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Multidisciplinary systems comprise several disciplines that are connected to

each other with feedback coupled interactions. These coupledmultidisciplinary

systems are often observed through sensors providing noisy and partial

measurements from these systems. A large number of disciplines and their

complex interactions pose a huge uncertainty in the behavior of

multidisciplinary systems. The reliable analysis and monitoring of these

partially-observed multidisciplinary systems require an accurate estimation of

their underlying states, in particular the coupling variables which characterize

their stability. In this paper, we present a probabilistic state-space formulation of

coupled multidisciplinary systems and develop a particle filtering framework for

state estimation of these systems through noisy time-seriesmeasurements. The

performance of the proposed framework is demonstrated through

comprehensive numerical experiments using a coupled aerostructural

system and a fire detection satellite. We empirically analyze the impact of

monitoring a single discipline on state estimation of the entire coupled system.
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1 Introduction

The world, shaped as it is today by the progress in science and technology, is marked

by the development of new, increasingly complex engineering systems. These systems

often consist of several disciplines interacting with each other, typically with a great deal of

uncertainty associated with each discipline (Ghoreishi, 2016). In these complicated

multidisciplinary systems, the interaction between disciplines can be feedforward

coupling (in which case, the output of an upstream discipline becomes an input to a

downstream discipline) or the interaction can be feedback coupling (in such a way that the

output of one discipline is input to the other discipline and vice versa). Coupled

multidisciplinary systems are found in many applications, particularly in aerospace

engineering, such as modeling aerostructural-thermal coupling in hypersonic flight

(Culler and McNamara, 2010), turbine-engine cycle analysis (Hearn et al., 2016),

satellite performance analysis (Larson and Wertz, 1992; Zaman and Mahadevan,

2013), topology optimization (Dunning et al., 2011), and more.
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Analysis and optimization of multidisciplinary systems have

been extensive areas of research, and numerous studies in the

literature have dealt with various aspects of multidisciplinary

analysis in several engineering disciplines (Sobieszczanski-

Sobieski and Haftka, 1997; Hart and Vlahopoulos, 2010; Yao

et al., 2011; Meng et al., 2015; Zhang et al., 2016a; Zhang et al.,

2016b; Friedman et al., 2018). Researchers have focused on the

development of computational methods (Cramer et al., 1994;

Agarwal et al., 2004; Ghoreishi and Allaire, 2017) and the

application of these methods for multidisciplinary systems

design, analysis, and optimization (Agarwal and Renaud, 2004;

Guo and Du, 2010; Ghoreishi and Imani, 2020). Many researchers

have studied the reliability analysis and uncertainty propagation in

the design of coupled multidisciplinary systems (Gu et al., 2000;

Du and Chen, 2005; Du et al., 2008; Ghoreishi and Allaire, 2016;

Friedman et al., 2017; Ghoreishi and Imani, 2021).

Despite the broad research on the analysis of multidisciplinary

systems and the wide spectrum of developed techniques in this area,

most of the aforementioned studies have focused on the stationary

analysis of systems without taking their dynamic behavior into

account. However, the transient interactions between the disciplines

can put the system at risk if the temporal evolution of the system is

not accounted for in the design, control, and reliability analysis of

multidisciplinary systems. Moreover, the disciplines are often

partially observed as they are monitored through noisy sensor

measurements. Therefore, for the robust analysis of

multidisciplinary systems for the purpose of design or control,

there is a need to study their dynamic behavior under partial

information obtained through noisy sensors.

The goal of this paper is the dynamic analysis of coupled

multidisciplinary systems from imperfect information acquired

from noisy sensors. The real-time monitoring of these coupled

multidisciplinary systems is often challenging due to the large

number of disciplines and the complex interactions between the

disciplines. Reliable monitoring and analysis of these complex

systems demand for an accurate estimation of the system’s state

over time. Toward this, we present a general nonlinear/non-

Gaussian state-space representation of coupled multidisciplinary

systems. Using the proposed probabilistic state-space formulation,

we derive a particle filtering approach for dynamic state estimation

of multidisciplinary systems in the presence of noisy

measurements. The proposed framework enables the precise

estimation of the system state over time for effective control,

design, and analysis of coupled multidisciplinary systems.

The article is organized as follows. In Section 2, the detailed

description of the proposed state-space model for coupled

multidisciplinary systems is provided, followed by the state

estimation process via sequential importance resampling (SIR)

particle filter in Section 3. Section 4 presents the numerical

experiments demonstrating the state estimation results on a

coupled aerodynamics-structures system and a coupled three-

discipline fire detection satellite. Finally, Section 5 contains the

concluding remarks.

2 Partially-observed dynamic
multidisciplinary systems

A generic multidisciplinary system consists of a set of

interconnected disciplines that interact with other. The

interaction between two disciplines depends on the direction

of information flow; this interaction can be feedforward

(unidirectional) coupling or feedback (bidirectional) coupling.

A feedback coupled multidisciplinary system with d disciplines

interacting with each other dynamically at each time k can be

represented as (Asadi and Ghoreishi, 2022):

cij k( ) � fi cji k − 1( ), ui k − 1( )( ) + vi k( ), (1)

for i, j = 1, . . . d; i ≠ j, where cij(.) is the vector of coupling

variables output from discipline i and input to discipline j, ui(.) is

the vector of inputs (either independent or shared between

different disciplines) to discipline i other than the coupling

variables, fi(.) is the function associated with discipline i, and

vi(.) is the uncertainty accounting for unmodeled parts of

discipline i.

2.1 State-space model

In multidisciplinary systems, the coupling variables are the

variables that are shared among multiple disciplines, indicating

the disciplines’ internal behavior, which affect other disciplines’

behavior as they get fed into other disciplines; overall, affecting

the behavior of the system over time as a result of all couplings.

Therefore, coupling variables are the hidden parts of the system that

determine the interactions between disciplines and provide insights

about the system-level behavior. In multidisciplinary systems,

precisely estimating the values of coupling variables at each time

is required in order to achieve effective control, design, and analysis

of the system. In fact, estimating the correct state of the coupling

variables allows one to have accurate knowledge about the current

state of themultidisciplinary system as a whole and, consequently, to

make informed decisions when choosing control or design inputs to

the system or disciplines. Having the functional model of coupled

multidisciplinary systems in Eq. 1, we present a general nonlinear/

non-Gaussian state-space representation of coupled

multidisciplinary systems. We consider xk ∈ X as the state vector

of the system at time step k (k = 1, 2, . . .), containing all coupling

variables of the multidisciplinary system, defined as:

xk � cij k( ) | i, j � 1, . . . d ; i ≠ j{ }, (2)

and uk ∈ U as the vector of inputs to all disciplines, excluding the

coupling variables:

uk � ui k( ) | i � 1, . . . d{ }. (3)

We define f(.) as the vector containing all discipline

functions:
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f � fi | i � 1, . . . d{ }, (4)

that is possibly nonlinear and time-varying, describing the

evolution of the state, i.e., the state dynamics. In

multidisciplinary systems, the coupling variables are often not

directly observable, but some noisy and/or partial observations of

the states are often available, acquired via sensors. Having these

definitions, we consider the following nonlinear state-space

model describing the system and measurement models as:

xk � f xk−1,uk−1( ) + vk systemmodel( )
zk � h xk( ) + wk measurementmodel( ) (5)

where vk is the system noise with probability distribution pv
(i.e., vk ~ pv) containing the unmodeled parts of the system

dynamics, zk ∈ Z is a vector of noisy measurements, wk from the

probability distribution of pw (i.e., wk ~ pw) represents the

measurement noise due to sensor imprecisions, and h(.) is a

(possibly nonlinear) function mapping the states to the

measurements, for k = 1, 2, . . .. The system and measurement

noises vk and wk are assumed to be white in the sense that the

noises at distinct time points are independent random variables

(i.e., vk and vl, and similarly wk and wl, are independent for k ≠ l).

It is also assumed that the noise processes are independent from

each other and from the initial state x0; their distribution is

otherwise arbitrary.

For a two-disciplinary system, assuming that the

measurements are from the states in solo and a combination

of both, the state-space model can be presented as:

c12 k( )
c21 k( )[ ]︸︷︷︸

xk

� f1 c21 k − 1( ),u1 k − 1( )( )
f2 c12 k − 1( ),u2 k − 1( )( )[ ]︸︷︷︸

f xk−1 ,uk−1( )

+ v1 k( )
v2 k( )[ ]︸︷︷︸

vk

,

z1 k( )
z2 k( )
z3 k( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦︸︷︷︸
zk

�
h1 c12 k( )( )
h2 c21 k( )( )

h3 c12 k( ), c21 k( )( )
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦︸︷︷︸

h xk( )

+
w1 k( )
w2 k( )
w3 k( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦︸︷︷︸
wk

.

Clearly, the size of the measurement vector can be different

(smaller or larger) from the size of the state vector, depending on

the number of sensors and type of measurements in the system.

3 State estimation in partially-
observed dynamic multidisciplinary
systems

The general idea of the optimal state estimation filtering

problem in state-space models is to compute an optimal estimate

for the true value of the system state at time k, i.e., xk, from an

incomplete, potentially noisy set of observations Z1:k = (z1, . . . ,

zk) made on the system and inputs U1:k = (u1, . . . , uk) to the

system. In the Bayesian approach to dynamic state estimation,

the posterior state given all measurements and inputs up to time

k is constructed as:

p xk | Z1: k,U1: k( ). (6)

In the remainder, the sequence of inputs will be left out for

ease of notation. In many design problems and analyses of

multidisciplinary systems, it is required to estimate the system

state every time that a noisy measurement is received. This state

estimation can be achieved by recursively applying the prediction

and update stages of Bayesian filtering approaches

(Arulampalam et al., 2002).

Let p(xk−1|Z1:k−1) be the available conditional distribution of

the state at time step k—1 given measurements Z1:k−1. In the

prediction stage of the filter, according to the

Chapman–Kolmogorov equation under the Markovian

property of the system model in Eq. 5, the state at time k can

be predicted as:

p xk | Z1: k−1( ) � ∫p xk | xk−1( )p xk−1 | Z1: k−1( )dxk−1. (7)

In this prediction stage, the Markov process of order one in

the system model in Eq. 5 that provides a probabilistic model of

the state evolution, allows us to use the fact that p(xk|xk−1, Z1:

k−1) = p(xk|xk−1).
After observing the measurement zk at time step k, the state

estimate at time step k using the Bayes’ theorem can be

updated to:

p xk | Z1: k( ) � p zk, xk | Z1: k−1( )
p zk | Z1: k−1( ) � p zk | xk( )p xk | Z1: k−1( )

p zk | Z1: k−1( ) ,

(8)
where the likelihood p(zk|xk) representing the conditional

probability of the measurement zk given the predicted state xk
can be obtained from the measurement model in Eq. 5 and the

known statistics of the measurement noise vk, p(xk|Z1:k−1) is the

prior computed in Eq. 7 and the normalizing constant can be

computed as:

p zk | Z1: k−1( ) � ∫p zk | xk( )p xk | Z1: k−1( )dxk. (9)

The recurrence relations in Eqs 7, 8 construct the

“prediction” and “update” stages of the optimal Bayesian

solution that cannot be determined analytically, and particle

filters or sequential Monte Carlo methods as a set of Monte

Carlo (MC) algorithms can be used to solve the filtering problem

approximately.

3.1 Sequential importance resampling
filter

Sequential Importance Resampling (SIR) (Gordon et al.,

1993) filter is a common particle filter that can be applied to

recursive Bayesian state estimation. The key idea in SIR is to

approximate a target posterior density function p(x) using a set of
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random samples {xi}Ni�1 drawn from a proposal distribution

q(x) that is easier to sample from. The bias created by

sampling from the proposal instead of the target is

compensated by associating proper weights {ωi}Ni�1 to the

samples, computed as:

ωi ∝
p xi( )
q xi( ), (10)

where the associated weights are normalized such that∑N
i�1ωi � 1. Then, a weighted approximation to the density

p(.) is given by:

p x( )≈ ∑N
i�1

ωi δ x − xi( ), (11)

where δ(.) denotes the Dirac delta function. Importance

resampling, which is based on the Radon-Nikodynm

theorem (Glynn and Iglehart, 1989), allows us to draw

samples from the target distribution by re-weighting the

samples drawn from the proposal distribution, and then

resample from them with replacement. The iterative re-

weighting of available sample information to compute

estimates based on these samples and weights is achieved

using sequential importance resampling (SIR). SIR will consist

of independent draws from p(.) asN→∞ (Smith and Gelfand,

1992).

Returning to the recursive Bayesian state estimation problem,

the target density function is the posterior density function of

state at time step k given all measurements up to time k,

i.e., p(xk|Z1:k), that can be derived as:

p xk | Z1: k( ) ∝ p zk | xk( )p xk | xk−1( )p xk−1 | Z1: k−1( ). (12)

We consider p(xk|xk−1) as the proposal distribution that is

easy to be sampled as the system dynamics is known in Eq. 5. We

start the particle-based state estimation by drawing N particles

from the initial state distribution as:

x0,i{ }Ni�1 ~ π0, (13)

where π0 represents the initial belief about the distribution of states,

and the associated weights are set to {ω0,i}Ni�1 � 1
N. Assuming that the

pairs {xk−1,i,ωk−1,i}Ni�1 consist of the particles and their associated

weights at time k—1 approximating p(xk−1|Z1:k−1), the particles

{xk,i}Ni�1 representing p(xk,i|xk−1,i) can be obtained as:

xk,i ~ f xk−1,i, uk, vk( ), (14)

and their associated weights at time k according to Eq. 12 can be

updated as:

ωk,i ∝ p zk | xk,i( )ωk−1,i. (15)

However, noting that resampling is applied at every time

step, we have {ωk−1,i}Ni�1 � 1/N; therefore

ωk,i ∝ p zk | xk,i( ). (16)

The weights given by the proportionality in Eq. 16 are then

normalized, which construct a categorical distribution.

Categorical distribution is a discrete probability distribution

describing the probability that a random variable will take on

a value that belongs to one of N categories, where each category

has a probability associated with it. After drawing N samples

from this distribution in the resampling process, we achieve the

set {xk,i,ωk,i}Ni�1. Finally, the conditional distribution of the state

at time step k, can be computed as:

p xk | Z1: k( )≈ ∑N
i�1

ωk,i δ xk − xk,i( ). (17)

The computational complexity of SIR particle filter at each

time step is O(N) (Doucet et al., 2009). An iteration of SIR is

presented in Algorithm 1.

4 Numerical experiments

In this section, the SIR particle filter is implemented for state

estimation of a coupled aerodynamics-structures system and a

three-discipline fire detection satellite.

FIGURE 1
Coupled aerodynamics-structures system.
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4.1 Coupled aerodynamics-structures
system

The first problem is a two-dimensional airfoil in airflow

model adapted from (Sobieszczanski-Sobieski, 1990).

Figure 1 shows this system in which the airfoil is

supported by two linear springs attached to a ramp and

the airfoil is permitted to pitch and plunge. A complete

description of the problem can be found in (Sobieszczanski-

Sobieski, 1990). A block diagram of the system is shown in

Figure 2. In this problem, the coupling variables are the lift L

and the elastic pitch angle ϕ which are the system states

represented as:

Lk � qBC 2π ϕk−1 + ψ( ) + r 1 − cos
π

2
ϕk−1 + ψ( )

θ0
( )[ ]( ) + vL,k,

ϕk �
Lk−1

k1 1 + p( ) − Lk−1p
k2 1 + p( )( ) 1

C �z2 − �z1( ) + vϕ,k,

(18)
where q = 1 N/cm2, B(span) = 100, C(chord) = 10 cm, ψ =

0.05 rad, r = 0.9425, θ0 = 0.26 rad, p = 0.1111, k1 = 4000 N/

cm, k2 = 2000 N/cm, �z1 � 0.2, and �z2 � 0.7. The state noises are

assumed to be unbiased normally distributed as vL,k ~ N (0, σ2vL )
and vϕ,k ~ N (0, σ2vϕ ). The states are partially observable through
noisy measurements as:

zk � Lk + wL,k

ϕk + wϕ,k
[ ],

where wL,k ~ N (0, σ2wL
) and wϕ,k ~ N (0, σ2wϕ

).
In the first part of this numerical experiment, in order

to ensure that the coupling between the disciplines is satisfied

in our proposed state-space Markov model, we compare

our dynamic model with the Gibbs sampling process

(Geman and Geman, 1984) which is a common approach

in the analysis of coupled multidisciplinary systems. As it

can be seen in Figure 3, the stationary distribution of the

coupling variables achieved by our dynamic analysis is

statistically similar to the one achieved by the Gibbs

sampling process.

In the following experiments, the impacts of state

noise, measurement noise, initial state distribution, and

measured state variables on the performance achieved in

the state estimation process are studied. In all the

experiments, synthetic state trajectories are generated and

the root mean squared error between the estimated state at

time step k (L̂k and ϕ̂k) and the true state (Lk and ϕk) is

computed at each time step. These results are obtained over

100 independent runs of the particle filtering scheme. The

root mean squared errors in different experiments are

presented for comparison.

4.1.1 State noise
In this part of numerical experiments, the effect of state noise

on the state estimation performance is investigated. We consider

the following state noises:

State Noise 1: σ2vL � 10 σ2vϕ � 10−8

State Noise 2: σ2vL � 100 σ2vϕ � 10−6

The number of particles is set to 10,000, the variances of

measurement noises are σ2wL
� 10 and σ2wϕ

� 10−8, and the initial

state distribution π0 is considered to be:

N 1000
1

[ ], 100 0
0 0.1

[ ]( ).
Figure 4 shows the average results obtained for the state

noises. It can be seen that a larger state noise results in lower

performance of state estimation. This is due to the higher

stochasticity in the state process that makes the estimation

process more challenging. The error curves for both state

noises show a decreasing trend, which indicates that the state

estimates become arbitrarily close to the true values for a

sufficiently long time.

4.1.2 Measurement noise
In this part, the effect of measurement noise on the

performance of state estimation is investigated. For this

analysis, we consider the following measurement noises:

MeasurementNoise 1: σ2wL
� 10 σ2wϕ

� 10−8

MeasurementNoise 2: σ2wL
� 100 σ2wϕ

� 10−4

The number of particles is 10,000, the variances of state

noises are set to σ2vL � 10 and σ2vϕ � 10−8, and the initial state

distribution π0 is considered to be:

N 1000
1

[ ], 100 0
0 0.1

[ ]( ).
Figure 5 shows the results obtained over 100 independent

runs for the two considered measurement noises. As expected,

the performance of state estimation significantly decreases with

the increase in the measurement noise. This can be seen by the

higher error of state estimation for the case of measurement

noise 2.

FIGURE 2
Block diagram of the coupled aerodynamics-structures
system.
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FIGURE 3
The particles representing the stationary distributions obtained by the Gibbs sampling process (red) and our proposed Markov model (blue).

FIGURE 4
The root mean squared error (RMSE) between the true and estimated states L and ϕ over 100 independent runs for State Noise 1: σ2vL �
10, σ2vϕ � 10−8 and State Noise 2: σ2vL � 100, σ2vϕ � 10−6.

FIGURE 5
The root mean squared error (RMSE) between the true and estimated states L and ϕ over 100 independent runs for Measurement Noise 1:
σ2wL

� 10, σ2wϕ
� 10−8 and Measurement Noise 2: σ2wL

� 100, σ2wϕ
� 10−4.
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4.1.3 Initial state distribution
In this part of numerical experiments, we study the impact of

initial state distribution, π0, on the performance of state

estimation. We consider two initial distributions:

π1
0: N 1000

1
[ ], 10 0

0 0.01
[ ]( )

π2
0: N 1000

1
[ ], 100 0

0 0.1
[ ]( )

The number of particles is 10,000, the variances of state

noises are σ2vL � 10 and σ2vϕ � 10−8, and the variances of

measurement noises are σ2wL
� 10 and σ2wϕ

� 10−8. Figure 6

shows the average results for the two initial state

distributions. It can be seen that the tighter initial

distribution results in better state estimation in the first

time steps. The difference in the performance in the early

steps arises from the distribution of initial particles and this

difference disappears as more measurements are available

for the state estimation.

4.1.4 Measured state variables
In this part, we study the impact of measuring only part of

the states on the performance achieved by the particle filter.

We consider three cases of measuring only L, measuring ϕ,

and measuring both L and ϕ. For this analysis, the number of

particles is 10,000, the variances of state noises are σ2vL � 10

and σ2vϕ � 10−8, and the variances of measurement noises are

σ2wL
� 10 and σ2wϕ

� 10−8 and the initial state distribution π0 is

considered to be:

N 1000
1

[ ], 100 0
0 0.1

[ ]( ).

FIGURE 6
The root mean squared error (RMSE) between the true and estimated states L and ϕ over 100 independent runs for two initial state distributions
π10 and π20.

FIGURE 7
The root mean squared error (RMSE) between the true and estimated states L and ϕ over 100 independent runs for cases of measuring both or
only one of the state variables.
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Figure 7 shows the results obtained for these three cases.

As expected, measuring both L and ϕ results in a good

state estimation performance as it provides the highest

information about the system. Once we measure only one

of the state variables L or ϕ, the estimation error associated

with the measured variable is minimum and the

error associated with the other state variable is high.

However, it can be seen that each of the measured state

variables provides information for the estimation of the other

state variable due to the correlations that exist between the

two variables.

4.2 Three-discipline fire detection satellite
model

In this part, the SIR particle filter is analyzed on state

estimation in a fire detection satellite model originally

described in (Larson and Wertz, 1992). This is a

hypothetical but realistic spacecraft consisting of a large

number of disciplines with both feedback and feed-forward

couplings. Here, we consider the modified version of this

problem consisting of a subset of three disciplines considered

earlier by Chaudhuri et al. (2017) and Sankararaman and

Mahadevan (2012). This modified multidisciplinary system

consists of Orbit, Attitude Control, and Power disciplines,

illustrated in Figure 8. The primary objective of this satellite is

to detect, identify, and monitor forest fires in near real time.

This satellite is intended to carry a large and accurate optical

sensor of length 3.2 m, weight 720 kg and has an angular

resolution of 8.8 × 10−7 radians. As seen in Figure 8, the Orbit

discipline has feed-forward coupling with both Attitude

Control and Power disciplines, whereas the Attitude

Control and Power disciplines have feedback or

bidirectional coupling through three variables. These

coupling variables are the attitude control system power

(PACS) and the maximum and minimum moment of inertia

of the spacecraft (Imax and Imin), considered as the state

variables. The system model that is the functional

relationships between the state variables is as follows:

PACS
k � ωmax max

4θslew

Δtslew( )2Imax
k−1 ,⎛⎝��������������������������������������������

3μ|Imax
k−1 − Imin

k−1| sin 2θ( )
2 RE +Hk−1( )3( )2

+ LspF
S

C
AS 1 + q( )cos i( )( )2

+
2MRD

RE +Hk−1( )3( )2

+ 1
2
LaρCdAv2( )2

√√√√√ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+nPhold + v1,k,

(19)

FIGURE 8
Three-discipline fire detection satellite.
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Imax
k � max 2ρsa

����������
f PACS

k−1( )rlw
nsa

√ �������
f PACS

k−1( )
rlwnsa

√
t( 1
12

f PACS
k−1( )rlw
nsa

+ t2( )⎛⎝
+ D + 1

2

��������
PACS
k−1( )rlw
nsa

√⎛⎝ ⎞⎠2⎞⎠
+IbodyX , 2

12
ρsa

����������
f PACS

k−1( )rlw
nsa

√ �������
f PACS

k−1( )
rlwnsa

√
t t2 + f PACS

k−1( )
rlwnsa

( )
+IbodyY , 2ρsa

����������
f PACS

k−1( )rlw
nsa

√ �������
f PACS

k−1( )
rlwnsa

√
t

1
12

f PACS
k−1( )rlw
nsa

+ f PACS
k−1( )

rlwnsa
( )(

+ D + 1
2

����������
f PACS

k−1( )rlw
nsa

√⎛⎝ ⎞⎠2⎞⎠ + IbodyZ⎞⎠ + v2,k, (20)

Imin
k � min 2ρsa

����������
f PACS

k−1( )rlw
nsa

√ �������
f PACS

k−1( )
rlwnsa

√
t( 1
12

f PACS
k−1( )rlw
nsa

+ t2( )⎛⎝
+ D + 1

2

��������
PACS
k−1( )rlw
nsa

√⎛⎝ ⎞⎠2⎞⎠
+IbodyX , 2

12
ρsa

����������
f PACS

k−1( )rlw
nsa

√ �������
f PACS

k−1( )
rlwnsa

√
t t2 + f PACS

k−1( )
rlwnsa

( )
+IbodyY , 2ρsa

����������
f PACS

k−1( )rlw
nsa

√ �������
f PACS

k−1( )
rlwnsa

√
t

1
12

f PACS
k−1( )rlw
nsa

+ f PACS
k−1( )

rlwnsa
( )(

+ D + 1
2

����������
f PACS

k−1( )rlw
nsa

√⎛⎝ ⎞⎠2⎞⎟⎟⎠ + IbodyZ⎞⎟⎟⎠ + v3,k, (21)

where

TABLE 1 List of variables in the fire detection satellite problem.

Variable Symbol Unit Value

Earth’s radius RE m 6,738,140

Gravitational parameter μ m3s−2 3.986 × 1014

Target diameter ϕtarget m 235,000

Light speed C ms−1 2.9979 × 108

Area reflecting radiation As m2 13.85

Sun incidence angle i deg 0

Slewing time period Δtslew s 760

Magnetic moment of earth M Am2 7.96 × 1015

Atmospheric density ρ kgm−3 5.1480 × 10−11

Cross-sectional in flight direction A m2 13.85

No. of reaction wheels n − 3

Maximum velocity of a wheel ωmax rpm 6,000

Holding power Phold W 20

Inherent degradation of array Id − 0.77

Power efficiency η − 0.22

Lifetime of spacecraft LT Years 15

Degradation in power production capability ϵdeg %peryear 0.0375

Length to width ratio of solar array rlw − 3

Number of solar arrays nsa − 3

Average mass density to arrays ρsa kgm3 700

Thickness of solar panels t m 0.005

Distance between panels D m 2

Moments of inertia of spacecraft body Ibody kgm2 Ibody,X = Ibody,Y = 6,200; Ibody,Z = 4,700

Power other than ACS Pother W 1,000

Average solar flux Fs W/m2 1,400

Deviation of moment axis θ deg 15

Moment arm for radiation torque Lsp M 2

Reflectance factor q − 0.5

Residual dipole of spacecraft RD Am2 5

Moment arm for aerodynamic torque La M 2

Drag coefficient Cd − 1
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θslew � arctan
sin ϕtarget

RE( )
1 − cos ϕtarget

RE( ) + H
RE

⎛⎝ ⎞⎠,

f PACS( ) � PACS + POther( ) Δteclipse
0.6 + Δtorbit−Δteclipse( )

0.8( )
Δtorbit−Δteclipse( )ηFSIl
cos i( ) 1−ϵdeg( )LT

,

Δtorbit � 2π

���������
RE +H( )3

μ

√
� 2π RE +H( )

v
,

Δteclipse � Δtorbit
π

arcsin
RE

RE +H
( ), v �

������
μ

RE +H

√
,

and v1,k ~ N (0, 10), v2,k ~ N (0, 50), and v3,k ~ N (0, 50).
Altitude (H) is the time-varying input to the system, that is:

Hk � 18 × 106 + 2 × 106 × sin
kπ

10
( ). (22)

The values associated with the variables in the system model

are provided in Table 1. The states are partially observable

through noisy measurements as:

zk �
PACS
k + w1,k

Imax
k + w2,k

Imin
k + w3,k

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦,
where w1,k ~ N (0, 1), w2,k ~ N (0, 5), and w3,k ~ N (0, 5).

In this problem, we study the impact of different sensor

measurements on the estimation of the state variables. Like the

previous experiment, we generate synthetic state trajectories and

perform the state estimation for 100 independent runs. We

compare the results obtained by the particle filter in different

cases of sensor measurements, when the measurements are from

each state variable PACS, Imax, Imin and all the state variables

denoted by X. For this analysis, the number of particles is set

to 100,000, and the initial state distribution π0 is considered to be:

N
50
1000
1000

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, 10 0 0
0 100 0
0 0 100

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠.

Figure 9 shows the root mean squared errors between the

estimated states at time step k (P̂
ACS
k , Î

max
k , and Î

min
k ) and the

true states (PACS
k , Imax

k , and Imin
k ) at each time step for different

measured variables. As expected, measuring all states together

results in a good state estimation performance as they provide

the highest information about the system. The results

demonstrate that when we measure only one of the state

variables PACS, Imax, or Imin, the estimation error associated

with the measured variable is minimum and the errors

associated with the other state variables are high. However,

it can be seen that each of the measured state variables provides

information for the estimation of the other state variables due to

the correlations existing between the variables.

FIGURE 9
The root mean squared error (RMSE) between the true and estimated states over 100 independent runs for cases of measuring all or only one of
the state variables.
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5 Conclusion

Coupled multidisciplinary systems that are common in

many engineering and science applications, consist of several

disciplines interacting with each other. In most previous

literature, the stationary state of coupled multidisciplinary

systems has been studied without considering the time-

varying interaction of the disciplines. However, the

transient behavior of these systems in real-world

applications is of great importance. In this paper, we

studied the dynamic transition (i.e., the time-varying

interaction of disciplines) in coupled multidisciplinary

systems as opposed to their stationary behavior. The

transient interactions between the disciplines can put the

system at risk if the temporal evolution of the disciplines is

not accounted for in the system’s design, control, and

reliability analysis. To analyze this transient behavior, we

presented a Markov state-space modeling of coupled

multidisciplinary systems. By having this state-space

formulation, we developed a particle filtering scheme for

the state estimation of these complex multidisciplinary

systems. Assuming that we have noisy observations from

all or some of the disciplines, we investigated the impact of

stochasticities and sensor measurements on the estimation

process. The accurate estimation of the states through

imperfect measurements is an essential step in the

dynamic analysis of multidisciplinary systems to achieve

reliable decision-making in their operation, considering

each discipline’s constraints and preventing any severe

damage once interacting with each other.
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