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Abstract: Here we define a theoretical basis for the 
 generalization of the beam quality factor M2 to three-
dimensional (3D) space, which we call M6 formalism. 
The formalism is established through the use of exam-
ples of multifocal and Axicon optical systems to illustrate 
 discrete and continuous axial beam shaping, respectively. 
For the continuous case, we expand the definition of the 
Rayleigh range to incorporate a quality factor having both 
axial and transverse components 2

addM  and M2. Using geo-
metrical ray tracing simulations, a proportion factor C is 
found to empirically describe the axial quality factor 2

zM  of 
an optical setup including an Axicon and a paraxial focus-
ing lens with a Gaussian single mode input beam. Using 
our M6 formalism depth of focus (DOF) ranges are calcu-
lated for higher M2 beams, and are shown to be in good 
agreement with the simulated DOF range, demonstrating 
the usefulness of the M6 formalism for the design of real 
optical systems.

Keywords: beam parameter product; beam shaping; 
 Bessel-like beam; coherence; diffractive multifocal 
lens; laser beam quality; M2; multimode laser; optical 
entropy;  Rayleigh range.

1   Introduction
In recent years there are an increasing number of scientific 
and industrial applications requiring laser beam manipu-
lation along the optical axis. For research these are, for 
example, light-sheet microscopy [1, 2], optical trapping 
(tweezers) [3, 4], cytometry [5], and stimulated  emission 

depletion (STED) [6], while an example of industrial 
applications is laser glass cutting [7, 8]. Many examples 
of three-dimensional (3D) spatial coherence were recently 
reviewed by Flamm and his colleagues in their review 
article for 3D beam shaping [9]. Commonly used on-axis 
(Z axis) shapes in these applications are Bessel-like beams 
and multiple foci beams, but there is no convenient way 
to describe the characteristics of such beams, and usually 
they are described in terms of the generating optic. Thus, 
there is a need in the laser industry to define common con-
venient rules to describe beam characteristics, for cases 
where the Z axis is involved. Here, we will expand the 
standard transverse model for laser beam quality factor 
M2 by adding another dimension that is the propagation 
axis of the light.

2   Analytical formulation of M6 
formalism

The beam quality factor (M2) for transverse beams has 
been widely investigated in the scientific literature, and 
was developed by Siegman [10, 11] c. 1998. The concept 
of laser beam quality is based on aggregating the statis-
tics of beams with arbitrary profiles to predict their size 
and divergence in different planes along the propaga-
tion path. To state this simply – the M2 factor describes 
‘how far’ a real beam is from the base mode of an ideal 
Gaussian beam with an M2 equal to 1. Certain families of 
multimode beams such Gauss-Hermite with Cartesian 
symmetry 2

xM  and 2
yM  or Gauss-Laguerre with polar sym-

metry 2
RM  and θ

2M  have separated orthogonal values for 
M2 for each axis and their M2 has an analytical expres-
sion [12]. Another widely known family of the multimode 
beams is arbitrary (not analytical), such as the output 
intensity from multimode fibers [13], laser diodes, ver-
tical-cavity surface-emitting laser (VCSEL) single emit-
ters and arrays and others. The overall beam quality of 
transverse beams M4 is defined as a two-dimensional 
(2D) integral of the divergence angle and intensity at any 
point over the entire beam area [14].
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For a better understanding we can consider that M2 
is similar to the term of statistical entropy that describes 
the level of disorder in 3D space, in our case, of optical 
complex fields consisting of amplitude and phase. By 
analogy we can assume the existence of M2 in the Z (light 
propagation) axis. As a consequence, the overall beam 
quality factor in Cartesian coordinates is defined by 

6 2 2 2M ,( ), .x y zM M M  It is important to note that 2
zM  is a purely 

spatial coherence property and it does not refer to the 
temporal coherence of the laser.

The M6 formalism of laser beams can simplify under-
standing of the so-called ‘non-diffractive’ [15], or ‘self-
healing’ [16, 17] phenomena referring, for example, to 
Bessel-like beams [18, 19] and Airy beams [20]. Those 
beams are a special kind of multimode beam, with a 
strong effect of 2

zM  on their behavior.
For commonly used continuous planar and spheri-

cal optical elements, including prisms, spherical lenses, 
planar, and focusing mirrors, this 2

zM  has no meaning. Any 
near and far field (waist point) planes using this group of 
elements keep the beam quality factor constant and can 
be described by transverse coordinates only. This is a pos-
sible explanation as to why this issue of 2

zM  was not inves-
tigated previously.

The phenomenon of 2
zM  is revealed when utilizing 

optical elements that change the behavior of the laser 
beam along the optical axis. For example, different 
types of Axicons that create a Bessel-like beam region 
called the extended depth of focus (DOF) region [21, 22], 
and diffractive multifocal lenses that split an incident 
beam into  discrete diffraction orders along the optical 
axis [23, 24].

3   Examples of M6 and 2
zM

3.1   Multifocal lens – discrete axial shaping

We will use the multifocal lens as the first example to 
demonstrate the existence of the 2

zM  phenomenon. Let 

us consider an ideal multifocal diffractive lens with five 
foci. The diffractive lens foci positions are expressed by 
the following equation:

 
= 1

m

f
f

m (1)

where fm is focal length of m diffraction order, and f1 is 
focal length of diffraction order 1. In analogy with diffrac-
tion gratings, all diffraction orders have the same optical 
properties as the incident beam, but individual directions 
defined by the grating equation. Each axial order (focus) 
is an exact copy of the parent incident beam, with an indi-
vidual combination of spot size and beam divergence. 
Each order can be considered as a virtual light source with 
a waist in position fm. This conceptual comparison of mul-
tifocal diffraction lens and diffraction gratings is described 
in Figure 1. Figure 1 (left) shows five Gaussian waists 
arranged along the X axis with M2 per axis as follow =2 5xM  
(sum of all in the X axis), and = =2 2 1.y zM M  Such emitters 
arrangement exists for example in VCSEL arrays [25]. Figure 
1 (right) shows the multifocal case of five Gaussian emitters 
placed along Z axis and = = =2 2 21, 5x y zM M M  (sum of all in 
the Z axis). For both cases overall beam quality factor in 3D 
space is identical and equal to = ⋅ ⋅ =6 2 2 2M 5.z x yM M M

From this example, we see that calculation of 2
zM  in a 

case of multifocal lens is very simple and expressed by 2
zM  

sum of all foci:

 
= ⋅2 2

_ totalz zM N M  (2)

where N is number of foci and 2
zM  is axial beam quality 

factor of individual focus. 2
zM  for a multifocal lens equal to 

1, as each focus is the same as a focus of a separate single 
lens, which as we know does not have an axial shaping 
effect, unlike the case for a Bessel-like beam which we will 
discuss now.

3.2   Axicon – continuous axial shaping

As the second example of axial laser beam quality factor 
effect, we will consider an Axicon element. An Axicon is 

Figure 1: Left image demonstrates example of well-known arrangement of single mode sources along X axis. Right image shows same sources 
arranged along Z axis. Overall beam quality along the X and Z axes, respectively, is a sum of all individual sources, identical for both cases.

168 A. Brodsky and N. Kaplan: Expansion of the Laser beam quality factor M2 to the 3D domain



also called a radial prism or radial grating. For the multi-
focal lens example, we had N foci referring to N discrete 
geometrical focal points, for an Axicon we take this N to 
infinity, to a continuity of focal segments, each having the 
same NA. On Figure 2 left we see a 2D layout of geometri-
cal rays for an ideal trifocal lens. Each focus is, colored 
individually. The blue, green, and red line color refers to 
diffraction orders 1, 2, and 3, respectively. Each focus has 
different NA. Figure 2 right shows rays’ distribution after 
an ideal Axicon, all focal regions have the same NA.

3.2.1   Generalization of Rayleigh range to M6 formalism

The Rayleigh range is used to determine the DOF in con-
ventional optics, thus, we will need to generalize it for 
cases with axial shaping. As a mathematical basis to gen-
eralize the Rayleigh range definition so that it fits the M6 
formalism, we will start from the known set of definitions 
for waist spot size and Rayleigh range shown in Table 1.

In this model the Rayleigh range, which describes 
beam behavior along the optical axis, is not a function of 
the z coordinate. Then, by analogy with spatial factor of 
M2 for spot size, we multiply the Rayleigh range by a new 
parameter 2

zM  – the beam quality factor in Z axis. This 
new parameter includes two components related to axial 
behavior: the already familiar transverse M2, and a new 
component related to independent axial beam quality 
factor 2

add.M  Combining of the two components is done by 
using a root mean square (RMS) value [26, 27]. The gen-
eralized formula for Rayleigh range with beam quality 
factor in Z axis becomes:

 
= = + ⋅2 2 2 2 2

0 add 0( ) (M )R z R RZ M Z M Z  (3)

where 2
addM  is the axial beam quality factor, M2 is the 

transverse (traditional) beam quality factor, ZR is the new 
Rayleigh range, and ZR0 is the single mode beam Rayleigh 
range.

From eq. (3), we see that the generalized Rayleigh 
range is determined by two independent parameters – 
the axial and transverse quality factors. When focusing 
a beam where the axial beam quality factor 2

addM  is high, 

while the transverse quality factor M2 is low, one obtains a 
useful combination of a tightly focused central spot and a 
long depth of focus.

In the multifocal lens example, we saw that 2
zM  was 

proportional to the number of foci. The method to calcu-
late the 2

zM  of a Bessel-like beam generated by an Axicon 
is to measure how many times the transverse Rayleigh 
range is contained in the Bessel region. We will show 
this on a typical setup with an ideal positive (convex) 
type Axicon and ideal focusing lens shown in Figure 3 
(left). The Axicon generates two regions of interest here 
– a Bessel-like beam region (DOF) and an annular or 
ring-shaped beam region in focal plane F of the lens. In 
our example the incident beam is collimated and there-
fore the focal plane is the same as the focal plane of the 
ideal lens.

Before finding the final expression to describe the 
DOF of an Axicon element, we should take the effect of the 
shifting ‘waist’ position of the DOF region into account. 
The new F′ focal length, defined as the position along 
the optical axis that has the peak intensity, is calculated 
 geometrically from the sum of Axicon ring angle β and the 
NA of the Gaussian laser beam angle θ and shown in eq. 
(4). For convex Axicons the ring angle has a positive sign 
and vice versa for concave Axicons. Schematically, rays’ 
directions are shown in Figure 3 (right).

 
θ

θ β
−  

= =′  +  
1; tan

2 tan( / 2) 2
d dF

F
 (4)

We know that the Axicon’s DOF is affected by the Axicon’s 
ring angle β, as defined in Figure 3 (right) as the angle 
between the rays after the Axicon. Therefore, we will 
assume that 2

addM  is directly proportional to the Axicon’s 
ring angle, and inversely proportional to beam size.

Next, we define 2
addM  as the ratio of the natural diver-

gence of a single mode Gaussian input beam ϕ0_ input with 
diameter d to the ring angle of the Axicon β:

 

λ β π β
ϕ

π ϕ λ
⋅ ⋅= = ⋅ = ⋅
⋅

input

2
0_ input add

0

4 ; C C
4
dM

d
 (5)

Figure 2: 2D layout with geometrical rays. Left: ideal diffractive multifocal lens with individual colour for each focus. Each focus has 
different NA value. Right, ideal positive Axicon. All rays have same NA.
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In eq. (5) we define the C factor as the proportion factor 
responsible for DOF in the single mode input case. We will 
find the C factor empirically in the next section.

After finding F′, the location of the position with peak 
intensity along Z axis, we define the depth of focus Δp as 
the distance from F′ required for the intensity to drop to 
p · I(F′). Our generalized form of the depth of focus equa-
tion (detailed derivation shown in the Appendix) for a 
real beam in a medium with a refractive index n has the 
 following form:

 
∆ = ⋅ + ⋅ −

−
2 2 2 2
add 0

1n ( ) (M ) 2 1
1p RM Z

p
 (6)

where 2
addM  is given by (5), M2 is the transverse (traditional) 

quality factor and ZR0 is the Rayleigh range for a single 
mode beam with the same diameter. For the particular 
case of the intensity drop p = 0.5, the depth of focus equa-
tion of an Axicon becomes equal to twice the generalized 
Rayleigh range from (3):

 

λ
π

 ′∆ = ⋅ ⋅ ⋅ = ⋅ + ⋅′   0.5

2
2 2 2 2 2

Axicon   0 add
8n 2 n ( ) (M ) ;z R

FM Z M
d

 (7)

In the next section we find the proportion factor C from 
(5) (necessary to calculate 2

addM ) using simulations of an 
Axicon along the Z axis.

3.2.2   Determination of the constant C for the Axicon and 
lens optical setup by simulation

To calculate the C constant, we use a geometrical 
 Raytracing simulation to calculate the DOF for a variety 
of M2 values (1–5), with the M2 values are defines using a 
scattering model as described in the reference [28].

The geometric optics raytracing simulations were 
done in Zemax™ (LLC, Kirkland, WA, USA) OpticStu-
dio, for a wavelength of 1064  nm, with input defines as 
a Gaussian beam with diameter of 6 mm at exp(−2). This 
beam passes through an Axicon with a ring angle of 
1.129 mRad (defined using a radial diffraction grating) and 
then is the focus by an ideal focusing lens with an effec-
tive focal length (EFL) of 20 mm.

In Figure 4 we show the axial intensity distribution 
of a Bessel-like beam generated by an Axicon around the 
Fʹ position with an incident beam having varying quality 
factors from 1 to 5. Rulers were added at 50% of the Fʹ peak 
intensity to show the DOF values.

The calculations below (Table 2) were used to find the 
empirical value of the C factor from (5).

Calculations are in good agreement (<4% difference) 
with the simulated DOF length for a single mode beam 
and using the derived C0.5 for higher M2 beams gave DOF 
values that were also in good agreement with the simula-
tions (see Figure 4). 

Axicon

DOF region

Lens focal plane
Lens

Lens

θ β/2

FF’

Axicon

Figure 3: Left, 2D layout of an Axicon and lens optical system with geometrical rays. The setup includes an ideal positive Axicon element, 
and an ideal focusing lens. The DOF region occurs before the focal plane, and the annular beam is in the focal plane. Right, geometric 
presentation of optical marginal rays of an optical setup from the Left. Red color lines refer to the Axicon’s ring angle β, green lines refer to 
the NA of the Gaussian laser beam angle θ rays that intersect in the focal plane F, and blue colored lines refers to the sum of focusing and 
ring angles intersect in focal plane Fʹ. Fʹ is a new position with maximum on axis intensity.

Table 1: Diffraction limited spot size and Rayleigh range, for multimode and single mode beams.

Single mode beam Multimode beam

Spot size in focal plane
0

4 F
d
λ

ω
π

= 2 4MMM
F
d
λ

ω
π

=

Rayleigh range 22
0

0
4

R
FZ
d

πω λ
λ π

 
= =   

22
2

_
4MMM

R MM
FZ
d

πω λ
λ π

 
= =   

Where λ is the wavelength, d is the input beam diameter at exp(−2), and F is the focal length of the lens.
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4  Calculation and measurement of 2
zM

M2 of ideal multimode lasers like Gauss-Hermite or Gauss-
Laguerre have analytical solution. M2 calculation of real, 
arbitrary beams is not a trivial task, for both real meas-
urement, and simulations. Existing instruments used to 
measure the beam quality factor can measure the trans-
verse beam quality of continuous beams in optical systems 
composed only of elements without axial shaping effects. 
The future devices for measurement of M6 and 2

zM  will have 

to consider the existence of these axial phenomena and to 
include mathematical algorithms for dedicated analysis.

Simulation tools with physical optics capabilities are 
also limited by the same conditions [29]. Some certain 
examples of M2 can be calculated from knowledge about 
the system. For example, fiber core and NA define the 
maximum M2 of the output [30], divergence angle of a 
diffuser and beam size allow a good estimation for M2, 
number of emitters in array or diffraction orders configu-
ration for periodic diffraction optical elements (DOEs).
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Figure 4: Intensity profile along the Z axis for a Bessel-like beam generated by an Axicon with incident beams having M2 from 1 to 5.

Table 2: Calculation of DOF and C0.5 constant for an axicon and focus lens setup, for input beams with M2 from 1 (single mode) to 5.

The new focal position F due to shifting by the Axicon

1 1

6 19.923mm
6mm 1.129 32tan tan /2 2tan tan2 2 20mm 2

dF
d E
F

β− −

= = =
       −+ +         ⋅  

′

Rayleigh length for single mode 22

0

4 1.064 m 20mm4 15.1 m
6mmR

FZ
d

λ
π π

 ⋅ µ 
= = = µ     

Shifted Rayleigh length 22

0

4 1.0644 m 19.923mm4 14.9 m
6mmR

FZ
d

λ
π π

 ⋅ µ ′= = = µ′      

DOF for Gaussian Gaussian_0.5  02 30.2[ m]RZ∆ = = µ

DOF for Bessel-like beam, 2
add,M  and 2

zM  for Gaussian 
input 0.5

2 2 2 2 2 2
Axicon   add 0 add2 ( ) (M ) 2 ( ) 1 14.94 m 101.8 mRM Z M∆ = + ⋅ = ⋅ + ⋅ µ = µ′

2 2 2
add 3.2665; 3.2665 1 3.416zM M= = + =

Constant C
2
add 0.5 0.5

1.129mrad 6mm
C C 3.2665

4 4 1.064 3mm
dM

E
ππ θ

λ

⋅ ⋅⋅ ⋅= ⋅ = ⋅ =
⋅ ⋅ −

0.5C 0.6533=

DOF for higher M2 of incident beam
0.5

2 2 2 2
Axicon [1,2,.. 5]2 3.2665 ( ) 14.9, where 1,2,3,4,5i iM M =∆ = ⋅ + ⋅ =

0.5Axicon 101.8, 114.1, 132.2, 153.9, 178.0 m∆ = µ

DOF, depth of field.
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Calculation of the M6 beam quality from 2
zM  term is not 

trivial without preliminary knowledge about the system; 
i.e. what kinds of optical elements are used and their 
geometry.

5   Summary and discussion
The M6 beam quality factor formalism of volume spatial 
coherence in optics expands the well-known transverse 
model of beam quality to 3D space. In this model there is 
an additional spatial coherence quantity spread along the 
light propagation direction. The generalized 3D laser illu-
mination quality factor M6 is represented by the quality 
parameters 2 2 2, , .x y zM M M  For continuous shaping, the 2

zM  
is an additional factor multiplier of the standard Rayleigh 
range in the Gaussian optics formulas. 2

zM  for a Bessel-like 
beam output of an Axicon was simulated and a mathemati-
cal expression for DOF length in a basic optical setup was 
empirically found, allowing one to calculate the DOF for any 
combination of system parameters (focus lens EFL, input 
beam quality, input beam diameter and axicon angle β).

M6 formalism opens new opportunities in the field of 
3D beam shaping and coherence manipulations. Exam-
ples of fields where this formalism can be of use include 
laser systems for spatial transformation from transverse 
axes to longitudinal or vice versa, waveguides combined 
with diffraction grating in augmented reality devices, 
multimode fiber systems [31], fiber coupling [32–34], laser 
cavities with special geometry [35, 36], crystal pumping 
[37] and more.

There are no ready commercially available simula-
tion and measurement tools for M6 as of the time of this 
article’s publication. We hope that new applications that 
utilize the 3D beam quality will encourage the develop-
ment of such tools.

6  Appendix

6.1  Generalized DOF formula

The generalized DOF formula is derived from the well-
known Gaussian waist size equation:

 
ω ω

 
= +   

2

0 1z
R

Z
Z

 (8)

where ωz, and ω0 are beam sizes in distance Z from focal 
plane.

We define p factor as the intensity drop from its 
maximum in the focal plane, and it is proportional to the 
beam squared beam size (area).

 

ω ω

ω ω
= − = −

2 2
0 0
2 21 , 1
z z

p p (9)

Expressing Z from (8)

 

ω

ω

 
= − 

 2
0

2
2 2 1z

RZ Z  (10)

Substituting p in (9)–(10)

 

 
= − − 

2 2 1 1
1RZ z

p
 (11)

Z is only half DOF range Δp, and it is proportional to 
refractive index n.

Using (3) the final expression for DOF is:

 
∆ = ⋅ + ⋅ −

−
2 2
add 0

1n M 2 1
1p RM Z

p
 (12)
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