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This paper considers path planning with resource constraints and dynamic obstacles
for an unmanned aerial vehicle (UAV), modeled as a Dubins agent. Incorporating
these complex constraints at the guidance stage expands the scope of operations of
UAVs in challenging environments containing path-dependent integral constraints
and time-varying obstacles. Path-dependent integral constraints, also known as
resource constraints, can occur when the UAV is subject to a hazardous environment
that exposes it to cumulative damage over its traversed path. The noise penalty
function was selected as the resource constraint for this study, which was modeled
as a path integral that exerts a path-dependent load on the UAV, stipulated to not
exceed an upper bound.Weather phenomena such as storms, turbulence and ice are
modeled as dynamic obstacles. In this paper, ice data from the Aviation Weather
Service is employed to create training data sets for learning the dynamics of ice
phenomena. Dynamic mode decomposition (DMD) is used to learn and forecast the
evolution of ice conditions at flight level. This approach is presented as a
computationally scalable means of propagating obstacle dynamics. The reduced
order DMD representation of time-varying ice obstacles is integrated with a recently
developed backtracking hybrid Ap graph search algorithm. The backtracking
mechanism allows us to determine a feasible path in a computationally scalable
manner in the presence of resource constraints. Illustrative numerical results are
presented to demonstrate the effectiveness of the proposed path-planning method.
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1 Introduction

In recent years, there has been considerable interest in incorporating complex constraints
into path-planning for autonomous vehicles so as to expand their scope of operation in
challenging environments. This paper considers two forms of complex constraints for path
planning of a Dubins agent: 1) time-varying obstacles that are capable of translation, rotation, as
well as changing their shape, and 2) resource constraints that exert a path-dependent
cumulative load (or damage) on the vehicle that must be maintained under a stipulated
threshold. In the context of unmanned aerial vehicles (UAVs), examples of the former include
weather phenomena, such as storms, turbulence and ice. In the case of resource constraints, the
agent is allowed to “fly through” the obstacle, so long as the total accumulated damage incurred
along its path is kept under a stipulated threshold. Examples of such path-dependent loading
constraints include flight of a UAV over a wildfire, wherein the resource constraint represents
placing an upper limit on the increase in temperature along the agent’s path to keep onboard
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equipment safe. Other scenarios include flight over an urban region
while maintaining the total noise generated along its trajectory under a
prescribed threshold, or flight through adversarial territory while
avoiding detection by radar. Path planning, by definition, creates a
sequence of actions or events that will drive an agent from the start
position to the goal position while avoiding collisions with obstacles in
the environment (LaValle, 2006). The agent can be a ground, aquatic,
or aerial vehicle, modeled in this paper as a Dubins agent. These agents
require path planning to navigate and function in many fields such as
manufacturing, search and rescue, and exploration to name a few. By
allowing the agent to traverse in an environment through path
planning, efficiency is increased and risk is decreased: for example,
when UAVs are sent to survey disasters, it increases the speed at which
disaster survivors are found as well as decreasing the risk and safety
hazards that emergency responders may encounter if they were
physically doing these tasks. The agent searches for the optimal, or
shortest, path to reach its goal: this is the shortest path problem. In this
paper, the shortest path problem is the foundation to which the
resource constraints and dynamic obstacles are added.

A challenging variation of the shortest path problem is the
resource-constrained shortest path problem (Thomas et al., 2019).
In the resource-constrained shortest path problem, the agent is
looking for the path of minimum length while being constrained
by either internal factors such as fuel consumption or external factors
such as vehicular damage or noise constraints (Thomas et al., 2019).
Resource constraints, also known as “path loading constraints”, are
integral constraints that are path dependent and accrue as the agent
moves towards the goal pose (Ford et al., 2022). For instance, resource
constraints can be used to place a limit on duration of exposure of a
UAV leading to detection by radars while flying through adversarial
territory (Kabamba et al., 2006; Zabarankin et al., 2006). Another
instance of use of resource constraints is to model heat loading on a
UAV navigating through a wildfire. A trivial approach to this problem
that does not involve resource constraints is to treat the heat flux level
set corresponding to a sufficiently high value as a hard obstacle that
must be avoided by the UAV. The alternative is to allow the UAV to fly
through high heat flux contours, while ensuring that the damage
incurred during the flight is acceptable. Here, the path integral of heat-
flux contours at flight level equates to the rise in UAV temperature,
which must be held under a prescribed limit (Ford et al., 2022) for safe
operation. A good analogy is moving one’s finger around a candle
flame versus moving it through the flame following a trajectory that
ensures no damage is done. A third example of resource constraints
involves flight in an urban environment. A resource constraint may be
used to model the total cumulative noise disturbance created by the
UAV along its trajectory. By prescribing a maximum allowable
cumulative noise disturbance, the UAV can be constrained to
follow appropriate noise regulations.

Path planning with dynamic obstacles allows autonomous agents
to model their complex environment with a higher degree of fidelity.
Incorporating dynamic obstacles within various trajectory planners
continues to be a challenge due to the complexity related to frequent
recomputation of the path when the environment changes (Darbari
et al., 2017). This is computationally expensive and not feasible for
online path planning when the agent will need to calculate and
perform the next action in time to avoid colliding with a moving
obstacle. Safe interval path planning (SIPP) is a algorithm designed to
include dynamic obstacles in the environment and it does so by
creating intervals or periods of safety in which the agent can move

(Phillips and Likhachev, 2011). While looking at dynamic obstacles
based on weather patterns, this method would not a viable choice for
the agent’s path planner. For UAV’s, time-evolving weather hazards
such as storms, turbulence, and ice are important to consider as
dynamic obstacles during the path planning stage for their safe
operation. Ice hazards can be damaging to both manned and
unmanned aerial vehicles and dangerous amounts of accumulation
on the wings or propellers may force an emergency landing. There are
four levels of icing intensity, beginning with trace, light, moderate, and
severe and three different categories, namely, rime, clear, and mixed
(Administration, 2010; Administration, 2020). Ice accumulation on
UAVs requires a rapid response because the intensity of icing is
categorized with respect to larger manned aerial vehicles. Since UAVs
are generally smaller, it is important to develop strategies for
navigating around ice weather conditions. This paper models ice
weather conditions as dynamic obstacles in the path-planning
stage. Ice hazards are recorded and reported by the Aviation
Weather Center. This data is employed to learn their dynamics
using a reduced order representation through dynamic mode
decomposition (DMD). DMD is an effective technique for learning
low-order dynamics of complex systems and predicting their future
behavior Schmid (2010); Schmid et al. (2011); Tu et al. (2013). It is
based on Koopman operator theory Koopman and Neumann (1932);
Koopman (1931) and has gained in popularity over the past two
decades owing to its efficiency in extracting underlying characteristic
features of the dynamic system Nayak et al. (2021b); Han and Tan
(2020); Broatch et al. (2019); Kutz et al. (2016); Nayak and Teixeira
(2022). It compares favorably in this regard to other model-order
reduction methods such as proper orthogonal decomposition (POD),
bi-orthogonal decomposition (BOD) and principal component
analysis (PCA).

In this work, ice hazard data from the Aviation Weather Service is
employed to learn a reduced order model of the hazard dynamics
using DMD. This model is two dimensional, i.e., valid at the flight level
and variations along the altitude are not considered. The DMD
surrogate allows us to track both translation and rotational motion
of the ice hazards, as well as the change in their shape. The time-
varying obstacles’ location and shape are integrated with a recently
developed backtracking hybrid-Ap (BHA*) graph search algorithm
for path-planning with resource constraints. Traditional graph search
is not suited to planning with path loading constraints because such
constraints accumulate over the trajectory of the agent. When a
candidate node is determined to be inadmissible on account of the
loading constraint, conventional graph search effectively treats it as the
violation of a point-wise constraint. The key idea behind the
backtracking approach is that the violation of the resource
constraint is attributed to the path taken to arrive at the node
where the constraint was violated. Therefore, instead of classifying
the candidate node as “inadmissible”, it reverses the search, receding
away from the candidate node, thereby allowing the agent to shed the
integral load along the path leading up to the constraint violation.
Upon meeting an appropriately chosen stopping criterion for
backtracking, the hybrid-Ap search resumes until another load
violation is encountered (or the goal is reached) Ford et al. (2022).
This work ensures that during the graph search and its backtracking
process, the dynamic obstacles’ information corresponding to the
current time-stamp is employed.

The main contribution of this paper is the combined use of DMD
and BHA* graph search to conduct path planning for unmanned
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aerial vehicles in the presence of time-varying obstacles of unknown
dynamics and resource constraints. Dynamic mode decomposition is
employed for learning the dynamics of time-varying obstacles and the
BHA* algorithm is used handle resource constraints in a scalable
manner. To the best of the authors’ knowledge, this is the first instance
of application of these techniques to achieve a computationally
scalable solution of path planning in the presence of resource
constraints and time varying obstacles of unknown dynamics. Note
that this work does not consider the problem of “re-planning”. In
other words, all results here represent only a single instance of path
planning. There is no attempt made to leverage information from a
previous cycle of planning to “warm start” a new search. The
contribution therefore is only algorithmic in nature. Additional
work is needed to achieve flight integration of the presented
algorithms. The remainder of this paper is organized as follows:
Section 2 provides a problem formulation, including vehicle
dynamics, obstacle dynamics and the path-planning cost and

constraint models. Section 3 presents the methodology. The BHA*
approach is described in Section 3.1 while the DMD reduced-order
modeling of obstacle dynamics is presented in Section 3.2.1. Section 4
presents numerical results obtained using ice hazard data from the
Aviation Weather Center. Conclusions and directions for future work
are presented in Section 5.

2 Problem formulation

2.1 Vehicle kinematics and dynamics

The agent is assumed to be a fixed-wing unmanned aerial vehicle
(UAV) constrained to the Dubins model of curves and straight-line
paths (Shkel and Lumelsky, 2001). The Dubins model is commonly
used by both ground and fixed-wing aerial vehicles that have a fixed
turn radius (Reeds and Shepp, 1990). As a result of this kinematic

A B

FIGURE 1
Ice hazard data from the aviation weather center taken from 6/23/2022 in (A) latitude/longitude coordinates and (B) Cartesian coordinates.

FIGURE 2
A test environment for path planning with dynamic ice obstacles scaled down from Figure 1B.

Frontiers in Aerospace Engineering frontiersin.org03

Cortez et al. 10.3389/fpace.2022.1076271

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2022.1076271


constraint, these vehicles cannot turn sharply enough to comply to the
perpendicular turns that are required by algorithms such as A+ search
and Dijkstra search. Dubins motions are constrained to circular arcs
and straight-line segments and can be used to find the shortest path
between two points (Dubins, 1957). These arcs and line segments
produce the set of actions that the agent can take to move across the
search space: straight ahead (S), a circular arc to the right (R), or a
circular arc to the left (L). The velocity (v) of the agent is held constant.
Eq. 1, 2 below govern the motion for the agent in Cartesian
coordinates. The heading rate (Eq. 3) is controlled by input u.

_x(t) � v cos(ψ(t)) (1)
_y(t) � v sin(ψ(t)) (2)

_ψ(t) � u (3)
The input variable u is the control variable which must be less

than or equal to the maximum steering angle constraint U which is

shown in Eq. 4. The heading rate of the agent is constrained to a
maximum steering angle constraint U which is the velocity of the
agent divided by the agent’s minimum turn radius R (Manyam et al.,
2017).

|u|≤U (4)
U � v/R (5)

Several extensions of the Dubins model exist, including motion
with reversing ( _ψ(t) � ± u) (Reeds and Shepp, 1990), and motion
with higher order of smoothness properties to produce better ride
quality (Banzhaf et al., 2018; Oliveira et al., 2018; Botros and
Smith, 2022). This work employs the backtracking hybrid-Ap
search using the S, R and L motion primitives described above.
A constant time discretization of ΔT is used as the time step for
motion planning, resulting in motion primitives of constant and
equal arc lengths.

FIGURE 3
(A) Comparative performance of the DMD surrogate modeling for learning shrinking obstacles. Blue depicts ground truth and red depicts DMD output.
(B) Validation error characteristics.

FIGURE 4
(A) Comparative performance of the DMD surrogate modeling for learning expanding obstacles. Blue depicts ground truth and red depicts DMD output.
(B) Validation error characteristics.
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2.2 Obstacle dynamics

UAVs operate in a highly dynamic environment comprised of other
aerial vehicles, birds, and other dynamic hazards such as weather
phenomena including storms, turbulence and icy conditions. Weather
hazards can impart significant damage to UAVs and their inclusion in
the path planner modeled as dynamic obstacles helps expand the scope of
safe UAV operations. Weather obstacles exhibit constant evolution and
these dynamics can be recorded and learned. On the other hand, dynamic
obstacles such as birds and other aerial vehicles cannot be predicted reliably.
They are expected to be handled by detect-and-avoid (DAA) methods and
are not included in this study. Typically, the dynamics of weather obstacles
occur on a time-scale that is much less than the duration of the flight of the
UAV. In this work, flight-level (i.e., two-dimensional) ice conditions are
modeled as dynamic obstacles. Training snapshots are created using
Significant Meteorological Information (SIGMET) data and Airman’s
Meteorological Information (AIRMET) data from the Aviation Weather
Center (AWC) (Administration, 2010). Figure 1A shows ice data retrieved

from the AWC for 23 June 2022 in the original topographical coordinates.
These are converted to Cartesian coordinates (Figure 1B) so that they may
be integrated into the grid search. There is some distortion in the shape of
the obstacles during this transformation owing to cartographic projection.
These obstacleswere then scaled down andmixedwith other static obstacles
and a resource constraint to produce a test case for path planning, as shown
in Figure 2, which represents a region of size 100m by 100m.

2.3 Creating training data sets for obstacle
dynamics

Starting with the snapshot shown in Figure 1, we emulate
obstacle evolution by ascribing simple motions to these shapes.
This helps create data sets on which the DMD surrogate models
can be trained. It also allows us to evaluate the performance of DMD
reduced-order modeling in capturing simple motion types, such as
pure translation and changes in size and shape of the obstacle.

FIGURE 6
(A)Comparative performance of the DMD surrogatemodeling for learning obstacles showing pure translation. Blue depicts ground truth and red depicts
DMD output. (B) Validation error characteristics.

FIGURE 5
(A) Comparative Performance of the DMD Surrogate Modeling for Learning A Mixed Set of Obstacles (Expanding: top right Shrinking: all the rest). Blue
Depicts Ground Truth and Red Depicts DMD Output. (B) Validation Error Characteristics.
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Figures 3A, 4A, 5A, 6A, 7A, and 8A show different types of training
data-sets representing obstacle dynamics of increasing complexity.
Figure 3, 4, 5 shows each of the four obstacles decreasing (increasing,
mixed rate of change) in size. None of these cases involve translation

of the obstacles. Figure 6, 7, 8 shows the obstacles translating as well
as decreasing (increasing, mixed rate change) in size. On the right of
each of these figures, the performance of the DMD algorithm is
shown in capturing these obstacle behaviors. The DMD approach is

FIGURE 8
(A) Comparative performance of the DMD surrogate modeling for learning obstacles showing translation and mixed changing shape. Blue depicts
ground truth and red depicts DMD output. (B) Validation error characteristics.

FIGURE 7
(A) Comparative performance of the DMD surrogate modeling for learning obstacles showing translation and expanding size. Blue depicts ground truth
and red depicts DMD output. (B) Validation error characteristics.

TABLE 1 Hybrid A+ results with ice dynamic obstacles.

Motion type Path length Noise load Number steps Compute time (s)

DNT (fail) (fail) (fail) 12.932,944

INT (fail) (fail) (fail) 10.329,230

BNT (fail) (fail) (fail) 11.671,959

DT (fail) (fail) (fail) 15.960,492

IT (fail) (fail) (fail) 15.441,393

BT (fail) (fail) (fail) 14.980,712
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described in detail in Section 3.2.1. Once the DMD model is trained,
it is used to forecast the location and shape of each of the obstacles
for future time steps.

2.4 Cost and constraint models

The optimal control problem is used to determine the
minimum time path to reach the goal when the velocity is held
constant. This is shown in Eq. 6 where s is the state vector of the
agent shown in Eq. 7.

J(t, s, u) � min
u

tf (6)
s � (x, y,ψ) (7)

ds
dt

� f(x, y,ψ) (8)

The static obstacles can be modeled as polygons as shown in Eq. 9,
where, ai,j and bi,j represent the polygon vertices and ci,j represents the
edges of the polygon. The static obstacles are considered to be no-fly-
zones that remain constant throughout the search. The dynamic
obstacles are no-fly-zones that are changing in each time step as
the agent moves towards the goal.

TABLE 2 Backtracking hybrid A+ results with ice dynamic obstacles.

Motion type Path length Noise load Number steps BT length Compute time (s)

DNT 143.989238 3.479451 50 339 5.31274

INT (fail) (fail) (fail) 702 (fail)

BNT 143.989238 3.479451 50 308 5.075215

DT 140.987803 4.246508 49 219 4.624528

IT 140.987803 4.246508 49 307 5.211055

BT 143.987803 3.217498 50 329 5.911410

FIGURE 9
Four snapshots (A-D) of the path-planning process for the case with shrinking obstacles and no translational motion.

Frontiers in Aerospace Engineering frontiersin.org07

Cortez et al. 10.3389/fpace.2022.1076271

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2022.1076271


∧Mi
j�1ai,jx + bi,jy> ci,j i � 1, ..., N (9)

When flying near densely populated environments the noise
generated by the vehicle is a factor that must be accounted for.
Limiting noise exposure from the aircraft is not a constraint that
can be enforced in a point-wise manner as public perception is
affected by both noise intensity and duration of disturbance
(Administration, 2022). The better way to model noise exposure
is with a noise penalty function that is integrated along the vehicle’s
flight path. The penalty function has a high value near the
population center and lowers as the distance from the
population center increases. Placing an upper bound on the
accumulation of the noise penalty function over the flight path
discourages short flights over the population center with high
instantaneous noise, but also penalizes long paths around the
population center that generates low noise over long durations.
The noise penalty function combined with an upper bound of the
accumulated penalty constitutes a path dependant resource
constraint which is shown in Eq. 10.

∫t

0
FL(τ, s(τ), u(τ))≤L+ (10)

The terminal conditions are the initial position and heading of
the agent represented by 0, and the final position and heading of

the agent represented by tf. The state boundaries are shown in
Eq. 9.

Terminal Conditions : {x(0), y(0),ψ(0)} � {x0, y0,ψ0}
{x(tf), y(tf),ψ(tf)} � {xf, yf,ψf} (11)
State Bounds :xmin ≤x(t)≤ xmax

ymin ≤y(t)≤ymax (12)
An example of the environment is shown in Figure 2 which

shows the terminal conditions labeled as Start and Goal in the
graph. The state boundaries for this problem are 0 m for xmin and
ymin, and 100 m for the xmax and ymax. The noise penalty function
(resource constraint) modeled as a Gaussian distribution is also
shown, and the center of the noise penalty function is a black star
symbol located at (60, 45). As the agent moves closer to the center
of the noise penalty function, the penalty accumulated per action
also increases. This is shown by the gradient going from yellow to
blue from the center to the edges of the distribution. The mean of
the Gaussian distribution is μx = 60 and μy = 45 which is the center
location (60, 45). Other types of contours that could be used are
uniform, exponential or from a table (Kim and Hespanha, 2004).
Also shown in Figure 2 are the static obstacles, polygons outlined in
blue with black fill, and the first step of the dynamic ice obstacles
outlined in red with pink fill.

FIGURE 10
Four snapshots (A-D) of the path-planning process for the case with expanding obstacles and no translational motion. Note that no solution is found as
obstacles overlap (C, D) and the resource constraint dominates open gaps.
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3 Methodology

3.1 Backtracking hybrid A+

Graph search algorithms such as Dijkstra, A+, and Hybrid A+ are
popular methods to solve the shortest path problem due to the shorter
computation time to reach the goal state. Graph search methods used
in motion begin by dividing the environment into cells by grid points
or nodes (Fujimura, 1991). Dijkstra is a popular graph search method
that was developed in 1959 (Dijkstra, 1959). This method involves
creating a grid of the environment with nodes set at equal distance
apart from each other. The Dijkstra algorithm is not directed towards
the goal and can consequently have lengthy computation time due to
this inefficiency. As a result, Dijkstra can be used for an environment
for a small amount of nodes (Fujimura, 1991). The A+ algorithm is an
evolution of Dijkstra that employs a heuristic function to direct the
search towards the goal. In this way, A+ is suitable for a larger
environment with more nodes (Fujimura, 1991). The use of the
heuristic function increases the efficiency and decreases the nodes
that are explored when compared to Dijkstra. A flaw that both of these
graph search methods have is that they are constrained to
perpendicular turns moving from node to node; this produces
paths with sharp angles which cannot be navigated by a vehicle
with turn constraints. These turn constraints are due to both the
kinematics, the vehicle’s inertia, and the dynamics, or the controls, of
the vehicle such as a fixed-wing UAV, cannot navigate. Hybrid A+ is

an improvement to the A+ algorithm with the inclusion of the
kinematic constraints of the agent with Dubins motion shown in
Eq. 2.1 that creates a path that the vehicle can navigate (Richards et al.,
2004) (Petereit et al., 2012) (Dolgov et al., 2008). In essence, HybridA+

allows for the path to be separated from the grid and produces a path
that is smoother and shorter than that of its predecessor A+. Hybrid
A+ algorithm though may be unable to find the minimum solution
path due to the discretization of the continuous space as well as having
to consider different obstacles and constraints (Dolgov et al., 2008)

D � {xi}Nx
i�1 ⊗ {yi}Nx

i�1 ⊗ {ψi}Nx

i�1 (13)
Nx � |(xmax − xmin)/δx| (14)
Ny � |(ymax − ymin)/δy| (15)
Nψ � |(ψmax − ψmin)/δψ| (16)

An auxiliary grid is created D to keep track of the three-
dimensional search space which is the Cartesian coordinates (x, y)
and the heading of the agent (ψ). This grid shows the admissible nodes
created by the outer product of Eq. 13 where Nx, Ny, and Nψ are
defined as Eq. 14, 15, 16. Due to the manner in which the grid is
constructed, the initial position is always located on the grid; this may
not be true of the goal position. If the goal position does not land on an
auxiliary node from D, it is assigned to the node that it is closest to as
the Index Goal which is shown in Figure 2 as the magenta square. The
candidate nodes are then coupled with the closest node from the

FIGURE 11
Four snapshots (A-D) of the path-planning process for the case with expanding and shrinking obstacles and no translational motion.
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auxiliary grid. Hybrid A+ operates using two sets of nodes; a Frontier
(open) set and a visited (closed) set. When a cell is considered “closed”,
it is moved to the visited set and is no longer an admissible node for the
agent to move to. Therefore, any candidate nodes that end in a closed
cell are declared inadmissible. When a cell has been visited by Hybrid
A+, all the other potential actions that land in that cell are dismissed.
This constrains the explosive growth of the search tree that would
occur if the search space was purely continuous. This algorithm only
considers all events until the path is found.

Backtracking Hybrid A+ is a recently developed improvement on
Hybrid A+ (Ford et al., 2022) to allow for the efficient solution of
resource-constrained path planning problems. Backtracking Hybrid
A+ operates on the principle that the violation of the loading
constraint (Eq. 10) is not the fault of the node in violation, but the
fault of the entire path taken to the node. When Backtracking Hybrid
A+ encounters a loading constraint violation it backtracks away from
the violation. This frees previously explored nodes in the visited
set allowing for the re-exploration of a section of the search
domain. Because no new child is generated for the node stopped
at, the search is forced to take a different path during the re-
exploration thus “shedding” some of the load. Repeated invocation
of the backtracking procedure during the search allows for rapid load
shedding while producing good solutions.

A key aspect of Backtracking Hybrid A+ is how far to backtrack
when the loading constraint L+ is violated. This is encapsulated in

the backtracking stopping criterion which tells the backtracking
procedure to halt its backward March. Stopping criteria are
heuristic in nature and often attempt to use information from
the loading function as well as the graph structure. The stopping
criterion used in this work is called load rate stopping which seeks
to maximize the sensitivity of rate of load accumulation with
respect to the heading rate along the search path. This can be
stated as follows:

s* � maxτϵ(0,t)
zFL(τ, s(τ), u(τ))

z _ψ
(17)

where sp is the pose along the path to the invalid node where the change
in load accumulation with respect to heading rate is maximized. This can
be applied to HybridA+ by taking the rate of load accumulation to be the
load accumulated on edge leading to a given node, and varying the
turning rate as the choice between three motion primitives. This means
that re-exploration initiates where there the potential for changing the
total load incurred by the search is maximised.

3.2 Dynamic mode decomposition

Dynamic Mode Decomposition (DMD) is a data-driven approach to
discover system models, based on the theory of Koopman operators. Its
primary advantage is that it casts the unknown system as a linearmodel in

FIGURE 12
Four snapshots (A-D) of the path-planning process for the case with shrinking obstacles and translational motion. This is the most benign planning
scenario.
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a transformed space of observables, thereby facilitating downstream
analysis and increasing the possibility of achieving performance
guarantees. Koopman operator theory was first introduced in the
1930s and has since gained popularity over the past two decades
(Koopman, 1931; Koopman and Neumann, 1932). The renewed
interest in this theory was primarily driven by recent advances in
numerical methods through Koopman analysis, one such method is
Dynamic Mode Decomposition (DMD) (Rowley et al., 2009; Schmid,
2010). DMD has been designed to effectively capture the low-order
dynamics of a complex system and perform future predictions. It does
so by superimposing the empirically computed DMD modes and
corresponding DMD frequencies of the underlying system. Generally,
the number of modes required to describe the system is significantly
smaller than the dimension of the actual data set. Apart from the benefit of
reduced computational effort, one primary advantage of DMD is its
“equation free” nature. As a result, one does not need to know the
complicated underlying physics and can model the system purely
from data.

3.2.1 The DMD algorithm
In our work, we have used the exactDMD algorithm developed by

Tu and collaborators (Tu et al., 2013; Kutz et al., 2016). DMD requires
a pair of snapshot matrices in order to generate a linear model
approximating the desired dynamical system. We sample the state
x at different time instants (snapshots) and stack them to form

snapshot matrices X and X′, where X′ is just one snapshot ahead
of the original snapshot matrix X.

X � x(t0) x(t1) x(t2) ... x(tm−1)[ ]
X′ � x(t1) x(t2) x(t3) ... x(tm)[ ] (18)

In Eq. 18 tk+1 = tk + Δt, where k = 0, 1, . . .,m and Δt is the time step
between two consecutive snapshots. Without loss of generality, we can
assume that the snapshots start from t = 0, i.e. t0 = 0. Under the
assumption of uniform sampling, tm = mΔt. The DMD algorithm
seeks the best fit linear operator A in least-square sense that relates the
two snapshot matrices such that

X′≈ AX, (19)
and attempts to extract the eigenvalues and eigenvectors of A in an
efficient manner. The A matrix resembles the finite-dimensional
discrete-time Koopman operator where we choose our state
variables as the observables, i.e., g(x) = x, where g is the observable
or measurement function. Our objective is to find the eigenvalues and
eigenvectors of A and use them to model the time evolution of our
state variables. It is not necessary that we use the entire data set to build
the snapshot matrices; DMD allows us to sample the original data set
in a flexible manner, for example in a randomized approach to select a
suitable sampling region (Erichson et al., 2019). In the current
problem, the snapshot matrices are created by stacking the
Cartesian coordinates of the polygonal shapes representing the ice

FIGURE 13
Four snapshots (A-D) of the path-planning process for the case with expanding obstacles and translational motion.
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hazards over the training time horizon. The DMD algorithm itself can
be broken down into five steps.

• Step 1: Singular value decomposition (SVD) of snapshot
matrix X,

X � UΣVT ≈ UrΣrV
T
r , (20)

where U contains the left singular vectors, Σ is a diagonal matrix of
singular values arranged in a hierarchical manner and V contains the
right singular vectors. In practice, it is sufficient to compute the
reduced SVD, where only first few (r) columns and rows of
respectively U and V are retained with first r singular values of Σ.
The SVD energy thresholding algorithm is used to determine r and
then truncate our U, Σ and V matrices accordingly (Kutz, 2013).

• Step 2: A is obtained by

A � X′X† � X′VrΣ−1
r UT

r (21)
A is then projected onto a lower dimensional space using a similarity
transformation,

Ar � UT
r AUr � UT

r X′VrΣ−1
r . (22)

An important observation here is that the eigenvalues of A are
adequately approximated by the eigenvalues of Ar.

• Step 3: The spectral decomposition of Ar is computed,

ArW � WΛ (23)
W is the matrix of eigenvectors of Ar and Λ is the diagonal matrix
containing its eigenvalues.

• Step 4: The DMD modes are given by the columns of Φ,

Φ � X′VrΣ−1
r W (24)

These DMD modes approximate the eigenvectors of the high
dimensional matrix A (Tu et al., 2013; Kutz et al., 2016).

• Step 5: Finally, the DMD predicted state x̂(t) at any time t is
given by

x̂(t) � Φ exp(Ωt)b (25)
where b = Φ†x0, and x0 = x (t0).

x0 is the first column of X and,Ω is the vector of DMD frequencies
(ω) which are obtained from DMD eigenvalues using the relation
ω � ln |λ|

Δt , with λ being the diagonal elements of Λ.

The DMD algorithm was incorporated into the Hybrid A+ with
backtracking path planner as a way to predict the time evolution of the

FIGURE 14
Snapshots of the Path-Planning Process for the Case with Shrinking and Expanding Obstacles as well as Having Translational Motion. (A)DNT, (B)DT, (C)
INT, (D) IT, (E) BNT. (F) BT.
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dynamics of the ice obstacles. DMD will predict the motion past the
original ten time steps from the AviationWeather Service (AWS) data.
For this particular data set, DMD continued to predict the motion of

the obstacles for a total of 100 time steps forward in time. The snapshot
matrices are created by using vertex location of the obstacles at each
time step. The first ten time steps are modeled to recreate how the ice

FIGURE 15
Illustration of backtracking performed in all six path-planning scenarios: (A)DNT, (B)DT, (C) INT, (D) IT, (E) BNT, and (F) BT. The orange paths indicate the
point during the backtracking process that the stopping criterion was met.
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phenomena would change based on initial conditions from AWS, this
is a limitation as we apply a data driven technique on simulated data
rather than the actual data itself. Techniques to overcome this
limitation will be addressed in future work. Since AWS data is
continuously updated, an online DMD method can also be applied
to check the DMD’s applicability in real-time Zhang et al. (2019);
Nayak et al. (2021a) for the time-varying AWS data.

4 Results

This section presents path-planning results with static and
dynamic obstacles and a resource constraint. All computations are
performed on an AMD Ryzen 9 5900HX CPU with Radeon Graphics
at 3.30 GHz and 16.0 GB RAM on a Microsoft Windows system using
MATLAB® version R2022a. Themap is bound by the 0–100 m in the x
and y direction. The initial pose O = (10, 5, 90°) is shown as the green
dot, and the final pose G = (90, 80, 0°) is shown as the red dot for the
cases. The agent has a turn radius of 8 m and a velocity of 3 m/s. TheD
auxiliary grid was created using the agent’s constraints as shown by
δx = δy = 3 m and δψ = 0.375rad. All cases contain six static obstacles
outlined in blue and filled in with black. There is one Gaussian
distribution acting as the noise level constraint that the agent must
be able to satisfy. The magenta square is the closed node of grid D
closest to the goal.

AWS ice hazard data from 23 June 2022 was used in this paper
(red outlined with pink fill) as the starting location and shape of the
dynamic obstacles. Various cases of obstacle dynamics were
considered. These are labeled in Tables 1, 2 under the column
“Motion Type” column. The first letter is either “D”, for
decreasing, “I”, for increasing, and “B” for both increasing and
decreasing obstacles (mixed obstacle type). “NT” stands for no
translation motion, and “T” stands for translation motion. The
evolution of the dynamic ice obstacles is shown by gray outlines.
The results of DMD reduced order modeling of these obstacles’
dynamics are shown in Figures 3–8. The left plots on Figures 3–8
illustrate the first ten time steps of the ground truth obstacle
dynamics (shown in blue) and their DMD reconstruction (shown
in dotted red). The right plots show the DMD mean relative two
norm error of the approximation to training data for each obstacle.
The DMD approach is able to recreate the ground truth with a high
degree of accuracy. The total time taken to learn the surrogate
dynamics for all six cases is on the order of 1 min. As a
benchmark, the same cases were run on the Hybrid A+ without
backtracking. The algorithm was unable to find the path for all six
cases. The time it took for the algorithm to end is recorded in Table 1,
in the range of 10–15 s.Results of six separate cases are shown in
Table 2. These are described individually below.

• Case 1. This is a “DNT” scenario, shown in Figure 9. In other
words, the dynamic obstacles are all decreasing in size and not
translating. The BHA* algorithm is able to reach its goal pose in
5.31 s (compute time), returning a path length of 143.99 units.
During the graph search process, the resource constraint is
violated on numerous occasions, triggering the backtracking
routine. There were a total of 339 instances of backtracking
performed in this search. Note that this case is “easy” in the sense
that all obstacles decrease in size over time, clearing up more
flight space as time passes.

• Case 2. This is a “INT” scenario in which the obstacles all expand
so rapidly that they overlap beyond a certain point before the
agent can pass through in between them (see snapshot 33 of
50 in Figure 10). The agent is unable to pass between the two
obstacles in the middle because of the resource constraint.
Eventually, the obstacle on the right nearly engulfs the goal
location such that it is not possible to achieve the desired pose of
0 deg heading. In this case involving aggressively expanding
dynamic obstacles, no solution exists.

• Case 3. This represents a “BNT” scenario with a mixture of
expanding and shrinking obstacles, none translating (see
Figure 11). The goal is reached with a path length,
compute time and backtracking characteristics that are
comparable to Case 1 (see Table 2). This is because the
“active” obstacles (the two on the left) behave in the same
way as Case 1.

• Cases 4–6. All of these scenarios include translational motion of
the obstacles. Figure 12 considers shrinking obstacles (scenario
“DT”), Figure 13 considers growing obstacles; Figure 14
considers a mixed collection of obstacles in addition to
translation. All cases are able to reach the goal with
characteristics as shown in Table 2.

It is not surprising that the scenarios involving obstacles of
growing size require the backtracking procedure to be activated
most frequently (702 backtracking instances required for “INT”,
without success, of course). The optimization routine tries its best
to find a keyhole trajectory between the two obstacles in the middle
of the domain as the other options are closed out due to
overlapping obstacles. However, the open region between the
two obstacles in the middle is also a region of heavy loading,
causing multiple failed attempts at backtracking. The most benign
case for backtracking is “DT” as the obstacles decrease in size and
generally tend to steer clear of the UAV’s path. Finally, note that
the compute time for all scenarios that admit a valid solution is
relatively small. Numbers shown in this Table do not include the
time taken to learn the DMD reduced order models of the obstacles
(adds a few additional seconds, less than 10 s per case). Recall that
resource constrained path planning is NP hard and while the
optimal solution can be found using mixed integer linear
programming (MILP), the computational load is prohibitive.
Alternatively, the Lagrange Relaxation approach Ahujia et al.
(1993); Bertsekas (1999) can be employed to transform the
problem into a dual problem that leads to a relaxation of the
constraint coupling. It uses Dijkstra’s algorithm in an iterative
manner by modifying the edge weights until the constraint is met.
While the LARAC approach improves upon the MILP formulation,
it still requires two orders of magnitude greater compute time that
the proposed backtracking method. Graph search without
backtracking (e.g., traditional hybrid Ap) is either severely
suboptimal or simply infeasible because of the naive manner in
which it classifies nodes as inadmissible.

The load accumulated by the noise constraint is shown for the
six cases in Table 2 under the “Noise Load” column. For each case
that reached the goal, the load was below the maximum constraint
of 6. The backtracked paths for each of the six cases are shown on
the plots of Figure 15. The green line is the path that the agent took
from the start to the goal node, while the blue and orange lines are
the backtracked paths that the agent did not take. The blue and
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orange paths are to better visual the backtracked paths, to
differentiate the different backtracked paths. The blue lines
show the full backtracked path, while the orange is showing
where the backtrack path begins. While the dynamic obstacles
moved in different directions and grew or shrank in each case, the
path planner found similar paths with loading of the noise
constraint and the path length to be in the same magnitude.
The time is for each case is 4–6 s.

As a final note, we point out that it is very easy to construct
scenarios in which BHA* will fail to generate a solution, e.g., an
obstacle that expands rapidly to fill up most of the solution space. In
cases like these, the presented approach as no mechanism to “pick-up”
the search from a previously concluded search that ended in
premature failure. We remind the reader that in this work, each
instance of path-planning is considered as a stand-alone problem and
there is no provision for re-planning. In its current state, the presented
work is purely academic. An elaborate testing plan (both in simulation
environments and actual flight tests) is needed to achieve the
verification and validation of the proposed methodology. Results in
this section demonstrate scalability of the presented approach. It is
flight readiness will only be ascertained through rigorous testing in
hardware.

5 Conclusion

This paper considers path planning with resource constraints and
dynamic obstacles for a Dubins agent. Path planning with dynamic
obstacles and resource constraints creates a more realistic model of
what an agent will encounter during its missions. A DMD reduced-
order modeling approach is developed to learn obstacle dynamics for a
range of translational and shape deformation motions. The forecast
location and shape of dynamic obstacles is provided to a backtracking
hybrid Ap search for determination of the shortest path to the agent’s
goal pose. The backtracking hybrid-Ap algorithm is able to handle
path-dependent resource constraints by receding the graph search
when the resource constraint is violated. This allows load-shedding,
leading to rapid discovery of keyholes around regions of high path
loading.

While this study used initial ice data from the Aviation Weather
Service (AWS), there is room for additional research in applying
DMD recursively to AWS to better capture obstacle dynamics. The
overall compute time of the proposed methodology is low
compared to existing techniques for resource-constrained
problems.

Future work includes further improvement in the efficiency of the
algorithm in a 2D environment and integration of dynamic obstacles
in a 3D environment. This entails improving the backtracking

stopping criterion, and integration of the backtracking approach
with other optimal path-planning techniques. Other areas of
improvement include adding a re-planning module that can
leverage results from previous cycles of planning. Of course, there
is also the problem of flight integration and eventual certification of
the presented path-planning approach through rigorous verification
and validation techniques.
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