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Optical neural networks implemented with Mach-Zehnder Interferometer (MZI)
arrays are a promising solution to enable fast and energy-efficient machine
learning inference, yet finding a practical application has proven challenging
due to sensitivity to thermal noise and loss. To leverage the distinct advantages of
integrated optical processors while avoiding its shortcomings given the current
state of optical computing, we propose the binary optical trigger as a promising
field of application. Implementable as small-scale application-specific circuitry
on edge devices, the binary trigger runs binary classification tasks and output
binary signals to decide if a subsequent energy intensive system should activate.
Motivated by the limited task complexity, constrained area and power budgets of
binary triggers, we perform 1) systematic, application-specific hardware pruning
by physically removing specific MZIs, and 2) application-specific optimizations in
the form of false negative reduction and weight quantization, as well as 3)
sensitivity studies capturing the effect of imperfections in real optical
components. The result is a customized MZI-mesh topology, MiniBokun
Mesh, whose structure provides adequate performance and robustness for a
targeted task complexity. We demonstrate in simulation that the pruning
methodology achieves at least 50% less MZI usage compared to Clements
and Reck meshes with the same input size, translating to at least between
4.6% and 24.2% savings in power consumption and a 40% reduction in
physical circuitry footprint compared to other proposed unitary MZI
topologies, sacrificing only 1%–2% drop in inference accuracy.
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1 Introduction

Optical processors are known for their fast, efficient computation-by-propagation and
high energy efficiency. Applying optical processing to machine learning is particularly
promising: while optical processors are sensitive to noise, crosstalk, and optical signal
attenuation, machine learning is error-tolerant by definition, and benefits substantially from
the low-power matrix-vector multiplication (MVM) made possible by optical neural
networks (ONNs) (McMahon, 2023).

Previous studies on ONN focused on implementing arbitrary weight matrices (Miller,
2013; Shen et al., 2017; Zhang et al., 2021; Banerjee et al., 2023) similar to the multi-layer
perceptron (MLP) (Delashmit et al., 2005) implemented on a digital computer through
singular value decomposition (SVD). This is achieved by inserting a diagonal matrix [Σ,
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implemented by one column of Mach-Zehnder Interferometers
(MZIs)] between two unitary rotation matrices (U and V*, each
implemented by a unitary MZI-mesh). TUΣ, a similar
decomposition process proposed in Zhao et al. (2019) where T is
a sparse matrix implemented by a tree-like mesh, reduces
component usage by 15%–38%. However, challenges associated
with scaling up the optical processors are significant (Al-Qadasi
et al., 2022). A deep ONN, such as a three-layer decomposition-
based structure, suffers from signal attenuation through the optical
path and layer interfaces. This can be mitigated by using only one
physical unitary mesh where one reprograms the network weight
and loops back the signals to reuse the mesh during each inference.
This approach, however, significantly increases the inference latency
and compromises the main advantage of computation-by-
propagation of an optical processor. On the other hand, a wide
ONN with large matrix dimensions poses challenges in the
calibration process, with error compounding along optical paths
(Mojaver et al., 2023). A small ONN, on the other end, limits the
dimension of the input vector and subsequently the potential field of
application. For this reason, a tiled-based multiplier (Gu et al.,
2020a; Feng et al., 2022) was proposed, where each multiplier
with limited expressiveness implements one of the sub-matrices
of the desired weight matrix. However, such approaches either
require multiple copies of the multiplier or require iterations of
weight reprogramming during inference when used for deep neural
networks on complex multi-class classification tasks, suffering from
similar hardware-reuse latency penalties.

To make the most of ONN’s low power operation while avoiding
the above-mentioned caveats, using the ONN in some efficiency-
demanding edge computing tasks is a promising application. Ideally,
the task should have low complexity so that a small-scale ONN can be
employed. For this reason, we propose using the ONN as an activation
trigger for any subsequent energy-intensive system in an edge
environment. Similar to the multi-stage architecture for facial
recognition proposed in (Bong et al., 2018) but implemented using
optical components, the optical processor will act as an ultra-lightweight
neural network that responds to a particular input event (i.e., specific
objects appearing in the input image), while being more sophisticated
than a conventional motion- or proximity-based detector (Gazivoda
and Bilas, 2022) to avoid unnecessary activation caused by any input
fluctuation, such as newly present objects of noninterest in the
monitoring area. For example, consider a smart door lock facing a
busy pedestrian street: the system ignores passersby, and only activates
an energy-intensive system (e.g., face recognition for authentication)
when someone directly faces the sensor. By triggering the subsequent
complex system only when it is needed, energy consumption can be
dramatically reduced.

With the target application in mind, further efforts can be explored
to construct a tailored ONN for the task. First, the edge execution
environment would benefit tremendously from reduced active
component usage and reduced control circuitry bit precision that is
constantly drawing power. Second, trade-offs can be made between the
rate of false activation and the rate of trigger miss, depending on the
specific application. To reduce the number of active components, we
explored a pruning approach inspired by machine learning, where low-
saliency components with minimal impact on overall system
performance are removed from an initially over-parametrized optical
neural network while maintaining prediction accuracy. Regarding

application-specific trade-offs, we examined methods for reducing
false negatives and quantization for the proposed binary optical trigger.

In this paper, given the ONN’s fast and efficient computation ability
yet with low scalability, we propose the binary optical trigger, a
lightweight optical neural network designed for binary classification.
The binary optical trigger has a structure similar to a traditional fully
connected neural network but is composed of amesh ofMZIs, where the
weight matrix is controlled by phase values programmed into the phase
shifters. Our proposedONN application and its associated optimizations
diverge from previously reported efforts aimed at moderate classification
tasks beyondMNIST, which often results in impractically large photonic
circuits or extensive component reuse. Instead, our work focuses on
binary classification tasks to trigger subsequent energy-intensive systems.
Given the promising energy efficiency of ONNs, despite their early stage
of development, this niche and innovative application effectively
leverages their advantages in a practical, targeted manner. We then
systematically explore the pruning of well-established unitary MZI
topologies to optimize it as a trigger, leading to a new, application-
specific topology named MiniBokun. Through simulation, we
demonstrate that MiniBokun, when used as the binary optical
trigger, prunes away at least 50% of the MZIs from a standard
unitary at the cost of 1%–2% accuracy impairment—leading to a
conservatively estimated power saving of 24% and an area reduction
of 40%. The paper is structured as follows: we first cover the ONN
background in Section 2. Our experimental setup, application-specific
optimization, pruning approach, phase noise considerations, and
estimations regarding a physical system (power, latency and area) are
described in Section 3. The results, obtained through the methodology
described in Section 3, are presented and analyzed in Section 4. Followed
by the conclusion in Section 5.

2 Background

2.1 MZI basics

Our optical processor adheres to anMZI-based architecture, taking
advantage of its capability of realizing signed, complex-valued weights
(Mourgias-Alexandris et al., 2022). The MZI-based neural network
accelerator consists of a mesh of 2 × 2 reconfigurable MZI building
blocks topologically arranged to form an optical processor unit, as
shown at the top of Figure 1. Each building block splits the optical signal
and adjusts the relative phase difference through the internal phase
shifter (θ, colored in orange). Next, the phase of the recombined optical
signal is programmed through the external phase shifter (ϕ, colored in
blue). The transformation matrix of a single MZI building block,
[DMZI], mapped to the optical processor can be expressed as

DMZI[ ] � jej
θ
2( )

ejϕ sin
θ

2
( ) ejϕcos

θ

2
( )

cos
θ

2
( ) −sin θ

2
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

with {θ,ϕ} ∈ [0, 2π). The output field is expressed as the multiplication
of the transformation matrix and the input field, i.e., a matrix-vector
multiplication. Each processor behaves as one fully connected layer and
an equal number of inputs and outputs, though only covering unitary or
sub-unitary space as opposed to arbitrary linear space.
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2.2 MZI-based optical processor topology
and mathematical model

Larger transformation matrices can be realized by organizing
these 2 × 2 units in different topologies (one example is shown in
Figure 1A) such that each [DMZI] in Equation 1 is multiplied and
concatenated (Shokraneh et al., 2020). Well-established unitary
topologies such as Reck (Reck et al., 1994), Clements (Clements
et al., 2016), Diamond (Shokraneh et al., 2020) and Bokun (Mojaver
et al., 2023) each have their advantage and drawback on physical
footprint, calibration difficulty, and loss-balance properties
(Mojaver et al., 2023).

Considering the specific topology, the transformation matrix,
[W(N×N)], represented by an ONN mesh of size N × N, given the
placement of the MZIs and the phase shifter value pair (θ, ϕ) of each
MZI in the mesh, can be defined by:

W N×N( )[ ] � D K( )
MZI[ ]

HN×N
· D K−1( )

MZI[ ]
HN×N

·/ · D i( )
MZI[ ]

HN×N

·/ · D 2( )
MZI[ ]

HN×N
· D 1( )

MZI[ ]
HN×N

(2)

where,

D i( )
MZI[ ]

HN×N
�

1 0 / 0 0
0 1 / 0 0
..
. ..

.
D i( )

MZI[ ] ..
. ..

.

0 0 / 1 0
0 0 / 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

, 1≤ i≤K (3)

In Equation 2, K is the total number of MZIs in the mesh (e.g.,
K � 45, 21 in Figures 1A, D, respectively). The subscript HN×N

denotes that the MZI’s transformation matrix (i.e., Equation 1)
occupies a 2-dimensional subspace within aN × NHilbert space, as

shown in Equation 3. As an example, MZI 11 in Figure 1A has its
upper and lower branch aligned with waveguides 3 and 4,
respectively, therefore, [D(11)

MZI]HN×N
is a matrix whose four entries

located on row and column 3-4 are replaced by [D(11)
MZI], with 1s on

the remaining diagonal entries and 0s elsewhere. Note that the
waveguide number and matrix entries are zero-indexed.

At mostN2 −N tunable parameters (i.e., phase shifters) are used
in representing [W(N×N)]. However, an arbitrary N × N complex
matrix requires 2N2 parameters. Consequently, as indicated by the
SVD process and mentioned in Section 2.1, [W(N×N)] is a unitary or
sub-unitary transformation matrix as opposed to a linear one. This
implies that the entries in the matrix are not completely independent,
and thus the weight matrix has a smaller learnable space than a
conventional fully-connected layer (Miller, 2013).

Given an arbitrary mesh formed by the removal of a subset of
MZIs from a full N × N mesh (i.e., Clements topology shown in
Figure 1A), a more intuitive way of interpreting Equation 2 is to
group MZIs into vertical columns, as shown in Figure 1B, the layer-
wise transformation performed byMZI column j is denoted by [Tj].
[Tj] will be a matrix similar to [D(i)

MZI]HN×N
, but with potentially

more than one 2 × 2 block on the diagonal being replaced by
transformation matrices of the MZIs existing on that column.
[W(N×N)] can thus alternatively be written as:

W N×N( )[ ] � ∏N−1

j�0
TN−1−j[ ] (4)

The interpretation in Equation 4 gives insight into the
transformation performed by each MZI column while
providing a clearer picture of how each MZI is ordered
in Equation 2.

FIGURE 1
Structure of an MZI and MZI-based ONN. (A) A 10 × 10 Clements Topology. (B) A random subset of the MZIs, shown in transparency, is pruned away
from (A), forming a customized topology. (C) Specific Pruning of Clements to obtain MiniBokun Topology, for usage as a binary trigger. (D) MiniBokun
Topology on its own with updated MZI numbering.
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2.3 Signal basics

2.3.1 Phasor term
A phasor is a scalar, complex value sufficient to describe the

steady state of a mono-frequency sinusoidal waveform. In the
context of an optical signal, this represents the electric field
component of the monochromatic laser. A phasor term takes the
form of:

Ei � Eejϕi (5)
In Equation 5, Ei is the phasor term for signal i, E is its real
amplitude, and ϕi represents the incoming phase seen by the
subsequent optical component on that signal’s path. The
transformation matrices of size n, representing the effect of
any combination of optical components, apply directly to the
vector composed of n incoming signals’ phasor. As an example,
the incoming signal In1 and In2 to an MZI’s input ports will
become Out1 and Out2 at the output ports, related by
Equation 6:

Out1
Out2

[ ] � DMZI[ ] In1
In2

[ ] (6)

2.3.2 Value representation and importance
of coherency

Due to difficulties of controlling the absolute phase of optical
signal (Ip et al., 2008), the incoming data (i.e., feature vectors of each
data sample) will be solely represented by the intensity (P) of the
signal, given by Pi ∝ |Ei|2, this implies that in an array of incoming
signal represented as:

�E �
E1

E2

. . .
EN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

Ein1e
jϕ1

Ein2e
jϕ2

. . .
EinNe

jϕN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

In Equation 7, only the Eini terms vary across different data, and each ϕi
takes the same value in the range [0, 2π) for all i ∈ 1, 2, . . . ,N − 1{ }. In
theory, the zero phase difference ensures eachMZI can split power to an
arbitrary ratio between its two outputs (Pout1

Pout2
∈ [0,∞]). To achieve so, a

layer of phase shifters is assumed to be present before the MZI mesh,
albeit this is omitted in the diagram.

For the correct functioning of any trained network, not only the
zero phase difference across input channels is required, but the
absolute phase of each input signal should also remain constant
throughout the network’s training and operation. As the MZI mesh
works by the principle of interference, an incoherent or varying
initial phase difference between signals will affect the intended
splitting ratio learned from network training, making the
resulting output signal array drastically different from the
expectation.

2.4 Imperfect operation

The actual implementation of optical processors faces various
aspects of imperfections, and the presence of imperfections
significantly degrades the computation accuracy of ONNs

(Shafiee et al., 2024; Gu et al., 2020b). In this work, our
investigation of the impacts of imperfections focuses on two
main sources, optical loss and phase value programming deviations.

2.4.1 Optical loss
During ONN inference, when light couples through the

waveguide, the processor suffers from inherent propagation loss.
The propagation loss eventually leads to a challenging optical power
budget, limiting the signal-to-noise ratio at the photodetectors and
reducing the classification accuracy of ONN. The linear loss values
(Llinear), transformed from loss in dB-scale (LdB) by
Llinear � 10−LdB/10, are applied to the ONNs and remain constant
at a per MZI basis. The lossy transformation matrix can be
expressed as

DMZI[ ]L � Llinear · DMZI[ ] (8)

2.4.2 Phase shifter programming deviation
The programmed phase shift can deviate from its intended value

due to thermal crosstalk (Shafiee et al., 2024). When programming a
targeted waveguide, the heat from resistive heaters can propagate to
other waveguides, creating unintended phase changes. To capture
these imperfections, we model the programmed phases with a
Gaussian distribution (θ, ϕ) ~ N((θ̂, ϕ̂), (σ2θ , σ2ϕ)) where θ̂, ϕ̂ [rad]
are phases obtained after training and quantization and (σ2θ , σ2ϕ) are
the phase variations due to thermal crosstalk.

2.5 Neural network pruning

In practice, pruning often implies the removal of neurons and
weighted connections in a structured or unstructured fashion (Nagel
et al., 2021). For neural networks (NNs) implemented by digital
processors, network pruning has been known for its benefits of
simplifying NN’s architecture, reducing computation workload and
memory footprint, and subsequently improving inference speed and
efficiency. ONNs, on the other hand, though composed of physically
integrated photonics components (e.g., MZIs), benefit from an
analogous set of advantages (Banerjee et al., 2023). First, pruning
in the hardware context means the direct removal of photonic
integrated circuit (PIC) components. The feasibility of the layout
is not only subject to the number of on-chip components but also
complicated by the requirement of a voltage supply line to each
active component (e.g., for the thermo-optic phase shifter). As the
number of components grows, this poses a significant challenge for
the layout routability and manufacturability in a two-dimensional
circuit board. The removal of PIC components immediately reduces
layout complexity and manufacturing costs. Second, each
component introduces loss to the propagating optical signal to
various extents. Reducing the number of components on one
optical path reduces the total amount of accumulated loss
experienced by that signal, improving signal-to-noise ratio (SNR)
at detection. Third, reducing the number of active components
naturally leads to less power consumption during operation.

The pruning of MZI-based ONNs was explored in previous
works. Banerjee et al. (2023) introduced a pruning algorithm and its
variants targeting large-scale SVD-based ONNs for multi-class
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classification. The algorithm is demonstrated via simulation on
networks comprising at least four unitary meshes connected by a
non-linear activation function, with 64 as the minimum network
width. In particular, their pruning is realized via power-gating or
removal of phase shifters, not the entire MZI. This implies that
imprecise beam splitters are still present in the actual physical
system. Training-time structured pruning was also conducted in
the tile-based ONN, such as the block-circulant unit in Gu et al.
(2020a). However, to the best of our knowledge, no direct MZI-level
pruning on well-established unitary meshes was explored.
Specifically, we focused on removing entire MZIs from a unitary
structure rather than power-gating active components in SVD-based
setups or setups involving component reuse. Our pruning strategy
enables a reduction in optical depth and insertion loss compared to
these previous configurations. Though unitary meshes already have
limited expressivity compared to an arbitrary linear weight matrix,
our study showed that the application as a binary optical trigger
allowed for an ultra-lightweight ONN that is pruned into deep sub-
unitary space without significantly affecting classification accuracy.

3 Materials and methods

3.1 Neuroptica

We use Neuroptica (Bartlett et al., 2019) to evaluate the
simulated performance of our ONN architectures. Neuroptica is
a Python simulation platform for coherent optical neural networks
built with integrated components, such as MZI. The platform allows
one to explore ONN architecture design, ex-situ ONN training
(Mojaver et al., 2023), and noise/loss robustness simulation of
trained ONNs. In addition to the components simulated within
the ONN mesh area, we assume the presence of a laser source and
variable optical attenuators at the ONN’s input side to produce
feature values for each data sample, though these components are
not explicitly simulated.

3.1.1 Hyperparameter selection and training
We first evaluate networks with input sizes (N) of 8, 16, 32, and

64 to understand the required network complexity given the two
datasets under consideration (to be introduced in Section 3.2). We
perform each simulation (training followed by evaluation with the
test set) five times with five different random seeds. Each model with
a random seed is trained for 50 epochs, and the phase values
obtained from the epoch that gives the highest validation
accuracy are kept for final tests. Except for special pruned cases,
the first two output ports (O0 and O1 in Figure 1A) are used for final
decision calculations. We use the test set to calculate each model’s
test accuracy and F1 score. While test accuracy provides an overall
measure of the model’s ability to classify test samples, the F1 score
offers a balanced assessment of the model’s performance in correctly
predicting both positive and negative classes in a binary
classification task.

The limited size of the ONNwe are evaluating and the resolution
of the images in the selected datasets mean that data must first be
compressed in some way prior to inference. Therefore, we use
Principal Components Analysis (PCA) to perform dimensionality
reduction. Mathematically, PCA maps n-dimensional data to a

k-dimensional subspace (k≪ n) by finding the eigenvectors that
best represent the feature distributions in the data. These
eigenvectors are decided by sorting their corresponding singular
values obtained from SVD. The higher the singular value, the more
variance in data points in the direction of the eigenvector, making
the eigenvector more representative. The top-k eigenvectors are
combined and multiplied with the original data matrix to complete
the transformation, resulting in k features that are used as the input
signal to the k × k ONN.

We make two assumptions about the input range of ONN based
on laser power consumption. The first assumption assumes a fixed
per-channel laser input range (Pi ∈ [0, 1] mW per channel). This
ensures the same input range to all channels regardless of the input
feature size (N) and the resultant overall laser power increases with
N. On the other hand, the second assumption fixes the total laser
power to 10 mW. For each input channel, Pi ∈ [0, 10N] mW. As a
result, the per-channel input range will decrease as N increases.

With these training setups, training time ranged from two to
three minutes for 8 × 8 meshes to nearly half an hour for 64 × 64
meshes on an AppleM2 Pro Processor (10 cores, 16 GBmemory and
200 GB/s memory bandwidth).

3.2 Datasets

3.2.1 MNIST
The MNIST dataset (Deng, 2012) consists of 70, 000 28 × 28

grayscale images of handwritten digits 0-9. Given that our focus is
binary classification, we modify the 10-class MNIST dataset by
aggregating samples with labels 0 − 4 and labels 5 − 9 into
samples with labels [1, 0] and [0, 1], respectively. Compared to
using any two out of the 10 classes, this approach allows us to
maximally utilize the available dataset and test the networks’
generalizability across diverse samples while avoiding biased task
complexity caused by choosing two specific classes out of ten. The
dataset is split 50, 000: 10, 000: 10, 000 to form the training,
validation, and test sets.

3.2.2 CIFAR-10
The CIFAR-10 dataset (Krizhevsky and Hinton, 2009) contains

32 × 32 images in 10 classes (airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, truck), each with three colour channels (red,
green, and blue). Similar to how we process the MNIST dataset, we
rearrange the CIFAR-10 labels to make the classification binary by
aggregating the original label of “airplanes”, “cars”, “ships”, and
“trucks” into a new group called “vehicles”; “birds”, “cats”, “deer”,
and “dogs” into a new group called “animals”. The images originally
labelled as “frog” and “horse” are removed from the dataset to ensure
the balance between data samples in the two classes. This reduces the
total image number to 48,000 with 24,000 images in each category.
The dataset is split 32, 000: 8, 000: 8, 000 to form the training,
validation, and test sets.

3.2.3 Task complexity and pruning efficacy
In both datasets, the original images have sufficient pixels to

clearly depict the represented objects. This ensures that the
complexity of any formulated task comes from the intrinsic
difficulty of distinguishing objects across different classes rather
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than from low image resolution. Depending on the specific task
complexity and the degree of over-parametrization in the network
model, varying levels of pruning can be carried out. As a result, our
aggregated classification tasks of both datasets provide meaningful
task complexity and serve as effective benchmarks for evaluating the
ONN capability and the efficacy of the pruning process.

3.3 Application-specific optimization

Apart from a grid search of hyperparameters, we consider the
following application-specific optimization methods to further
enhance the performance of the models. These optimization
methods focus on actual implementation challenges and adapt
the trained models to real-world conditions.

3.3.1 False negative reduction
The binary optical trigger structure is anticipated to be used in

event-triggered structures, where the ONN activates the rest of a
system when a pre-defined event takes place (e.g., a vehicle is detected
by ONN after training on the CIFAR-10 dataset). A key challenge in
the implementation of such a system is the optical trigger false
negatives: the pre-defined event happens, but the ONN does not
send a trigger signal, and the rest of the system fails by default.
Therefore, one goal of our work is to minimize the number of False
Negatives (FN) while maintaining the classification accuracy of ONN.

The FN reduction method considered in this work changes the
weight assigned to each label class in the loss function. We penalize
FN more severely, and the binary cross-entropy loss becomes

LBCE � −βy · log ŷ( ) − 1 − y( )log 1 − ŷ( ) (9)
where β is a constant greater than 1, and ŷ is the output from
classifier (y) after Sigmoid activation. Consequently, the gradient of
the loss function with respect to the network weight (w) becomes

∂LBCE

∂w
� −βy + β − 1( ) · yŷ + ŷ( )* · z (10)

where z is the input to the ONN layer and the complex conjugate is
taken for complex-valued neural networks.

During implementations in this work, in order to strike a trade-
off between FN reduction and the classification performance, we
train ONNmodels with different weights (β ∈ [1, 2]) assigned to the
positive class and record their effects on the FN numbers and the
test accuracy.

3.3.2 Post-training quantization (PTQ)
Programming the MZI-based building block of ONNs involves

configuring their phase shifters to form a desired transfer matrix. In
this work, we consider MZIs with phase shifters controlled by
thermally changing the phase using resistive heaters tuned by a
voltage supply (Masood et al., 2013). The relationship between the
heater control voltage (Vbias) and the intended phase shift (θ, ϕ) can
be formulated as

θ,ϕ{ } � γV2
bias, (11)

where γ � π/V2
π (Gu et al., 2020b) and Vπ refers to the required bias

voltage for programming {θ,ϕ} � π (Shokraneh et al., 2020).

Practical voltage sources have limited resolution, meaning they
can be adjusted only to a finite number of discrete voltage levels
equally spaced between the maximum and minimum values. A b-bit
voltage supply has 2b achievable voltage levels spaced apart byVres �
Vmax/(2b − 1) with the i-th voltage level being Vi � i · Vres volts.
Vmax denotes the maximum supply voltage. As we require a phase
setting range over 2π ({θ,ϕ} ∈ [0, 2π)), all the voltage levels beyond
V2π are not used and the effective bit-resolution of the voltage supply
further drops by �log2(Vmax

V2π
)�. The resultant quantized phases are

obtained by mapping the sampled voltage levels (Vi) back toVbias in
Equation 11.

Models with selected hyperparameters from the previous steps
are quantized by rounding the trained phase shifts to their nearest
quantized phase values. We choose the least voltage resolution (in
[4, 16] bits) that enables the closest ONN test accuracy to those
obtained from full resolution (32-bit) training settings.

3.4 Hardware pruning

In this section, we will use the 10 × 10 Clements topology in
Figure 1A as a running example to demonstrate a systematic way of
performing pre-training pruning of MZI-based ONN. We begin
with the Clements mesh, proven to be optimally unitary for its short
optical depth and balanced path length (Clements et al., 2016). First,
an important observation is that two output ports are sufficient for
carrying out binary training and inferences. As indicated in
Figure 1A, regardless of which two ports are used, certain MZIs
will remain redundant, as they never receive backward propagating
optical gradient signals at either output port, regardless of the states
(cross or bar) of other MZIs in the mesh. We refer to these as
redundant MZIs. The phase shifters in these MZIs remain at their
initialization state and do not contribute to the classification process
at all. This observation motivates two aspects for potential
improvement: 1) the port choices, and 2) the removal of
corresponding redundant MZIs. Given the importance of optical
path balance, signals contributing to decision-making should
propagate along paths with the same or similar number of MZIs.
Typically, the longest optical path in an MZI mesh equals the
number of MZI columns (i.e., signals go through one MZI in the
current vertical column to arrive at the next column), and
conversely, the shortest path “falls through” as many MZI layers
without actually going through any MZIs as possible. In the case of
the 10 × 10 Clements, the shortest path lies on waveguide 0 and
waveguide 9 (shortest � 5, longest � 10), using any of the output
ports on these waveguides will subject the signal to the maximally
imbalanced condition. Furthermore, waveguides located at the edge
of the network mesh have only one side for redirecting optical power
(towards the center waveguides). In light of the above two
considerations, using the central two output ports and pruning
away corresponding redundant MZIs (MZI 1, 4, 5 and 9 in
Figure 1C) achieves minimal path imbalance ([longest, shortest] �
[7, 10]) and unbiased utilization of the whole expressible space
provided by the available optical components.

Upon deciding on port selection and pruning of redundant
MZIs, we then perform layer-wise pruning. At each pruned step, we
monitor the network performance by performing the same training
and testing process and record the testing accuracy. The layer-wise
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pruning stops until we obtain a minimal network topology that still
ensures all input signals are able to reach the center two waveguides.
This topology consists of MZIs colored in blue in Figure 1C, which is
a triangle mesh that marginally allows the diversion of optical power
from top/bottom waveguides to the center waveguides, any further
removal of MZIs on this topology will either result in wasted
waveguide channels, or isolation between two-halves of the input
vector causing unwanted dependence in the network’s
decision making.

3.4.1 Expressivity study (fidelity analysis)
To gain insight into the trade-off between reducing component

usage and disruption in network expressivity, we look for a suitable
metric to evaluate the pruned mesh’s expressivity. In previous
works, the concept of fidelity was employed (Feng et al., 2022;
Zhang et al., 2021) for evaluating the similarity between two
complex density matrices. Similar metrics include the Frobenius
norm, cosine similarity, and correlation coefficients. However, we
note the unsuitability of a simple similarity metric in our particular
case, as the goal of pruning is not to produce an optical mesh capable
of approximating the original unitary matrix. Rather, given the
relative simplicity of the binary trigger task and monitoring of only
two entries in the output vector, fully unitary ONNs are likely over-
parameterized, and completely different sets of optimal weight may
exist in the sub-unitary space that have little to no relation to the
unitary weight matrices producing similar classification accuracy.

For this reason, we employ a sampling-based benchmark to
evaluate the signal routing ability of 8 × 8 sub-unitary meshes:
10,000 random sub-unitary weight matrices implemented by
MiniBokun mesh are generated, each is provided with three sets
of random input vectors (10 per set), plus an input vector whose
power is equally distributed to all ports. Although random, the
vectors in each of the three sets have distinct optical power
concentrations at specific input ports (with the highest power at
ports 0, 3, and 5, respectively). The input vectors are assumed to be
coherent with an absolute phase of 0 rad, and the total input power is
fixed at 10 mW. For each topology under test, the power distribution
at each output port when subjecting the ONN to the aforementioned
artificial input vectors is recorded. The expressivity of each topology
can then be inferred based on the attained distribution.

3.5 Imperfection study (sensitivity analysis)

All the previous training and tuning of ONNs are conducted with
the assumption of perfect operating conditions. However, in reality,
ONNs suffer from various aspects of imperfections. To test the
resilience of ONNs to imperfections, we inject and vary the
magnitude of the optical loss and phase programming deviations
to trained ONN models and check their response. The optical loss,
defined at the dB-scale (LdB), varies from 0 to 1 dB per MZI. It is
converted to the linear scale and applied to the transfer matrices of the
MZI using Equation 8. The phase programming deviations are
defined as the phase deviations ((σθ , σϕ)) in Section 2.4.2, varying
from 0 to 1 radian. We sample the deviated phase values from the
normal distribution and recalculate transfermatrices with them. Next,
the imperfect transfer matrices are applied to ONNs, and we obtain
the ONNs’ test accuracy under imperfect conditions by re-performing

the inference. To fully capture the models’ response to stochastic
phase programming deviations, we sample 20 different θ and ϕ values
per phase deviation and took the average of the accuracy.

To quantify the tolerance of ONNs to imperfections, we define
two Figures of Merits (FoMs) on two sets of imperfect scenarios. The
first imperfect scenario assumes only phase programming deviations
(Phi-Theta case), σθ and σϕ vary separately and LdB is kept at 0 dB.
The first FoM is defined as the number of σθ and σϕ combinations
that lead to a test accuracy greater than 60%, times the surface area
covered by each σθ and σϕ combination in [rad2]. This hard limit
(60% test accuracy) is defined as our boundary of random guesses.

The second imperfect scenario (Loss-Phase Uncertainty case)
considers both optical loss and phase deviations. We assume σθ � σϕ
and compute a second FoM by multiplying the number of (σθ � σϕ,
LdB) combinations that lead to a test accuracy greater than 60% with
the surface area covered by each combination in [rad·dB].

3.6 Power, latency, and area estimations

The power consumption estimation of ONN takes into account
power consumed by the laser, the memory for storing phase shifter
values and input, the digital-to-analog and analog-to-digital
conversions, optical input modulation, phase programming, and
output optical-electrical signal conversion, as expressed in
Equation 12.

Ptotal � Plaser + Pmem + PDAC + Pinput_mod + Pphase_prog + PO−E

+ Pcomp+ADC (12)

Similarly, the latency of one inference on ONN considers the
time spent when the electrical and optical signal propagates through
the system during one pass of calculation (or one inference).
Assuming an always-on laser, the latency is expressed as:

ttotal � max tinput_mem + tDAC + tinput_mod, tphase_mem + tDAC + tphase_prog( )
+ tMZI + tO−E + tcomp+ADC,

(13)
In Equation 13, tMZI is the time light travels through the MZIs in an
optical mesh. The input modulation and phase programming steps
can be parallelized as the data are fetched from different memory
locations and there is no sharing of components along the data path.
We keep the greater time spent by the two processes for latency
calculation.

The area estimations focus on the layout area of the optical
meshes, containing only the MZIs and their connecting waveguides.
The length of the mesh is determined by the maximum number of
MZIs and waveguide sections connected in series, and the width is
the separation distance between waveguides times the number of
gaps between input/output ports.

We account for a 10 dBm C-band laser with a wall plug
efficiency of 10% (Al-Qadasi et al., 2022). This single laser source
provides sufficient optical power to all input ports of ONNs
while meeting the minimum required optical power sensitivity of
the photodetector. The modulation of laser input (or the
electrical-to-optical, EO conversion) is assumed to operate at
approximately 20 fJ/bit with a rate of 2.5 Gb/s (Demirkiran
et al., 2023).
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The phase programming power estimation is divided into two
scenarios: a conservative estimation using doped-Si heaters without
insulation and an aggressive estimation considering heaters with
thermal insulation trenches (formed by deep etching) (Masood et al.,
2013).Without the insulation, the heaters consume Pπ ≈ 21mWper
π phase shift with a stabilization time of less than 30 μs (Shokraneh
et al., 2020); meanwhile, with the insulation, the heater responsivity
improves to Pπ ≈ 1.42 mW per π phase shift yet the settling time
extends to more than 150 μs (Masood et al., 2013). We assume each
2 × 2 MZI has a length of ≈ 300 μm with phase shifters of 135 μm.
(Shokraneh et al., 2020), and the waveguides are separated by 60 μm
(Williamson et al., 2020). The effective index (neff ) of MZIs is 2.8.

The input to ONN is fixed at 8-bit resolution while the phase
value resolution will be determined by the post-training
quantization. The estimations of digital-to-analog converters
(DACs) power consumption patterns are also done in two ways:
1) a conservative FoM-based performance approximation which
allows us to consider high-speed DACs (data rate = 10 GSamples/s)
(Demirkiran et al., 2023), and 2) an aggressive performance
estimation using established commercial products with low
power consumption.

The optical-to-electrical (OE) circuit at each output port
contains a photodetector with a responsivity of 1 A/W and a
trans-impedance amplifier. Each channel of EO conversion
consumes 100 mW of power with a group delay of 100 ps
(Williamson et al., 2020). The subsequent comparator and
analog-to-digital converter (ADC) circuit requires only binary
resolution and consumes only 325 μm of power with a
propagation delay of 75 ns (Texas Instruments, 2018).

According to Al-Qadasi et al. (2022), the input to the ONN is
stored in DRAMs while the phase values to be programmed are
stored in SRAMs. The ONNs considered in this work are small, with
each of them containing less than 256 bytes in total for both input
and phase values. Despite this, we set the SRAM size to 16 KB and
the DRAM size to 64 KB to sufficiently hold more than 100 copies of
ONNs and a few thousand input samples after dimensionality
reduction. The power and latency numbers are calculated based
on modeling data from Cacti 7.0 (Thoziyoor et al., 2008).

4 Results and discussion

4.1 Architectural analysis of optical meshes

The architectural parameters of the three topologies are
summarized in Table 1. Among the three topologies, the
MiniBokun shown in Figure 1D, resulting from the pruning
process, achieved minimum component usage while

demonstrating a size-invariant path length difference of
only two MZIs.

4.1.1 Pruning with accuracy monitoring
Following the method discussed in Section 3.4, the monitored

average binary MNIST accuracy per 10 × 10 network is shown in
Figure 2. As indicated by the plateauing part of the curve, up to four
MZIs columns can be pruned with less than 0.5% accuracy drop,
pruning six layers leads to the minimal triangle topology discussed
in Section 3.4, in which significant accuracy degradation is observed.
We thus restore two pruned columns, and remove the top and
bottom MZIs in the left-most restored column (MZI 23, 27 in
Figure 1C, or equivalently, MZI 19, 23 in Figure 2) to create
diagonal access concerning paths I0 → O4 and I9 → O5 in
practical chip-calibration (Mojaver et al., 2023). With the above
steps, we obtain the MiniBokun Topology.

4.1.2 The MiniBokun topology
Similar to the full-size Bokun Mesh proposed in (Mojaver et al.,

2023), MiniBokun provides diagonal access for all MZIs in the mesh
for practical calibration consideration, yet with no MZI wasted due
to being used solely for calibration purposes. Two simple
observations can be made for a sufficient formal definition of
MiniBokun topology, regardless of network size N:

• There are always two MZI columns before the widest column,
each containing N

2 − 1 and N
2 − 2 MZIs.

• The last MZI column always contains two MZIs.

TABLE 1 Architectural Parameters of Different Topologies of size N.

Topology Number of MZIs Optical path length [Min, Max] Number of redundant MZIs

Clements 1
2 (N2 −N) [N2 , N] (N−2)2

4 − N−2
2 (N≥ 4)

Reck 1
2 (N2 −N) [N − 1, 2N − 3] 0

MiniBokun 1
8 (N2 − 10N + 32) [N2 − 1, N2 + 1] 0

FIGURE 2
Accuracy Variation as the Clements topology is Pruned column
by column, starting with the column closest to the input.
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The placement of eachMZI is thus well-defined, and the number
of MZIs in a N-input MiniBokun mesh is 1

8 (N2 − 10N + 32), as
shown in Table 1.

4.1.3 Expressivity analysis
Using the benchmark method presented in Section 3.4.1. We

perform statistical analysis on the collected power distribution at
each output port for 8 × 8 1) Clements (Unitary), 2) Triangle (Over-
Pruned) and 3)MiniBokun topologies, Reck topology is omitted as it
covers the same unitary space as Clements. The box plot of the result
is shown in Figure 3.

As we are not assuming any loss, the average total output power,
as expected, sums to 10 mW, which matches the total input power
assumption. All tested topology-input combinations managed to

achieve near 0 mW output in all output ports. The maximum
registered maximum power difference among tested samples were
1.330, 6.205 and 4.080 mW for Clements (port 0), triangle (port 3)
and MiniBokun (port 5), respectively. Unitary structures such as the
Clements mesh provide full signal routing between any input-output
waveguide pairs, thus giving a relatively uniform power distribution
profile across each port, even when facing input with power
concentrated on particular ports. On the other hand, sub-unitary
topologies provide limited signal routing paths, in triangle topology,
given the imbalanced number of MZI across different paths and the
unbiased random phase setting, the biased weight space manifests as
mismatching of maximum detected output power across different
output, as well as the varying interquartile ranges. In particular, the
low maximum power on edge ports (0, 7) indicates an impaired

FIGURE 3
Expressivity of three different meshes. Blue, red and green box plots denote the registered power distribution at each of the eight output ports for
Clements, Triangle and MiniBokun mesh. The port number in red indicates the corresponding input port had the highest optical power among all input
ports, while the last row of figures denotes the case of equally distributed power among the input (at 1.25 mW per port). The whiskers on each box
instance, from top to bottom, are: {max, third quartile, median, first quartile, min}.
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ability to discard unwanted power as part of the inference process.
MiniBokun topology also shows such bias in its power distribution,
but to a lighter extent, attributing to the two additional columns
providing extra paths to disregard power from inputs 1 through 6,
leading to a larger expressible space. This can be validated by the
classification accuracy difference between a triangle mesh and a
MiniBokun mesh in Figure 2.

4.2 Performance of optical meshes in ONN

4.2.1 Hyperparameter selection
We observe that topology sizes of N � 8 and N � 16 work best

for the binary optical trigger, especially under the assumption of
fixed input laser power.

Under the assumption of constant per-channel input power, all
three metrics, the accuracy of each model on both validation and
test set and the F1 score, increase as N increases. As shown in
Figure 4A, on average, the accuracy of the model prediction on
the MNIST dataset improves by an absolute 6.9% asN reaches 64.
The models’ accuracy on the CIFAR-10 dataset, which is more
complex than MNIST, only increases by an absolute 2.2%, as
shown in Figure 4B.

When the assumption changes to fixed laser power, the actual
per-channel input power range decreases as the optical mesh scales
up. AsN grows from 8 to 64, the maximum input optical power Pi to
a channel drops from 1.25 mW to 0.16 mW. This input range
reduction significantly undermines the ability of larger ONNs to
learn. As seen in Figure 4, although the MNIST test accuracy
increases with N, the magnitude of the growth in all models
drops to an average maximum of 4.5%. On the CIFAR-10
dataset, model accuracy starts to drop after N � 16 and
eventually falls below the accuracy of N � 8.

The increase in ONN classification accuracy withN is subject to
the perfect operating conditions assumed in the simulations. In

reality, the optical loss of an ONN increases linearly with its size and
becomes especially significant when N≥ 32 (Shafiee et al., 2024).
Moreover, the power consumption of configuring the phase
values increases quadratically with the optical mesh sizes (Al-
Qadasi et al., 2022). Finally, under the fixed channel input power
assumption, the laser input power obviously increases linearly
with the number of input channels. Therefore, given our goal of
finding a robust model that balances the overall accuracy and
power efficiency, only ONNs of N � 8 and N � 16 trained with
the fixed laser power assumption are considered.

4.2.2 Application-specific optimization
The weighted class method effectively reduces the number of

FNs made by ONNs after training. As shown in Figures 5A, C, the
FN count decreases from more than 1,000 to fewer than 10 as β in
Equations 9, 10 increases from 1 to 2. Increasing β forces the model
to make more positive predictions. Subsequently, there are more
false positives, and the overall test accuracy drops, as shown in
Figures 5B, D. In this case, sharp declines in overall test accuracy are
observed for MNIST (β> 1.4) and CIFAR-10 (β> 1.2). To ensure a
balance between the decrease in FN and the drop in accuracy, we
finally selected β ∈ [1, 1.4] for the rest of our discussions. Models
trained with β in this range achieve at most a 75% reduction in FN
but less than a 5% drop in accuracy.

We also find that an 8-bit voltage supply resolution is sufficient
for models with the selected hyperparameters to achieve similar
accuracy to those trained with full precision (32-bit), using a voltage
supply setting of Vmax � 4V,Vπ � 1.92V (Shokraneh et al., 2020).
According to Figure 6, ONN accuracy increases significantly as the
voltage supply resolution increases from 4 to 8 bits and gradually
converges to the full-resolution test accuracy. At the 8-bit resolution
point, most 8 × 8 models show <0.5% deviation from the full-
resolution accuracy while most 16 × 16 models show <0.8%
deviation. Therefore, we assume an 8-bit voltage supply
resolution for the rest of our discussions.

FIGURE 4
The variation in test accuracy of ONNmodels with different topology and input power assumptions trained on (A)MNIST dataset, and (B) CIFAR-10
dataset. The same set of legends is used in both figures.
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4.2.3 Impact of pruning on classification
performance

Based on the selected hyperparameters and optimization
parameters, we summarized the accuracy and F1 score of all the
models with different topologies in Table 2. The numbers labeled in
bold are the best-performing topology in each category.

In the N � 8 case, despite having fewer programmable phase
shifters due to the small input size and the pre-training pruning
performed, the MiniBokun mesh only experiences a 1.57% drop in
accuracy and a 0.7% drop in F1 score on average compared with
other meshes. Even with the slightly undermined learning ability,
the performance gap between the best-performing model and
MiniBokun is not large. MiniBokun mesh preserves a good
balance in classifying both the positive and the negative classes of
a dataset.

The performance gap betweenMiniBokun and the other meshes
further closes when N increases to 16. The average performance
degradation drops to 1.42% in accuracy and 0.63% in F1 score. In
certain cases, the MiniBokun mesh outperforms the other two in
terms of both accuracy and F1 score.

4.3 Sensitivity analysis

Figure 7 shows the tolerance of investigated topologies towards
phase shifter noise and propagation loss in optical components. The
models subjected to the analysis are trained with an FN reduction
factor (β) of 1.2. The software-based FN reduction method does not
alter the physical parameters of ONNs and hence does not impact
the imperfection tolerance of an optical mesh with a certain topology
and input size, thus the following observations remain consistent on
models trained with β � 1 or β � 1.4.

In contrast to 8 × 8 meshes, all 16 × 16 meshes show weaker
tolerance in both PT and LPU analysis due to the accumulation of
phase error in longer optical paths. An average of 52.3% decrease in
PT FoM area is observed over all topologies and both datasets when
moving fromN � 8 toN � 16, and a 49.4% decrease for LPU FoM.

In almost all cases except for the LPU analysis for N � 16
network trained on the MNIST dataset, MiniBokun, thanks to
the reduced number of components and balanced optical paths,
shows greater tolerance of physical component imperfection.
Overall, combining mesh sizes and datasets, MiniBokun’s average

FIGURE 5
(A) The variation in false negative numbers and (B) the test accuracy ofONNmodels with different topology and input sizes on theMNIST dataset as a
result of the weighted class method. (C) The variation in false negative numbers and (D) the test accuracy of ONN models with different topology and
input sizes on the CIFAR-10 dataset as a result of the weighted class method.
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FIGURE 6
The change in test accuracy of ONNmodels as a result of post-training quantization (A) on the MNIST dataset with N = 8, (B) on the MNIST dataset
with N = 16, and (C) on the CIFAR-10 dataset with N = 8, (D) on the CIFAR-10 dataset with N = 16. The same legend is kept across all four figures.

TABLE 2 Test accuracy and F1 score of different topologies with different hyperparameters.

Topology β N � 8 N � 16

MNIST CIFAR-10 MNIST CIFAR-10

Accuracy
[%]

F1 score Accuracy
[%]

F1 score Accuracy
[%]

F1 score Accuracy
[%]

F1 score

Clements 1 71.58 70.62 72.53 71.67 74.46 73.90 72.87 71.34

Reck 72.16 71.92 71.46 71.72 73.86 75.25 71.76 68.68

MiniBokun 70.53 71.70 72.12 70.18 74.77 74.62 71.65 69.84

Clements 1.2 71.16 72.19 72.40 72.41 73.98 74.66 71.83 71.97

Reck 71.17 71.93 72.13 70.22 74.74 74.46 72.49 70.36

MiniBokun 70.37 72.12 71.62 71.84 74.87 74.86 71.26 72.07

Clements 1.4 68.47 73.37 67.14 72.32 68.20 74.30 64.99 71.84

Reck 69.62 73.48 69.12 72.92 72.23 75.71 67.09 72.30

MiniBokun 67.78 73.08 65.17 71.52 69.37 74.90 63.42 71.16

The bold values indicate the best statistically significant results.

Advanced Optical Technologies frontiersin.org12

Zhao et al. 10.3389/aot.2024.1501208

https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2024.1501208


improvement to PT and LPU FoMs is 66.9% and 36.3% over
Clements, respectively.

These improvements in the FoMs suggest that the increase in
individual weight importance that comes naturally with a pruned
neural network is negligible for topologies used in this study. The
original network is over-parameterized enough for the pruning
benefits to outweigh the errors imposed on the high-saliency
phase shifter values.

4.4 Power, latency, and area estimations

Table 3 summarizes the power, latency, and area consumed by
each topology with different sizes. Note that the estimation
“conservative” and “aggressive” are subject to the overall power
consumption. Both the ONN input and the phase value
programming require 8-bit DACs (Texas Instruments,
2013) after PTQ.

4.4.1 Power and latency consumption
The pruned MiniBokun mesh has demonstrated a strong

capability in reducing overall power consumption. Compared to
the conventional Clements and Reck topology, the MiniBokun mesh

saves 4.6% power in the aggressive case and 24.2% in the
conservative case when N � 8. These numbers further grow to
18.0% and 47.6% when N increases to 16. On the other hand,
the benefits of pruning in saving latency are insignificant, only up to
0.1 μs whenN � 16, as the latency of the slowest components (phase
programming) is large per se and invariant to the topology.

If we take a closer look at the component-wise power and latency
consumption, the phase value programming dominates both
calculations. Assuming uniform phase distribution, the
programming power is directly proportional to the number of
MZIs in a mesh (Al-Qadasi et al., 2022). Without insulation (the
“conservative” approach), the programming power can take up to
39.8% of the total power consumption in Reck and Clements
topology when N � 8 (as shown in Figure 8A), and this
proportion continues to grow as the size of the optical mesh
increases. Using the pruning strategy introduced in this work, we
can effectively reduce the number of MZIs in the optical mesh by
more than half. This subsequently relaxes the power requirement for
programming the phase values and reduces the proportion it takes in
the total power consumption, as shown in Figure 8B. The power
savings by pruning becomes more evident when the optical meshes
scale up, as indicated by the growing gap between the two lines in
Figure 8C. Using insulated heaters with smaller Pπ (the “aggressive”

FIGURE 7
The FoMs of three network topologies: (A)N � 8ONNs, PT Plots, (B)N � 8ONNs, LPU Plots, (C)N � 16 ONNs, PT Plots, (D)N � 16 ONNs, LPU Plots.
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approach) can effectively reduce the overall power consumption.
However, this comes at a cost of 5 × more time spent on the
programming stage.

In the latency calculation, the pruned MiniBokun mesh
effectively shortens the optical path length that light
propagates through and lowers the number of memory read

by reducing the number of phase values to be programmed.
However, these savings ( ≤ 0.06 μs in total) are comparatively
negligible to the programming time itself ([30, 150] μs).
Disregarding the programming latency, the speed of the
optical mesh computation is bottlenecked by the electrical
ADCs and DAC. As the pruning technique does not alter the

TABLE 3 Power, latency, and area estimations of different topologies and mesh sizes.

N Topology Aggressive Conservative #MZIs Area (mm2)

Power [mW] Latency [μs] Power [mW] Latency [μs]

8 Clements 406.2 154.1 738.6 30.1 28 1.0

Reck 406.2 154.1 738.6 30.1 28 1.6

MiniBokun 387.4 154.1 560.1 30.1 14 0.6

16 Clements 534.9 154.2 1,930.0 30.2 120 4.3

Reck 534.9 154.2 1,930.0 30.2 120 7.8

MiniBokun 438.4 154.1 1,012.0 30.1 48 2.4

The bold values indicate the best statistically significant results.

FIGURE 8
The power breakdown of (A) Clements/Reck topology, (B) the MiniBokun topology with N � 8 and the “conservative” assumption. (C) The variation
in programming power (Si-doped heater without insulation) with respect to the change in the optical mesh size. (D) The change in the layout area of
optical meshes with respect to the change in the optical mesh size.
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parameters of these devices, the speed of the MiniBokun mesh is
still limited by them.

4.4.2 Layout area
The pruning strategy significantly reduces the area of the optical

mesh by placing fewer MZIs horizontally along the optical path. As
shown in Table 3, the MiniBokun mesh employs 50% fewer MZIs
when N � 8, and 60% fewer MZIs when N � 16. Subsequently, the
optical path length reduces from 2N − 3 in Reck mesh and N in
Clements mesh to N

2 + 1 inMiniBokun, bringing the total layout area
down by at least 40%. As shown in Figure 8D, when the optical mesh
size increases, the area of the MiniBokun mesh grows less rapidly
than the other two topologies. When reaching the N � 64 limit, it
saves 73.6% and 48.4% layout area when compared to the Clements
and Reck topologies.

For practical deployment, a typical smart lock uses a
microcontroller comparable in size to an Arduino chip
(Arduino, 2014), implying area constraints on the order of
several square centimeters (Motwani et al., 2021). In contrast,
modern smartphone processors, facing stricter area limitations,
typically have a footprint of over 100 mm2 (Yang et al., 2024). By
comparison, our estimated mesh area is 2.4 mm2 for the 16 × 16
MiniBokun, which meets the area constraint of both of these target
applications.

4.5 Limitations and future work

Imperfect operating conditions are obstacles to the deployment
of proposed systems in real-world applications. In this work, we
characterize the resilience of different topologies to two sources of
error: optical loss and phase deviations. To achieve a more
comprehensive evaluation of the model performance in the
future, the model needs to take into account more factors,
including the direct impact of fabrication non-uniformity (Mirza
et al., 2022), input phase mismatch (Fang et al., 2019), and other
sources of crosstalk (Shafiee et al., 2024).

The proposed pruning strategy is tested with well-established
image classification datasets, and its performance is compared
with existing optical mesh topologies. Although these datasets
are sufficiently complex to provide insights into how the ONN
trades off accuracy against power/area consumption, the
comparisons lack real-world proximity. Future work will
explore the use of datasets closer to the actual
implementation of the binary optical trigger, for example,
face recognition systems (Bong et al., 2018). These
experiments can better reveal the benefits of the pruning
strategy and the optical trigger structure itself when
compared with existing digital electronic products.

Alternative pruning strategies, such as train-time or post-
training pruning, consider parameter saliency before deciding
which components to remove. However, further investigation is
needed to assess these alternatives. Although these methods
could offer comparable power savings while reducing the
accuracy loss, they have the potential to create sparse network
meshes with less clustered MZI removal and thus may provide
limited area savings compared to the current pre-training
pruning approach.

5 Conclusion

In this work, we propose a pre-training pruning strategy over
established optical processor topology subject to the binary
optical trigger structure. Motivated by the need for a low-
power binary trigger to support machine learning at the edge
of the Internet, the pruned structure, “MiniBokun” mesh,
removed at least 50% of MZIs from a standard unitary
topology and shortened the optical path length by half. The
effect of pruning was tested with the binarized version of two
benchmark datasets, MNIST and CIFAR-10, in which we only
observed 1%–2% accuracy degradation and less than 1% drop in
F1 score compared to the unpruned Clements and Reck
topologies. In consideration of the practical deployment
environment, the impact of limited voltage control
precision and the robustness of ONNs toward component
imperfections were investigated via weight quantization and a
sensitivity study. The MiniBokun mesh showed ≥ 30% and
≥ 60% improvement in phase error and loss tolerance,
respectively, while reducing the physical footprint of the
mesh by ≥ 40%. With the removal of MZIs, an estimated 4.6% −
24.2% power saving is achieved.
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