, the measurement residual (~z(i)k ) is
calculated in Eq. 10 by finding the difference between the
predicted states and the position measurement. The
measurement we receive only consists of latitude, longitude,
and altitude and not the full state vector. The limited state
information received in the measurement update requires the
use of an observation matrix (H). The observation matrix is
used to only update the states which are directly changed by the
measurement. After the measurement residual is calculated, the
residual covariance (S(i)k ) is found in (11). The residual
covariance contains measurement error covariance parameter
(R), which attempts to quantify the errors in the measurement.
Next, the Kalman gain coefficient (K(i)

k ) is calculated in Eq. 12
and is used to determine how much the state and covariance
matrix will be updated based on the newly received
measurement. Finally, the state vector and covariance matrix
are updated in Eqs 13, 14, respectively.

x̂ i( )
k|k−1 � A i( )�x i( )

k−1; ∀i ∈ {1, 2, 3} (8)
P̂

i( )
k|k−1 � A i( )P i( )

k−1|k−1A
i( )T + Q (9)

~z i( )
k � zk −Hx̂ i( )

k|k−1 (10)
S i( )
k � HP̂k|k−1HT + R (11)

K i( )
k � P̂

i( )
k|k−1H

T S i( )
k( )−1 (12)

x̂ i( )
k|k � x̂ i( )

k|k−1 +K i( )
k ~z i( )

k (13)
P i( )
k|k � P̂

i( )
k|k−1 −K i( )

k S i( )
k K i( )

k( )T (14)

3.2.2.1 Constant velocity model
The state vector and state transition matrix for the constant

velocity motion model are shown in Eqs 15, 16. The state vector
and state transition matrix consist of latitude (lat), longitude
(lon), and altitude (alt) as the base states, the first derivative of
the base states and second derivatives of the base states. The
constant velocity model uses the first derivative of the base
states and assumes the second derivatives are equal to zero. The

constant acceleration and constant turn model use all of the
states in the state vector. The first three rows of the state
transition matrix correspond to the vehicles position. The
next three rows correspond to the vehicle’s velocity. The
final three rows correspond to the vehicle’s acceleration. The
delta time (dt) parameter seen in the state transition matrices
comes from the time difference between successive iterations of
the Kalman filter.

xvel � lat, lon, alt, _lat, _lon, _alt, €lat, €lon, €alt[ ]T (15)

Avel �

1 0 0 dt 0 0 0 0 0
0 1 0 0 dt 0 0 0 0
0 0 1 0 0 dt 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(16)

3.2.2.2 Constant acceleration model
The state vector for the constant acceleration model is the same

as shown in Eq. 15. The state transition matrix for the constant
acceleration model is given by Eq. 17. The constant acceleration
model uses the full 9 states in the state vector.

Aacc �

1 0 0 dt 0 0
dt2

2
0 0

0 1 0 0 dt 0 0
dt2

2
0

0 0 1 0 0 dt 0 0
dt2

2

0 0 0 1 0 0 dt 0 0

0 0 0 0 1 0 0 dt 0

0 0 0 0 0 1 0 0 dt

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

3.2.2.3 Constant turn model
The state vector for the constant turn model is the same as

shown in Eq. 15. The state transition matrix for the constant turn
model is given by Eq. 17. The constant turn model [seen in
Genovese (2001)] is similar to the constant acceleration model as
it uses the full nine states. The constant turn model differs from
the constant acceleration model as it assumes the vehicle is
turning at a constant rate (ω) and speed. The acceleration
portion of the constant turn model causes a change in
direction and not a change in vehicle speed. The state
transition matrix can be seen in Eq. 19 and models the
constant turn dynamics.

ω �
���������
€lat

2 + €lon
2

√
���������
_lat
2 + _lon

2
√ (18)
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At �

1 0 0 A14
t 0 0 A17

t 0 0
0 1 0 0 A25

t 0 0 A28
t 0

0 0 1 0 0 A36
t 0 0 0

0 0 0 A44
t 0 0 A47

t 0 0
0 0 0 0 A55

t 0 0 A58
t 0

0 0 0 0 0 1 0 0 0
0 0 0 A74

t 0 0 A77
t 0 0

0 0 0 0 A85
t 0 0 A88

t 0
0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

S ≔ sin(); C ≔ cos();
A14

t � S ωdt( )
ω

; A17
t � 1 − C ωdt( )( )

ω2 ;

A25
t � S ωdt( )

ω
; A28

t � 1 − C ωdt( )( )
ω2 ;

A36
t � dt; A44

t � C ωdt( ); A47
t � S ωdt( )

ω
;

A55
t � C ωdt( ); A58

t � S ωdt( )
ω

A74
t � −ωS ωdt( ); A77

t � C ωdt( );
A85

t � −ωS ωdt( ); A88
t � C ωdt( )

3.2.3 Model probability update
The model probability update is the next sub-module after the

Kalman filters have generated new state vectors, covariance matrices
and measurement residuals. The model probability update is
completed in two steps. The first step is the calculation of the
likelihood for each of the different motion models. The model
likelihood is based on the measurement residual and the residual
covariances found in the previous Kalman filters. The equation for
model likelihood is shown in Eq. 20. After the model likelihood is
calculated, the model probability for each model is found in Eq. 21.

Li
k �

e−1/2 ~z
i( )

k( )T S i( )
k( )−1 ~z i( )

k

det 2πSik( )1/2 (20)

μ i( )
k � . . .

μ̂ i( )
k|k−1L

i( )
k

∑3
j�1μ̂

j( )
k|k−1L

j( )
k

; ∀i ∈ {1, 2, 3} (21)

3.2.4 State estimator combiner
The next sub-module in the IMM is the state estimator

combiner. The state estimate combiner creates weighted
averages of all of the state vectors and covariance matrices
created from the three Kalman Filters. The model probabilities
calculated in the model probability update sub-module are used
as the weights. Models that have a higher probability of being the
correct model contribute to the final mixed states more than
models which have lower probabilities. The equations for
calculating the mixed state vector and covariance matrix are
shown in Eqs 22, 23.

xk|k � ∑3
i�1

x̂ i( )
k|kμ

i( )
k (22)

Pk|k � ∑3
i�1

P i( )
k|k + xk|k − x̂ i( )

k|k( ) xk|k − x̂ i( )
k|k( )T[ ]μ i( )

k (23)

3.2.5 Future position predictor
The final sub-module of the IMM system presented here is the

future position predictor. The future position predictor uses the
model probabilities calculated in the model probability update
sub-module and the mixed state and covariance matrix found in
the state estimate combiner sub-module to find near-future state
estimates for a vehicle in flight. The near-future state and
covariance estimates are found by selecting the motion model
with the highest probability and then applying it to the mixed
state and covariance matrix. The near future estimates for the
mixed state and covariance matrices are generated by setting the

FIGURE 4
Conflict detection diagram.
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dt value the desired future time estimate. Several future time
estimates are generated to create a prediction track. As the model
is projected further into the future, the uncertainty of the system
increases and its accuracy decreases. The decrease in accuracy is
expected as we are only using the limited positional information
from the measurement and do not have any information on
vehicle intent. The future position prediction equations for the
state vector and covariance matrix can be seen in Eqs 24, 25. The
predictions shown in Eqs 24, 25 are constantly being updated for
each vehicles. The predictions are a sliding window, constantly
looking up to 20 s into the future from the current simulation
time (t0).

xfuture � Amax μk( )xk|k (24)
Pfuture � Amax μk( )Pk|kAT

max μk( ) + R (25)

3.3 Haversine-based conflict detector

The Haversine conflict detector is a geometric based conflict
detector that uses the stream of future position predictions of the
IMM as inputs. This algorithm uses the Law of Haversines to
estimate the distance between the predicted latitude/longitude
coordinates of two sUAS’. The estimation distance is based on
the great circle distance. The Haversine algorithm assumes the
Earth a perfect sphere and calculates the distance between the
points on the surface. This assumption can be seen in Eq. 30 by
using the radius of the Earth in meters. The assumption that the
Earth is a perfect sphere does lead to some errors in the calculated

distance. This does not create an issue though because the distances
between vehicles we are concerned with are relatively small, and the
distance error grows as points are farther apart. In this application,
we are using the estimate to find the distance between vehicles in
meters. As seen in Figure 4, the Haversine algorithm is applied to
points within the same prediction window to calculate the straight
line distance between vehicles. We are comparing where the vehicles
are at different time steps in the near-future to see if the distance falls

FIGURE 5
Results for IMM path predictor.

FIGURE 6
Conflicts per predicted time window.

Frontiers in Aerospace Engineering frontiersin.org09

Wells and Kumar 10.3389/fpace.2023.1184094

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2023.1184094


below a conflict threshold value. As stated in the problem
formulation section, a conflict occurs when the distance between
two vehicles falls below 5 m in the current time frame. To try and
predict when a conflict occurs based on the future position,
additional threshold values were set for the different prediction
windows. The thresholds increase as the prediction time increases
due to the uncertainty within the prediction. These thresholds were
set based on sensitivity studies performed. The equations for the
Haversine algorithm are provided in (26–37). Equations 26–29 show
the latitude and longitude components being converted from
degrees to radians. Equations 31, 32 calculate the differences
between the points. Equations 33, 34 show the calculation of the
great circle distance the Haversine formula is based on. For the work
presented here, we have omitted Eq. 35 as we have ensured altitude

separation. In practice either Eq. 35 could be implemented or
vertical separation could be considered a different restriction
entirely. In addition to identifying conflicts, we are also able to
provide an estimated conflict location with the conflict detector. The
estimated conflict location is found only if the lateral distance
calculated in (34) is less than the threshold value that is set for
that prediction window. To find the estimated conflict latitude and
longitude, we take the average of both vehicles predicted locations as
seen in (36) and (37).

ϕ1 � lat1 p π/180 (26)
ϕ2 � lat2 p π/180 (27)
λ1 � lon1 p π/180 (28)
λ2 � lon2 p π/180 (29)

FIGURE 7
Conflict Map t = 0.

FIGURE 8
Conflict Map t = 5.

FIGURE 9
Conflict Map t = 10.

FIGURE 10
Conflict Map t = 15.
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R � 6371000 (30)
Δϕ � ϕ2 − ϕ1 (31)

Δλ � λ2 − λ1a � S Δϕ/2( )2 + C ϕ1( ) p . . .C ϕ2( ) p s Δλ/2( )2 (32)
d � 2 p atan2 sqrt a( ), sqrt 1 − a( )( ) (33)

DistLateral � R p d (34)
DistTotal � sqrt Dist2Lateral + alt1 − alt2( )2( ) (35)

latest.conflict � lat1 + lat2( )/2 (36)
lonest.conflict � lon1 + lon2( )/2 (37)
S ≔ sin(); C ≔ cos();

As previously stated and shown in Figure 4, we apply the
Haversine algorithm between predicted points in the same time

window. If a prediction falls below the threshold value for the
prediction time window, a conflict will likely occur, and the data is
saved. We record the conflict data in a conflict detection matrix
that gets saved to a csv file and then reset at the end of each
simulation iteration. Each prediction time frame has its own
conflict detection matrix. The conflict matrices can either have
values of zero or one. A zero indicates there has not been a conflict
between the two sUAS in that given simulation iteration while a
one indicates there was a conflict. A conflict between vehicles is
only counted once per simulation iteration, even if the conflict
appears multiple times as the prediction window shifts. In addition
to the prediction conflict matrices, we also record a true conflict
matrix. The true conflict matrix is similar to the prediction conflict
matrices except it records any time two vehicles fall below the 5 m
threshold value. This is what we use to determine how many
conflicts did occur.

4 Results

The system we created was tested with the random recursive
way-point generator and consisted of interacting multiple models
and a Haversine-based conflict detector. An interacting multiple
model was running for each aircraft operating within the simulation.
The IMM was producing path predictions for each of the vehicles
while they were in flight. An example of the path predictions the
IMM is producing can be seen in Figure 5. As can be seen in Figure 5,
when the predictions are further into the future, the accuracy
decreases. This is due to the lack of intent information being
provided to the IMM about a highly dynamic system. The
accuracy for the predictions further in the future especially
decreases when a vehicle turns because of the lack of information
about an upcoming highly nonlinear maneuver.

After the IMM was developed and tested using user defined
way-points through QGroundControl, the Haversine conflict

FIGURE 11
Conflict Map t = 20.

FIGURE 12
Map of identified conflicts for one way-point.
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detector was then tested using the random recursive way-point
generator and the results are presented in Figures 6–12. The
results were generated for 10 aircraft. Each aircraft was assigned
9 way-points in a given simulation and 5 simulations were
completed. This resulted in 450 individual way-point flights.
Multiple instances of the 450 flights were completed to tune the
future conflict threshold value within the Haversine conflict
predictor. When tuning the thresholds, our goal was to be
able to accurately detect true conflicts while also minimizing
the number of false positive conflicts detected. The threshold
values that we found worked the best were: 12 m for the 5 s
prediction, 14 m for the 10 s predictions, 16 m for 15 s
predictions and 18 m for 20 s predictions. These values were
found on a trial-and-error basis. We looked at how many
conflicts were detected in each prediction window. We
expected to see a downward trend of conflicts starting from
high prediction windows to lower with 5 s being the most
accurate when compared to the true number of conflicts. If
the threshold value for each prediction window was decreased
too much, then future conflicts would be missed. If the threshold
value for each prediction window was increased it too much, it
would detect too many false positives.

The total number of conflicts for each of the prediction windows
can be seen in Figure 6. The combined IMM and Haversine conflict
detector identified: 100 conflicts using the 20 s path prediction data,
89 conflicts using the 15 s path prediction data, 77 conflicts using the
10 s prediction data and 73 conflicts for the 5 s prediction data.
There were 60 conflicts that occurred based on the 5 m threshold we
had set. The discrepancy in the number of conflicts was expected due
to the previously discussed degradation of accuracy of the IMM for
predictions that occur further in the future. Even with this decreased
accuracy, we were able to detect all of the conflicts that actually
occurred. In addition to the bar graph showing the number of
conflicts, Figures 7–11 are the conflict maps which contain the
vehicle vs. vehicle conflict counts for all 450 flights. To read Figures
7–11, select a vehicle on the X-axis and a vehicle on the Y-axis. The
number in the corresponding box is the total number of conflicts
between the two vehicles for the full 450. For example, in Figure 7,
UAV 0 and UAV 3 had a total of 2 conflicts during all 450 flights.
The conflict maps were initially a symmetric matrix about main
diagonal; however, the lower triangle was removed. Prior to the
removal of the lower triangle portion of the conflict map, each
conflict showed up twice in the matrix, once in the UAV (X,Y)
position and then again in the UAV (Y,X) position. Removing the
lower triangle was done for visualization purposes and so conflicts
would not show up twice. When comparing Figures 8–11 to
Figure 7, it can be noted that all of the conflicts that showed up
in Figure 7 had shown up in future position predictions. Based on
the way we have set up the simulation and data recording, we have
eliminated the chance of missing true conflicts. This was done by
constantly recording and updating theminimumHaversine distance
between all vehicles for each simulation iteration. With this
approach and the results obtained, we can say with certainty that
all of the conflicts that actually occurred did show up in the later
prediction windows.

Figure 12 shows the results of a set of 10 vehicles flying
between two way-points. Conflicts have been identified and
appropriately labeled based on the time prediction window in
which they were detected, and the conflict’s corresponding
predicted location was plotted. As seen in the collision
matrices, the majority of the conflicts identified showed up
again in decreasing time prediction windows as the vehicle
flew along its path. As an example, assume that a conflict is
initially detected using the 20 s path prediction. Based on the
data shown, the same conflict will likely show up again in the
15 s prediction window after the vehicle travels for
approximately 5 s. This result shows that the IMM is
predicting future positions of the vehicles accurately
(especially as prediction time decreases) and the conflict
detector is consistently identifying conflicts. Some miss
identification of collisions will occur due to the IMM’s
degradation of accuracy for predictions further in the future,
however another source of miss identification of conflicts is due
to vehicles stopping upon reaching their way-point. If two
vehicles are in a pending conflict, and one stops because it
reached its way-point, the previously identified conflict was still
recorded and counts for the prediction window in which it was
identified. With the current simulation setup, the conflict
detector counts any conflicts that occur, even if it is caused
by one iteration of the IMM that produced inaccurate results.

5 Conclusion and future work

This paper presented the development and application of an
IMM based future path predictor coupled with a Haversine-
based conflict detector. The proposed system generated path
predictions with the IMM and then identified likely conflicts in the
near-future with the Haversine-based conflict detector. This was done in
real-time as vehicles fly randomly generated way-points in the NAS. The
system will facilitate sUAS operations within the NAS by identifying
conflicts before they occur which will give vehicles more time to re-
route. The paper presented the development of the random
recursive way-point generator used for testing, the different sub-
modules of the interacting multiple model, and finally went through
the derivation of the Haversine-based conflict detector. The system was
tested with 10 vehicles in a ROS-Gazebo framework. The results showed
the systemwas able to effectively identify conflicts with the future position
predictions. The results were presented in vehicle vs. vehicle conflictmaps
and a map of the predicted conflicts as vehicles flew. Going forward, we
aim to develop a re-routing module which can mitigate the detected
conflicts so vehicles will be able to operate safely within the national
airspace.
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Nomenclature

NAS National Airspace

FAA Federal Aviation Administration

ATC Air Traffic Control

ROS Robot Operating System

b Unmanned Traffic Management

UAV Unmanned aerial vehicle

UAS Unmanned aerial system

sUAS Small unmanned aerial system

IMM Interacting multiple model

BVLOS Beyond visual line of sight

GPS Global positioning system

QGC QGroundControl

lat Latitude

lon Longitude

alt Altitude

A Model state transition matrix
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