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Nowadays, as the ever-increasing demand for more powerful computing
resources continues, alternative advanced computing paradigms are under
extensive investigation. Significant effort has been made to deviate from
conventional Von Neumann architectures. In-memory computing has
emerged in the field of electronics as a possible solution to the infamous
bottleneck between memory and computing processors, which reduces the
effective throughput of data. In photonics, novel schemes attempt to collocate
the computing processor and memory in a single device. Photonics offers the
flexibility of multiplexing streams of data not only spatially and in time, but also in
frequency or, equivalently, in wavelength, which makes it highly suitable for
parallel computing. Here, we numerically show the use of time and wavelength
division multiplexing (WDM) to solve four independent tasks at the same time in a
single photonic chip, serving as a proof of concept for our proposal. The system is
a time-delay reservoir computing (TDRC) based on a microring resonator (MRR).
The addressed tasks cover different applications: Time-series prediction,
waveform signal classification, wireless channel equalization, and radar signal
prediction. The system is also tested for simultaneous computing of up to
10 instances of the same task, exhibiting excellent performance. The footprint
of the system is reduced by using time-division multiplexing of the nodes that act
as the neurons of the studied neural network scheme. WDM is used for the
parallelization of wavelength channels, each addressing a single task. By adjusting
the input power and frequency of each optical channel, we can achieve levels of
performance for each of the tasks that are comparable to those quoted in state-
of-the-art reports focusing on single-task operation. We also quantify the
memory capacity and nonlinearity of each parallelized RC and relate these
properties to the performance of each task. Finally, we provide insight into the
impact of the feedback mechanism on the performance of the system.
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1 Introduction

Over recent years, the development of photonic computing has
attracted significant interest within the scientific community and
positioned photonics as a potential technology for novel computing
schemes (Huang et al., 2022; McMahon, 2023). Light possesses
unique properties that can be harnessed for computing such as the
capability for massive parallelization. This can be achieved by
multiplexing several optical channels using different wavelengths
within an available range of the electromagnetic spectrum. This is a
well-established technique used for optical communication known
as wavelength division multiplexing (WDM). In WDM, a high
density of channels can be transmitted through the same
medium with relatively low interference between them, ultimately
boosting the total communication capacity as several data streams
can be transmitted simultaneously. If a similar principle is used for
computing, this can be translated into different computing tasks
being addressed simultaneously.

Von Neumann architectures are often penalized by bottlenecks
due to the intrinsic lack of collocation of memory and computing
processors (Hennessy and Patterson, 2019; Cucchi et al., 2022; El
Srouji et al., 2022). So-called “in-memory” alternatives are emerging
in electronic platforms to counter this issue (Sun et al., 2023).
Similarly, photonics has the potential to provide collocated
higher-dimensional processor capabilities through nonlinear
optical phenomena and, at the same time, provide memory
enhancement of the system (El Srouji et al., 2022). Furthermore,
it can enable parallel processing by using well-established techniques
such as WDM, in a similar way to optical communications, if
different optical channels could address several computing tasks
(Bai et al., 2023; Zhou et al., 2022).

Recently, there has also been a trend in the development of
nonvolatile photonic memories that can be efficiently reconfigured.
This could help close the gap toward all-photonic computing
(Bogaerts et al., 2020). However, a main concern when
translating concepts such as a higher dimensionality of data
space and buffer memory from electronics to photonics is the
decrease in scalability of photonic devices. The footprint of
optical technologies can become larger than electronics when
trying to implement complex machine learning architectures such
as in the case of conventional deep neural networks (NNs). In this
sense, novel computing paradigms more suitable for physical
implementation e.g., through photonics, have been under
extensive investigation lately (Van der Sande et al., 2017;
McMahon, 2023).

Hence, we now center our attention on reservoir computing
(RC), a recurrent NN scheme that presents interesting features in
terms of physical implementation (Cucchi et al., 2022; Schuman
et al., 2022; Huang et al., 2022). RC is able to solve complex and
memory-demanding tasks (time-series prediction, classification,
financial forecasting, channel equalization, etc.) while requiring
simpler training than other conventional NN schemes, as only
linear regression is required. In its general principle, RC builds a
dynamical input-to-output mapping of signals by increasing the
dimensional space of the input sequences. The core of this scheme is
the reservoir layer, which must be capable of providing fading
memory by the use of recurrent connections between its nodes.
This layer is also responsible for the nonlinear temporal expansion

(kernel) so that different input signals are easier to differentiate. The
weights of the connections between nodes are random and fixed at
the input and reservoir layers (Cucchi et al., 2022).

RC is a nonlinear dynamical system driven by the input signal,
which does not require back-propagation to minimize the error
between the prediction and the target. In traditional NNs, this back-
propagation of errors is usually addressed with well-established
gradient descent algorithms, which can be expensive in terms of
time, memory, and energy required to train a deep NN. In RC, the
input and reservoir connections are not trained. The nonlinear
dynamics target the nonlinear separability of its states at the
output. Hence, it only requires linear regression as the training
algorithm in the output layer. It is this simplicity that makes the
paradigm suitable for physical implementation, as only the recorded
states of the reservoir are required during the training stage without
the need tomodify the corresponding weights. More in-depth details
on RC can be found in extensive reviews on the subject (Van der
Sande et al., 2017; Cucchi et al., 2022; Yan et al., 2024).

As in other NN schemes, increasing the number of neurons,
i.e., nodes, increases the dimensionality of the RC as each node
provides an additional degree of freedom to the nonlinear dynamics.
One way to implement this in RC is to spatially increase the number
of nodes. In terms of RC physical implementation through
photonics, this has been proposed in multiple works in the
literature, where several identical photonic devices play the role
of nonlinear nodes. We outline some examples: Using
semiconductor optical amplifiers (SOA) (Vandoorne et al., 2008),
microring resonators (MRRs) (Mesaritakis et al., 2013), as well as
networks of multimode interferometers and other passive photonic
devices (Vandoorne et al., 2014; Masaad et al., 2023). Similarly, the
spatial multiplexing of nodes has been realized by using spatial light
modulators and free-space optics (Rafayelyan et al., 2020; Bu et al.,
2022). However, spatial-based RC has the disadvantage of quickly
growing in size when increasing the number of nodes.

In order to decrease the footprint of the photonic
implementation, we opt for a different implementation of RC
that emerged more recently, known as time-delay RC (TDRC),
first introduced in (Appeltant et al., 2011). In TDRC, the virtual
nodes of the reservoir are multiplexed in time; therefore, a single
physical nonlinear node is required. On the other hand, the
throughput of the system becomes constrained by the processing
rate of the virtual nodes. Nevertheless, as only one physical
nonlinear device is required in the reservoir layer, this paradigm
has gained a lot of attraction for photonic RC implementations.
Several TDRC works have been reported in the literature, in which
different optical nonlinear phenomena or behaviors are exploited.
We briefly mention some of the main techniques used: The
nonlinear response of an SOA (Duport et al., 2012), the sine
nonlinearity of an integrated Mach-Zehnder modulator
(Appeltant et al., 2011; Paquot et al., 2012), the nonlinear
dynamics of semiconductor lasers (Bueno et al., 2017; Skalli
et al., 2022) and recently, the nonlinear dynamics of a silicon
MRR, first proposed for a TDRC in (Donati et al., 2022).
Usually, in these implementations, the memory of the reservoir is
enhanced through the means of a feedback loop mechanism by
which physically delayed versions of inputs to the system can also
influence the state of the reservoir. The photo-detection stage in the
above-stated works also provides some degree of nonlinearity.
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In previous studies, we analyzed the MRR-based TDRC scheme
by studying how the time constants of the nonlinear effects that
come into play in the MRR cavity affect the TDRC performance as a
function of the input power to the MRR and frequency detuning
from the MRR resonance (Giron Castro et al., 2024b). This provided
insights into the different regimes of operation of MRR-based
photonic TDRC and was extended to address different types of
computing tasks. We investigated the best performance achievable
in each of the tasks by adjusting the optical parameters of the scheme
(Giron Castro et al., 2024a). Recently, MRR-based TDRC was
experimentally implemented in (Donati et al., 2024), by using a
fiber-based feedback loop. Its performance was assessed for Boolean
operation and time-series prediction tasks.

These studies on MRR-based TDRC however, focused on
investigating the system when addressing a single task at a
time. This is where the benefits of WDM can come into play to
enhance the computing capacity of photonic RC schemes. For
instance, in (Gooskens et al., 2022), the wavelength dimension is
used in a photonic RC scheme to enhance the performance of a
specific task (nonlinear signal equalization and Boolean
operations). Similarly, in (Li et al., 2023) WDM is used in an
RC based on a Fabry-Perot semiconductor laser to achieve superior
throughput and performance in the task of signal equalization in
an optical fiber communication link. Lastly, in (Lupo et al., 2023) a
photonic RC based on phase modulation and spectral filtering
demonstrated the simultaneous operation of two different
instances of the same task, which are encoded using frequency
combs. In an initial study (Giron Castro et al., 2024), we combined
WDMwith MRR-based TDRC to show that this scheme also offers
the potential of parallel computing by simultaneously addressing
three distinct computing tasks.

In this work, we extend the study in (Giron Castro et al., 2024)
by systematically analyzing the memory and nonlinear capabilities
of the proposed WDMMRR-based TDRC scheme and investigating
the impact of additional computing tasks in parallel. Finally, we
quantify the effect of the phase control in the external waveguide
that is used in this scheme as a feedback mechanism. The numerical
model of the system is based on the well-studied temporal coupled-
mode theory (TCMT).

The structure of the article is as follows: In Section 2 we
introduce WDM MRR-based TDRC and further detail each of
the layers of the setup, model, and optical properties of the
scheme. In Section 3 we describe each of the computing tasks
addressed in this work as well as the metrics of performance,
nonlinearity, and memory capacity of the system. In Section 4 we
present and discuss the results of our investigation. Finally, we
summarize the conclusions of this work in Section 5.

2 Multitask WDM MRR-based TDRC

On a high level, the TDRC scheme based on an MRR relies on
injecting the input data encoded onto an optical carrier into the
MRR at its input port and detecting a non-linearly transformed
version at the drop port. An additional feedback connection with an
optimized delay is normally included between the through and add
port of the MRR to provide additional memory (Donati et al., 2022;
Donati et al., 2024; Giron Castro et al., 2024b).

An MRR, however, is characterized by a frequency-periodic
response. Our proposal is then to use several resonances of the MRR
as the base of aWDMTDRCwhere we use multiple optical channels
(each detuned from its respective resonance) to address more
computing tasks simultaneously. In the following subsections, we
describe the frequency allocation process of each channel and the
details of each layer of the system.

2.1 Setup and frequency allocation

The simulated system is shown in Figure 1. We consider M
wavelength-multiplexed optical channels, each modulated by the
masked input sequence corresponding to a particular task. The full
description of each task is presented in Section 3. The ith multiplexed
optical channel is detuned by Δωi from the angular frequency ωri of
its respective resonance. The frequency separation between the
resonances corresponds to the free spectral range (FSR) of the
MRR. The FSR can be approximately defined in terms of the
wavelength (λ) as expressed in Equation 1:

FSRλ ≈
λ2

2πRng
, (1)

where R is the radius of the MRR (for the entirety of this work R =
7.5 μm). ng is the group index (no chromatic dispersion is
considered). Throughout this work, if not specified, the
frequencies of the exploited resonances for a number M of
optical channels are determined as follows in Equation 2:

ωri � ωr0 + FSRω · i i � 0, 1, 2 . . .M{ }, (2)
where FSRω is the FSR expressed in terms of angular frequency. ωr0

is the resonance angular frequency from which the first multiplexed
channel is detuned. The through port of theMRR is connected to the
add port through a delay line. In Figure 1, τd represents the time
delay added by such an external feedback connection. Δϕ is an
adjustable phase control of the optical signal propagating through
the external feedback.

2.2 Input layer

The input symbol sequence of each task, ui(n), is modulated at
1 GBd. ui(n) is masked by multiplying it with the sequencemi(n) to
assign the random fixed weights of the RC. In TDRC systems, the
masking sequence has a length equal to the desired number of virtual
nodes, in this case,N � 50 virtual nodes. Next, an optimized bias βi
is added to the masked sequence as follows in Equation 3 resulting
in Xi(n):

Xi n( ) � ui n( )mi n( ) + βi. (3)

Each ui(n) and mi(n) are generated differently based on the
mathematical definitions of each task, as further detailed in Section
3. For a 1 GBd input sequence, every virtual node has a duration of
θ � 1.0ns

N � 20 ps. The added biases, βi, are necessary to fulfill one of the
limits of the TCMT model used in this work as a small modulation
index is assumed. The value of the bias for each task constrains the
masked input signal to have a modulation index of less than 2%. Each
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optical channel has an average input power �Pi. The total power
employed at the input �PT, as expressed in Equation 4:

�PT � ∑M
i�1

�Pi . (4)

The optical channels are then modulated by their respective
masked input data sequence. The modulator (MOD) block in
Figure 1 refers to the encoding of the information in the
intensity of the optical signal when pre-processing the data.
Each optical channel is modulated in power linearly.
Subsequently, the modulated optical channels are wavelength-
multiplexed and injected into the input port of the MRR. The
resulting electric field of the ith modulated channel is then defined
as in Equation 5:

Eini n( ) � Xi n( )[ ]1/2. (5)

2.3 Reservoir layer

We consider a silicon-on-insulator (SOI)MRRwith an input signal
wavelength centered around 1,550 nm. Given the bandgap of silicon,
the electromagnetic field in such a wavelength range triggers the

generation of free carriers via two-photon absorption (TPA) in the
MRR cavity. The surge of excess carriers yields free carrier dispersion
(FCD), which decreases the effective refractive index of the silicon, and
results in a blue shift of the MRR resonance. Free-carrier absorption
losses and the subsequent conversion of optical power to heat increase
the temperature in the cavity. The resulting thermo-optic (TO) effect
increases the refractive index and causes a red shift of the resonance.
The nonlinear dynamics of FCD and the TO effect are a source of
multistability and self-pulsing in theMRR, which have been extensively
studied over the years (Johnson et al., 2006; Van Vaerenbergh et al.,
2012; Zhang et al., 2013; Borghi et al., 2021).

Henceforth, the MRR is an optical device capable of generating
nonlinear optical dynamics that can be used for computing
applications in SOI platform as reviewed in (Biasi et al., 2024).
The input data of MRR-based TDRC modulates these dynamics to
achieve the nonlinear temporal expansion of the input. The lifetime
of the generated free carrier is usually in the order of 1–10 ns while
the TO effect is slower in silicon: The thermal time constant is an
order of magnitude higher (Zhang et al., 2013; Biasi et al., 2024).
Therefore, modulating the input data sequence with a rate (1 GBd)
results in a symbol duration with a similar order of magnitude as
the time constants governing the nonlinear dynamics. This, in
turn, allows us to exploit such nonlinear dynamics for
computing purposes.

FIGURE 1
WDM MRR-based TDRC scheme addressing four different tasks (top right inset): Channel 0: NARMA-10 time-series prediction. Channel 1: Signal
waveform classification (SWC). Channel 2: Wireless channel equalization (ChEq). Channel 3: Radar signal prediction. On the bottom left, is the frequency
allocation of the optical channels. PD: Photodiode. RR: Ridge regression.
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We mathematically modeled the nonlinear effects in the MRR
cavity when injecting multiple optical channels in the MRR. We use
TCMT and consider the contribution of the modal amplitude of
each optical channel ai(t) with its respective rate equation. No
counterpropagating modes in the microring cavity are considered.
The rate equation of ai(t) is given by Equation 6.

dai t( )
dt

� iδi t( ) − γi t( )[ ]ai t( ) + iκc Eini t( ) + Eaddi t( )[ ], (6)

where we define δi(t) as the total angular frequency detuning of
channel i with respect to its resonance. γi(t) is the total loss rate in
the cavity. The last term in Equation 6 consists of the electric fields of
the ith carrier at the add (Eaddi) and drop (Edropi) ports of the MRR.
κc � ����

2/τc
√

is the factor of modal amplitude decay rate due to the
coupling between the MRR and the bus waveguides, where 1/τc is
the loss rate of the cavity due to the coupling with the bus
waveguides. The mathematical expression for δi(t) is given
according to Equation 7.

δi t( ) � ωi − ωri +
ωri

nSi
ΔN t( ) dnSi

dN
+ ΔT t( ) dnSi

dT
( ). (7)

The first term consists of the detuning between the optical
channel and resonance (Δωi � ωi − ωri), which are followed by
the nonlinear detuning induced by the TO effect and FCD. In
Equation 7, dn/dN and dn/dT denote the silicon FCD and TO
coefficients, respectively. nSi is the refractive index of silicon. ΔN(t)
is the excess free-carrier density generated via TPA, and ΔT(t)
represents the temperature difference between the MRR cavity and
the environment. Next, we define γi(t) in Equation 8:

γi t( ) � cα

nSi
+ 2
τc

+ γTPAi
+ γFCA � cα

nSi
+ 2
τc

+ βTPAc
2

n2SiVTPA
|ai t( )|2

+ΓFCAσFCAc
2nSi

· ΔN t( ),
(8)

where the first term accounts for the loss rate due to the cavity
waveguide attenuation (α), followed by the loss rate due to the
coupling with the two bus waveguides (2/τc). The terms γTPA/FCA refer
to the loss rate due to FCA and TPA. Lastly, in Equations 9, 10, we
define expressions for (Eaddi) and (Edropi):

Eaddi t( ) � κde
−iϕ Eini t − τd( ) + 1

τc
ai t − τd( )[ ], (9)

Edropi t( ) � 1
τc
ai t( )Eini t( ) + Eaddi t( ), (10)

where Eini is the i
th electric field at the input port, and τd is the time

delay added by the external feedback. Such time delay is assumed
constant in the frequency range investigated, implicitly neglecting
the impact of dispersion in the waveguide. κd � 0.95 is the coupling
factor of the delay waveguide. ϕi is the total phase shift experienced
by each optical signal when propagated through the external
waveguide, including the previously mentioned phase control Δϕ.
It is defined in Equation 11 as:

ϕi �
2πτd c
λri

+ Δϕ. (11)

The TCMTmodel also includes the rate equations for ΔT(t) and
ΔN(t), which are defined as follows in Equations 12, 13:

dΔN(t)
dt

� −ΔN t( )
τFC

+∑M
i�1

ΓFCAc2βTPA
2ZωpV

2
FCAn

2
Si

|ai t( )|4, (12)

dΔT(t)
dt

� −ΔT t( )
τth

+ Γth
mcp

∑M
i�1

Pabsi t( )|ai t( )|2⎡⎣ ⎤⎦. (13)

The time constants τFC and τth are the lifetime of the carriers and the
heat diffusion time constant, respectively. Z is the reduced Planck’s
constant and m is the mass of the MRR. ΓFCA/th refer to the FCA and
thermal confinement factors. VFCA/TPA denote the FCA and TPA
effective volumes in the cavity. βTPA and cp, are the silicon’s TPA
coefficient, and specific heat, respectively. σFCA is the cross-section of
FCA in the cavity. The time-dependent termPabsi(t) represents the total
power absorbed in the MRR cavity and it is defined by Equation 14:

Pabsi t( ) � cα

nSi
+ γTPAi

+ γFCA( )|ai t( )|2. (14)

The system of differential equations in Equations 6, 12, 13 is solved, by
first normalizing the equations to dimensionless parameters and then
using a conventional Runge-Kutta method. The discretization process
of the signals into the steps of the Runge-Kutta solver follows the same
procedure as done in (Giron Castro et al., 2024b). In this case, the
mathematical procedure is just extended to account for the multiple
electric fields. The values of the simulated optical parameters are the
same as in our initial study of this system (Giron Castro et al., 2024) and
are listed in Table 1. We calculate the values of the quality factor (Q)

TABLE 1 Parameters used in this work.

Parameter Value

m 1.2 × 10−11 kg

βTPA 8.4 × 10−11 m · W−1

τc 54.7 ps

ΓFCA 0.9996

nSi 3.485

Γth 0.9355

λ0 1,552.89 nm

dnSi/dT 1.86 × 10−4 K−1

L 2π · 7.5 μm

dnSi/dN −1.73 × 10−27 m−3

cp 0.7 J · (g ·)K−1

σFCA 1.0 × 10−21 m2

VFCA 2.36 μm3

VTPA 2.59 μm3

τth 50 ns

τFC 10 ns

α 0.8 dB/cm

FSRω/2π 1.83 THz

Q 2.412 × 104

FWHM 2.193 GHz
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and the full width at half-maximum (FWHM) of the silicon MRR, as
defined in (Biasi et al., 2024).

2.4 Output layer

At the output of the reservoir (drop port of the MRR), the M
WDM signals are wavelength-demultiplexed and detected by
individual photodiodes. The reservoir output for each optical
channel i and time-multiplexed node j is determined at the
photo-detection stage by calculating the modulus square of
Edropi,j(n) as in Equation 15:

Xdropi,j n( ) � |Edropi,j n( )|2. (15)

This brings additional nonlinearity through a square power
function. Based on each detected signal, we train the output layer
using ridge regression to calculate the N-size weight vector W of
each task. For the training of every multiplexed RC, we use a
regularization parameter Λ = 1.0 × 10−9, which was fine-tuned to
obtain the best performance of the tasks for a given simulation in
Section 5. The predicted sequence of each task ŷi(n) is consequently
calculated as in Equation 16:

ŷi n( ) � ∑N
j�1

WjXdropi,j n( ). (16)

3 Benchmark tasks and
computing metrics

In this section, we describe each of the benchmark tasks that
have been used in this work: NARMA-10 time-series prediction,
signal waveform classification (SWC) as a basic classification task,
and the equalization of a wireless channel affected by nonlinear
distortions and noise, referred to as ChEq. The fourth task is
concerned with the prediction of the future position of the target
in an experimentally measured radar signal (IPIX). The details of the
tasks were obtained from (Paquot et al., 2012; Duport et al., 2012).

3.1 NARMA-10 time-series prediction

The first task that we consider in this work is the one-step ahead
time-series prediction of the discrete-time tenth-order nonlinear
auto-regressive moving average (NARMA-10) function. In this task,
commonly found in RC literature, the target of the RC is the chaotic
mathematical function expressed as:

y0 n + 1( ) � 0.3y0 n( ) + 0.05y0 n( ) ∑9
i�0

y0 n − i( )⎡⎣ ⎤⎦
+1.5u0 n − 9( )u0 n( ) + 0.1.

(17)

As it is highlighted by Equation 17, NARMA-10 is useful to test
the memory capabilities of an RC scheme. For this task, u0(n) and
m0(n) are uniformly distributed over the intervals [0.0, 0.5] and [0.0,
+1.0], respectively. The metric performance is the normalized mean
square error (NMSE) between the predicted and the target data

sequences. The mathematical definition of the NMSE is given by
Equation 18:

NMSE � 1
Ldata

∑n ŷ0 n( ) − y0 n( )( )2
σ2y0

, (18)

where ŷ0(n) is the predicted sequence, y0(n) is the target sequence,
and Ldata their length. The term σ2y0

represents the variance of y0(n).

3.2 Signal waveform classification

In this toy classification task, the RC target is to differentiate
correctly the shape of a waveform between square and sine
waveforms as determined by Equation 19:

y1 n( ) � 0 if sine waveform
1 if square waveform

{ . (19)

The input sequence u1(n), is generated by sequencing randomly
sine and square waves discretized over 12 points per period. The
masking sequence in this task, m1(n), is uniformly distributed over
the interval [0, +1]. The performance metric for this task is the
classification accuracy of the system. It is obtained by dividing the
number of accurate predictions by their total number. As a
classification task, the higher dimensional capabilities of the RC
are more relevant than memory.

3.3 Wireless channel equalization

This task emulates a wireless channel model that is disturbed by
multipath fading, noise, and high-order nonlinear distortions. The
system is first modeled as a linear wireless channel with the input
d(n) undergoing the effect of multipath fading as shown in
Equation 20:

q n( ) � 0.08d n + 2( ) − 0.12d n + 1( ) + d n( )
+ 0.18d n − 1( ) − 0.1d n − 2( ) + 0.091d n − 3( )
− 0.05d n − 4( ) + 0.04d n − 5( ) + 0.03d n − 6( )

+ 0.01d n − 7( ).
(20)

This is followed by a combination of second-order and third-
order nonlinear distortion besides the addition of pseudo-random
additive Gaussian noise with zero mean, denoted by v(n). The
resulting distorted sequence becomes the input of the RC,
mathematically expressed in Equation 21.

u2 n( ) � q n( ) + 0.036q n( )2
− 0.011q n( )3 + v n( ). (21)

The target of the RC is to reconstruct the original signal, d(n),
which is an independent, identically distributed random sequence
with values taken from {−3,−1,+1,+3}.

During the pre-processing stage, we added a bias to the input,
u(n) + 20, before masking the signal. The values of the masking
sequence, m2(n) are taken from a uniform distribution in the
interval [−1,+1]. During the training, the target sequence is
shifted in time by 2 before minimizing the square error
(ŷ(n) − d[n − 2])2. From the obtained output, the values of the
predicted sequence ŷ2(n) are approximated to their nearest
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neighbor from the values {−3,−1,+1,+3}. The performance
metric is the symbol error ratio (SER) between the original
and predicted sequences. We use a signal-to-noise ratio (SNR)
of 32 dB.

3.4 IPIX radar task

This task consists of a K-step time-series prediction of a signal.
The target is an experimental backscattered radar signal from the
ocean surface, which was measured by the McMaster University
IPIX radar. Among the available datasets (Haykin, 2001) we used the
ones related to the average height of waves. More specifically, the one
corresponding to the high sea states (average wave height of 1.8 m).
The dataset is generated from the in-phase and quadrature outputs
of the radar IQ demodulator. The performance is determined by
calculating the NMSE between the prediction and the experimental
measurements of the signal. We simulated the system forK � 2. The
2-D signal is flattened and then processed sequentially by the RC.
The training and testing sets used in this task were arbitrarily
selected from the original datasets.

3.5 Linear, nonlinear and total
memory capacity

RC is capable of buffering a finite number of previous inputs.
How long an input drives or has an influence on the reservoir state is
limited, which reduces the computing load in RC schemes. However,
this also limits the number of past inputs that it can accurately
predict. Therefore, we can quantify the memory capacity (MC) of
RC by evaluating the ability of a particular RC scheme to reconstruct
its own input K steps in the past. As first defined by (Jaeger, 2002),
the linear MC of RC can be calculated by training it to reconstruct
the input (usually uniformly distributed) given by
yK(n) � u(n −K). The mathematical expression for a specific
value of K is defined by Equation 22:

C yK[ ] � 1 − NMSE yK[ ]. (22)

There is a limit to the significant K steps contributing to the
memory capacity of a given RC scheme. In (Dambre et al., 2012) it is
demonstrated to be equal to the number of nodes N, so that the
value used forKmax in this work is 50. The total linearMC is defined
as the sum of the capacities considering all the values ofK≤Kmax as
expressed by Equation 23:

Clin � ∑Kmax

K

C yK[ ]. (23)

The previous definition accounts only for the linear MC of the
system. In order to expand the definition to higher-order functions
we can generalize the concept as the reconstruction of a set of basis
functions in the Hilbert space of fading memory functions (Dambre
et al., 2012; Hülser et al., 2023). The nonlinear memory capacity is
calculated by using a basis out of finite products of higher-order
Legendre polynomials. The basis function of the ith-order is noted as
Pi, for yi(n) � Pi. Thus, the nonlinear capacities are defined by
Equation 24 as follows:

Ci � ∑Kmax

K

1 −NMSE Pi, ŷK[ ]( ). (24)

Then, the total MC, or the so-called, information processing
capacity, (Jaeger, 2002; Hülser et al., 2023) is calculated by
summing-up all capacities of the ith order up to the highest order
of function considered, H Equation 25:

MC � ∑H
i

Ci. (25)

in this work,H � 3 as this value matches the highest nonlinear order
memory required by the tasks, specifically, the wireless channel
equalization task.

3.6 Nonlinearity metric of the MRR-
based TDRC

From Equation 7, we can determine the frequency detuning of
the resonance resulting from the nonlinear effects occurring in the
MRR, noted δNL(t), which is the sum of the frequency detunings due
to FCD and the TO effect, given by Equation 26:

δNL t( ) � δi t( ) − Δωi

2π

� 1
2π

ΔωΔN t( ) + ΔωΔT t( )[ ].
(26)

By quantifying the nonlinear detuning, we can have an
estimation of the strength of the nonlinear dynamics of the
cavity independently of the performance of the tasks. The value
of δNL(t) varies over time as a function of the data patterns
modulated onto the optical carriers. Therefore, the metric that
we use in this work is the standard deviation of δNL(t),
i.e., σ(δNL(t)), calculated over the total length of the datasets.

4 Results and discussion

We start this section by considering the case where the system
under investigation addresses a single task, i.e., a single wavelength is
used. Later we use this scenario as a performance reference when the
same task is addressed by several wavelength-multiplexed channels.
Then, we discuss the performance of the system when addressing
different tasks simultaneously, one per wavelength-multiplexed
channel. Finally, the impact of the feedback waveguide in the
system is investigated. We simulate the WDM MRR-based TDRC
for a �PT range of [−20, 25] dBm and a Δω/2π range of [−100, 100]
GHz. When not otherwise specified, the total power, �PT is
distributed equally between the M number of multiplexed optical
channels injected into the MRR. Likewise, the angular frequency of
each optical channel is detuned by the same Δω. For example, when
M � 4: Δω0 � Δω1 � Δω2 � Δω3. The performance for each task
corresponds to the results of the testing set and it is averaged over
10 different seeds used to generate the values of the input sequences
of each task. The number of virtual nodes,N, is 50 over the entirety
of this work.

Throughout most of this section, the length of both training
and testing sets is 2000 elements. The exceptions are Sections 4.5,

Advanced Optical Technologies frontiersin.org07

Giron Castro et al. 10.3389/aot.2024.1471239

https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2024.1471239


4.6, 4.7.2 where the system addresses different tasks
simultaneously. In that case, 10,000 symbols are used for
training and 10 different subsets of 10,000 symbols for testing.
The length of the warm-up dataset used before both the training
and testing sequences is 250.

4.1 Single-λ MRR-based TDRC M � 1

If we consider a single optical channel in the system described in
Section 2 (M � 1), we obtain the system we thoroughly analyzed in
(Giron Castro et al., 2024b; Giron Castro et al., 2024a). In those
studies, the system exhibits three clear regions of operation within
the �Pin vs. Δω parameter space. We label them as A, B, and C as a
function of the obtained performance. Each region shows clearly
distinguishable levels of NMSE as observed in Figure 2 for the
NARMA-10 task. Similar behavior is found for other tasks in (Giron
Castro et al., 2024a) according to their respective performance
metrics. Region A corresponds to the linear regime of the MRR
and therefore lacks nonlinearity to properly address the computing
tasks. The nonlinearity of the photodiode provides some higher
dimensionality at the output but not enough to address the tasks
with good performance.

Region B achieves sufficient nonlinearity to address a particular
task without sacrificing memory. This is the region of interest in
which we can operate this system. The best performance
(NMSE � 0.0178) is exhibited at �Pin � −5.0 dBm and Δω/2π �
30 GHz. Region C is characterized by very detrimental self-
pulsing, which causes a significant penalty in memory and
performance. In this region, the reservoir is effectively not driven
by the input signal anymore. The shape and size of the regions are
highly dependent on the lifetimes of the nonlinear effects but also on
the computing requirements of each task as shown in (Giron Castro
et al., 2024a), where higher degrees of nonlinearity are beneficial for
some tasks but detrimental for others.

For the WDM scenario, an adequate balance for the
contribution of power from each optical channel is critical. The
power levels need to be tuned to avoid enhancing the performance of
one of the tasks while penalizing the others. We also aim to avoid
both lacking nonlinearity and triggering self-pulsing effects. For
comprehensive details of this single-input channel analysis, we refer
the reader to (Giron Castro et al., 2024b).

4.2 Multiple optical channels addressing the
same task in parallel, M = 4

Our proposal to extend the scheme through WDM relies on the
premise that we can achieve approximately equal performance in the
different optical channels detuned from their respective resonance of
the MRR. Indeed, this would allow us to use several resonances of
the MRR. The main wavelength-dependent factor that impacts the
performance is the delay waveguide. The phase shift experienced by
each channel depends on its wavelength according to Equation 11.
Further analysis of the impact of the phase shift in the system is
realized in Section 4.7.

Here, we first test if the performance of the system shows the
same behavior for a M> 1 number of optical channels over the
parameter space of �Pi and Δωi. We address the NARMA-10 task for
this test and M � 4 optical channels for this analysis. For this
simulation, Δϕ/2π � 1/3, and τd � 0.5 ns, which was optimized
in terms of the lowest NMSE achieved in simultaneous operation
of multiple optical channels [same time delay than in (Giron Castro
et al., 2024b)]. Every task uses the same value of bias, β � 8.0.

In terms of nonlinear dynamics, we do not expect a significant
difference in terms of high dimensionality achieved by each optical
channel. However, it is important to verify if the system achieves the
same performance pattern over the parameter space of each optical
channel. The following analysis considers both equal and different
instances of the same task addressed simultaneously by the system.

4.2.1 Simultaneous computing of equal instances
of the same task

We evaluate the performance of our proposal when different
optical channels are simultaneously modulated by input data of the
same task. For this simulation, we use the same set of 10 seeds (from
which we average testing performance over the number of seeds) to
generate each target NARMA-10 sequence for every channel. In
other words, the system addresses simultaneously four completely
equal instances of the NARMA-10 task. With this analysis, we
investigate the similarity of the response from each optical
channel under equal conditions. The performance obtained as a
function of �Pi and Δωi/2π for each optical channel is shown in
Figure 3. In the Supplementary Material, we calculate and show the
relative difference (|Δ|) over the parameter space between the
NMSE obtained in channel 0 and the values obtained in channels
1, 2, and 3. The difference in general between the NMSE obtained
between the channels is very low.

In this scenario, we observe that the system is capable of
achieving the same performance as in the case of a single optical
channel (Section 4.1). The best performance of each channel is
encircled in red. The location of the best performance over the
parameter space is the same for all the channels (�Pi ≈ − 1.02 dBm
and Δωi � 35 GHz).

Hence, the total power (�PT) required by the system at the
location of the best performance is 5 dBm. This is an order of
magnitude higher than in the single-λ scenario, but we
quadruple the computing capacity of the system for the same
task. Another important difference concerning the results of the
single-λ implementation (as shown in Figure 2) is that the area
where self-pulsing is triggered (affecting the memory of the
reservoir) has a significantly narrower extension over the

FIGURE 2
Regions (A, B), and C in terms of �Pin and Δω/2π, when solving the
NARMA-10 task.
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parameter space. It is reduced to a limited range where NMSE >
1.0 in Figure 3. The existence of this limited range of self-pulsing
in the negative detuning region, which corresponds to a red shift
of the resonance, hints at dominance of the thermo-optic effect
when the total power is increased. The shift of region C to
negative detuning when the thermo-optic effect is dominant was
also observed in our previous study of a single-channel MRR-
based TDRC (Giron Castro et al., 2024b).

These differences in the power required to achieve the same level
of performance, and in the generation of self-pulsing can be
explained by considering the total energy circulating in the
cavity. From the outlined TCMT model, we consider the
contribution of the modal amplitude energy of each optical
channel |ai(t)|2 in the system and compare it with the case
where there is a single optical channel. Subsequently, the total
modal amplitude energy (corresponding to the single-λ
implementation) at a given instant is distributed equally over the
M optical channels. This is (|ai(t)|2 � |a(t)|2/M. Then, the energy
contribution from each optical channel to the change rate of ΔN(t)
in the WDM scenario at such instant is 1/M2 of the value of the
single-λ case as determined by (|a(t)|2/M)2 � |a(t)|4/M2.

We can infer from Equation 8 that a lower change rate of ΔN(t)
also affects the FCA generation and the conversion of absorbed
power into heat and in turn, decreases the change rate of ΔT(t).
From Equation 22, we see that this reduction in the generation rate
of both ΔN(t) and ΔT(t) causes an overall lower nonlinear
detuning for the WDM MRR-based TDRC. In summary, more
power is required by the WDM-based system to achieve the same
level of nonlinear dynamics as the single-channel system.

Consequently, triggering self-pulsing (Region C in Figure 2) in
the WDM-based TDRC would require additional power than if we
used a single optical channel. This difference in energy appears to

reduce the area over the parameter space where self-pulsing occurs.
This is beneficial for the system as self-pulsing is detrimental to the
memory of the RC as discussed later in Section 4.4. Nevertheless, this
also means that more power is required to achieve a moderate level
of nonlinear dynamics where the system performs the
best (Region B).

4.2.2 Simultaneous computing of different
instances of the same task

In this case, different sets of 10 seeds are used to generate each
input data sequence that modulates each optical channel. Hence,
with this analysis, we test the capability of the system to achieve good
performance when simultaneously addressing multiple different
instances of the same task (NARMA-10). The attained results are
observed in Figure 4. As in the previous case, we also quantified the
relative difference between the NMSE of channel 0 and the rest of the
channels (see Supplementary Material).

There is a decrease in performance with respect to the case
where we used the same set of seeds to generate the modulating
signals of every optical channel. This is to be expected if we consider
that the carrier population interacts with all the channels through
the cavity nonlinear dynamics. If the modulated optical signals are
equal, then the short memory provided by the carrier population will
contain information that favors equally the computing processing in
every channel. This effect appears to also compensate for the impact
on the system of the resulting phase shift in the feedback mechanism
(further studied in Section 4.7). Henceforth, the inter-coupling
between the nodes of each optical channel benefits the all-around
performance of the system when using the same sets of seeds.

This benefit is not present when using different sets of seeds.
However, in that scenario, it does not translate to a performance
penalty either. The imprinting of unwanted information between the

FIGURE 3
NMSE of the 4-channels WDM MRR-based TDRC addressing equal instances of the same task (NARMA-10) simultaneously as a function of �Pi and
Δωi/2π (A) Channel 0, (B) Channel 1, (C) Channel 2, (D) Channel 3. The best performance is encircled in red.
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tasks is averaged out in the system due to the difference in speed
between the input and the lifetime of the nonlinear effects. This is
also the case when the system addresses different tasks in parallel as
shown later in Section 4.5.

We can see that the region of the best performance over the
parameter space becomes narrower for this case (Figure 4) and the
difference of NMSE between the channels, particularly between
channels 0 and 1, is increased (see Supplementary Material).
However, we still obtain very good performance for the
NARMA-10 task in every instance. The minimum NMSE in
every multiplexed channel is different, but the location over the
parameter space remains the same for all. In fact, it is the same
location as in the previously studied scenario (�Pi ≈ − 1.02 dBm and
Δωi/2π � 35GHz).

Therefore, despite the less favorable inter-coupling dynamics of
the system, the overall behavior of the system over the parameter
space remains the same. As we analyze later in this work, further
improvement in the performance of each NARMA-10 instance
could be potentially achieved by optimizing the phase control of
the feedback mechanism.

4.3 Performance vs. number of channels for
the NARMA-10 task

We evaluate the performance of the system when increasing the
number of wavelength channels (M � 1, 2, 3, 4, 5, 10) that are
multiplexed into the reservoir. We assess if there is any significant
penalty when increasingM. The total power is kept constant at a value
of �PT � 0 dBm and the feedback phase shift is fixed to Δϕ/2π � 1/3.
The angular frequency of the ith channel is determined as ωi � ω0 +
i · FSRω for i � {0,± 1,± 2,± 3,± 4,+5}. We use the NARMA-10 task
as a benchmark, and every optical channel is modulated with input data
corresponding to equal instances of the task.

The attained results are shown in Figure 5. First, we can see that
for a few additional channels, M ∈ {1, . . . , 4}, the impact on the
NMSE achieved in each multiplexed optical channel is minimal,
and the behavior among the different optical channels is similar.
Around the same value of the best performance (NMSE≈ 0.02) is
obtained for all the optical channels, at approximately the same
value of Δω/2π � 40 GHz. However, for M � 5, self-pulsing is
triggered at a single location of the simulated optical
parameters (Δω/2π � −55 GHz).

This suggests that for specific values of M, the power
distribution might be more prone to self-pulsing, particularly in
the red-shift area of the parameter space, as the thermal effects
become dominant. In fact, we can also see this asymmetric behavior
(in terms of NMSE) between negative ([−60, 0] GHz) and positive
detunings ([0, 60] GHz) for M ∈ {1, . . . , 5}, where the negative
detuning region has slightly worse performance.

As the number of channels is increased, we observe how the
impact of the phase shift in the delay waveguide becomes more
noticeable. Specifically, when M � 10, we observe how the
performance of the channels at ω6 and ω7 is affected over the
parameter space, whereas the rest of the channels achieve very
similar performance. This indicates that for a determined range of
frequencies, the achievable performance is penalized by the
propagation through the delay waveguide. The phase shift, hence,
becomes detrimental to the memory provided by the
feedback mechanism.

This issue can be addressed by modulating the respective data of
channels ω6 and ω7 to successive resonances of the MRR
(i � {−5, 6}). We simulated the system with this change of
frequencies of the channels and obtained the result shown in
Figure 6 for �PT � 0 dBm. Now all the channels exhibit similar
performance. As studied in Section 4.7, a potential alternative to
address this problem is optimizing the total phase shift in the
delay waveguide.

FIGURE 4
NMSE of the 4-channels WDMMRR-based TDRC addressing different instances of the same task (NARMA-10) simultaneously as a function of Pi and
Δωi/2π. (A) Channel 0, (B) Channel 1, (C) Channel 2, (D) Channel 3. The best performance is encircled in red.
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4.4 Memory capacity of the WDM MRR-
based photonic RC, M = 4

Another method to validate the suitability of each optical
channel for computing purposes without depending on a
particular task is to calculate the memory capacity, as
previously defined in Section 3. In this case, the target of RC
is to reconstruct the input that was used previously to generate
the NARMA-10 sequence, for Kmax � 50 and H � 3. The rest of
the parameters used in this simulation are the same as in Section
4.2 for M � 4.

The results are visible in Figure 7. It is clear that the MC
achieved by all optical channels is very similar over the parameter
space of �Pin and Δωi. As theMC is independent of a particular task,
we can infer that for M up to 4, the memory capabilities of each
optical channel in this scheme are approximately the same.

When considering different tasks in each optical channel, a
certain degree of freedom is available. The MC varies over the
parameter space and this could allow adjusting each optical channel
to the memory that its respective task demands. However, this
flexibility is limited as the nonlinear dynamics of the MRR are
intertwined to each optical channel, e.g., through Equations 8, 9;
hence, a change in �Pin or Δωi in one optical channel to optimize its
respective MC, would affect the performance of the others.

4.5 Multiple optical channels addressing
different tasks in parallel, M = 4

The initial part of this section focused on the capabilities of the
studied RC scheme to reproduce similar performance when
addressing simultaneously the same task in different optical
channels. Now we focus on addressing different tasks on each of
the optical channels, following the setup of the tasks shown in
Figure 1. For this purpose, we set the value M � 4 as a proof of
concept, where the angular frequency of the ith modulated optical
channel follows the expression ωi � ω0 + i · FSRω for i � {0, 1, 2, 3}.
To simplify the simulation process, the system uses the same data
lengths for the three tasks, 20,000 symbols for training and
10 different subsets of 10,000 symbols for testing. Δϕ/2π is set to
2/3. The corresponding biases per task are βi � {8.0, 4.0, 11.0, 10.0}.
The result of each multiplexed task is shown in Figure 8. Similar
to our initial insights in (Giron Castro et al., 2024), when using
the same value of �Pi and Δωi for every channel, the best
performance of each task differs considerably in their
respective location in the parameter space. Therefore, no
simultaneous operation with optimal performance of the
system is achievable in the previously simulated conditions.
Consequently, we simulated the system under different values
of power and detuning values across the individual tasks. As a
basis, we used the regions that exhibit the best performance over

FIGURE 5
NARMA-10 NMSE per ωi as a function of Δωi/2π for �PT � 0 dBm, when varying the number ofWDM channels: (A)M= 1, (B)M= 2, (C)M = 3, (D)M = 4,
(E) M = 5, (F) M = 10. SP: Self-pulsing.

FIGURE 6
Memory capacity of each optical channel of the WDM MRR-
based TDRC as a function of �Pi and Δωi/2π, for M � 4: (A) Channel 0,
(B) Channel 1, (C) Channel 2, (D) Channel 3.
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the parameter space in Figure 8. In Table 2, we list the selected
values where simultaneous performance with good performance
in each task was achieved. As concluded in (Giron Castro et al.,
2024), this can come at the cost of a slight performance penalty,

consequently setting up a trade-off between performance and
parallelization for the WDM MRR-based TDRC scheme. The
focus of this work is on the parallelization of the tasks and not on
the absolute best performance. Nonetheless, we still compare the

FIGURE 7
Memory capacity of each optical channel of the WDMMRR-based TDRC as a function of �Pi and Δωi/2π, forM � 74: (A) Channel 0, (B) Channel 1, (C)
Channel 2, (D) Channel 3.

FIGURE 8
Performance of the WDM MRR-based TDRC scheme addressing four different tasks as a function of Δωi/2π and �Pi . In this simulation,
�P0 � �P1 � �P2 � �P3, Δω0 � Δω1 � Δω2 � Δω3 for (A)NMSE of the NARMA-10 task. (B) Accuracy of the SWC task. (C) SER of the wireless channel equalization
task. (D) NMSE of the radar task. Red circles mark the best performance.
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results obtained with those of previous works on photonic
TDRC. We achieve simultaneous operation of the tasks by
adjusting the values of the input power and angular
frequency to those listed in Table 2.

We list the results regarding the best performance of each task and
compare them with those of previous studies on photonic TDRC (see
Supplementary Material). We point out that the results of the previous
studies are for photonic reservoirs that address a single task at a time.
Indeed, there is a small performance penalty even when compared to
the single-λ MRR-based TDRC. Although outside of the scope of this
study, this penalty could be reduced with a full 8-D optimization of the
values of �Pi and Δωi. Another relevant aspect of this implementation is
the higher processing rate of data concerning the other works in the
literature. We also highlight that the proposed system requires further
optimization of the frequency detuning and input power, only when
running different tasks. If we use this system to address multiple times
the same task in parallel, as in Section 4.2, we can likely avoid these
additional complications.

As in Section 4.2, there is an interaction between the tasks because
they are under the influence of the same nonlinear dynamics. A change
in �Pi or Δωi/2π of one of the channels affects the performance of the

others by changing the temporal dynamics of the cavity. However, the
output layer of each task is trained using the higher dimensional states
of the RC in each channel that result from the nonlinear transformation.
Hence, the training addressing each task is bounded by the specific
number of tasks present and the parameters of the optical channels used
in the setup. The reservoir must be retrained if this configuration
changes. This is not different from any other type of RC scheme. It is
important to highlight that the training and testing datasets are
uncorrelated and separated by a warm-up sequence. Consequently,
any relation between the tasks learned during the training phase is
randomized and does not impact the presented results, which are based
on the testing sequence. Therefore, the good testing performance proves
the effectiveness of multi-task processing through WDM.

4.6 Nonlinearity of each optical channel for
different tasks

The different performance patterns of each optical channel and
task over the studied parameter space (Figure 8) could be related to
the amount of nonlinear detuning triggered by the processed data of
each task when it is propagated through the reservoir. This could be
the case in a practical scenario where the modulation or encoding
used in each task could generate different optical signals. However,
we do not expect the nonlinear detuning to be as different between
channels in this numerical analysis due to the bias added to each
optical signal. To verify this, we use the previously defined metric for
the nonlinear detuning of the resonances, σ(δNL(t)) to quantify the
amount of nonlinearity attained in each task. The simulation
parameters of the system are the same as in Section 4.5. The
results are shown in Figure 9.

TABLE 2 Values of �Pi and Δωi leading to the best performance per task.

ith channel �Pi [dBm] Δωi [GHz]

0 0.0 −50

1 −10.0 −40

2 17.5 +75

3 17.5 −25

FIGURE 9
Standard deviation of the nonlinear detuning of each ωri detuned from its respective optical channel, ωi , as a function of �Pi and Δωi/2π forM � 4: (A)
Channel 0, (B) Channel 1, (C) Channel 2, (D) Channel 3.
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As anticipated, the nonlinear detuning of the optical channels follows
a very similar pattern. The thermal effect becomes dominant as the
power increases, and subsequently, the area of the parameter space with
the highest value of σ(δNL(t)) red-shifts. Henceforth, an asymmetry in
both the nonlinear detuning and the performance of the tasks is formed
over the parameter space of �Pi and Δωi/2π, as earlier discussed for the
NARMA-10 task in Section 4.3. Comparing the nonlinear detuning to
that of the single-λ scheme (Giron Castro et al., 2024a), we see that the
maximum nonlinear detuning achieved for the WDM MRR-based
TDRC is around five orders of magnitude lower when compared
over the same range of �Pi and Δωi, which as discussed before, is a
consequence of the different distribution of the energy in theMRR cavity.

A more in-depth analysis of the nonlinear detuning is necessary to
verify if self-pulsing is triggered when adjusting independently the input
power and frequency detuning of each channel. This could provide
further generalization on the locations over the parameter space that are
more favorable for a particular task. Ultimately, as demonstrated by the
results of Figures 7–9, the difference in performance between tasks for a
given value of �Pi and Δωi/2π does not seem related to a difference in
memory or nonlinearity properties of each channel, as the behavior
among channels of both properties over the parameter space is roughly
the same. The difference likely relies only on the computing
requirements of each task.

4.7 Impact of the phase shift control

As discussed earlier in this work, the phase shift in the delay
waveguide depends on the wavelength of the propagating optical signal.

Therefore, a specific instance of a task might exhibit a decrease in
performance when its optical channel is changed, depending on the
impact of the phase shift in the memory. In the simulated system, we
implement a wavelength-independent adjustable phase shift in the
delay waveguide (Δϕ) to change the total phase shift induced to
each optical channel (ϕi) as expressed in Equation 11. In the
following results, we analyze the impact of Δϕ when addressing
simultaneously, either the same task or different tasks per channel.

4.7.1 Impact of Δϕ when addressing multiple
instances of the same task

In Figures 5D, 6, we observed how, for some optical channels the
performance over the parameter space differed from that of other
optical channels, when addressing the same task. We have attributed
this behavior so far to the wavelength dependence of the phase shift in
the delaywaveguide. To confirm this hypothesis, we simulate the system
when varying the value of Δϕ forM � 10, �PT � 0 dBm, addressing the
NARMA-10 task in all the channels. The results are shown in Figure 10.

We observe how each value of Δϕ changes the optical channels
that perform noticeably different as a function ofΔωi. ForΔϕ/2π � 0
(Figure 10A), the affected channels are ω2 and ω7. For Δϕ/2π � 1/4
(Figure 10B), the affected channel is ω6. In the case of Δϕ/2π � 1/2
(Figure 10C), it is ω0. Finally, for Δϕ/2π � 2/3 (Figure 10D) it is ω1

that performs differently. Interestingly, the impact of ϕi on a
particular channel does not necessarily mean a performance
penalty. In fact, we can see that in Figure 10B, the optical
channel that is affected performs better than the rest, and for a
considerably larger range of Δωi. The results correspond to a limited
set of Δϕ, but they already convey the importance of the total phase

FIGURE 10
Performance of the system for the NARMA-10 task with M � 10, as a function of Δωi/2π for (A) Δϕ � 0.0, (B) Δϕ � 1/4 · 2π, (C) Δϕ � 1/2 · 2π, (D)
Δϕ � 2/3 · 2π. �PT � 0 dBm. SP: Self-pulsing.
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shift experienced by each channel (ϕi) in determining its
performance. As also inferred by the next analysis, the control of
the phase shift appears to be a key component in improving the
overall performance of the WDM MRR-based TDRC.

4.7.2 Impact of Δϕ when addressing multiple,
different tasks

When addressing different tasks, changing the value of Δϕ does
not always have an impact on the performance behavior of each task
over the parameter space as shown in Figure 11 for the
NARMA-10 task.

In Figures 11A, B, D, there is not much variation in the
performance over the parameter space. However, we can observe
how region B (best performance) is extended in Figure 11C.
Furthermore, varying Δϕ also affects the performance of the
tasks at a specific point of Δωi/2π and �Pi.

In this way, it is possible to optimize the best performance of
each task as shown in the results listed in Table 3. We acknowledge
that a finer step of Δϕ could result in better performance being
identified. Therefore, Δϕ is a key degree of freedom to improve the

best performance of the system, once we know its location in the
parameter space.

5 Conclusion

By using both time and wavelength division multiplexing in an
MRR-based RC scheme, we are able to achieve parallel computing of
four different tasks, each addressing a different application, in a single
photonic device. The scheme exhibits also the potential of replicating
similar levels of performance for a determined task. This highlights that
a simple optimization would be needed to solve the same computing
application or process, multiple times, simultaneously. When
addressing different tasks, the memory and nonlinear properties of
the system are very similar between the multiple optical
channels. Therefore, the performance of a particular task will rely on
the adjustment of input power and frequency detuning to fulfill the
computing requirements of the task. The phase shift caused by the
external delay waveguidewas demonstrated to be another tunable factor
to improve the system performance. We tested the system with up to

FIGURE 11
NMSE of the Channel 0when addressing theNARMA-10 task as a function of �P0 andΔω0/2π (A) Δϕ � 0.0, (B) Δϕ � 1/3 · 2π, (C) Δϕ � π, (D)Δϕ � 2/3.2π.

TABLE 3 Comparison of the best performance of each task for different values of Δϕ for a �PT range of [−20,25] dBm and a Δω/2π range of [−100, 100]GHz.

Δϕ/2π NMSE - NARMA-10 (NMSE) % accuracy - SWC log10(SER) - ChEq NMSE - radar

0 0.0547 99.96 −2.444 0.200

1/4 0.0468 100 −2.047 0.196

1/3 0.0317 100 −2.078 0.201

1/2 0.0566 99.99 −2.093 0.189

2/3 0.0225 99.52 −2.490 0.184

3/4 0.0221 99.84 −2.477 0.189
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10 realizations of the same task, and up to 4 different tasks, all solved
simultaneously. In summary, the system offers high parallel computing
potential without significant reduction of scalability or performance.
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