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Abstract: We performed systematic ab-initio molecular 
dynamics (MD) simulations of fs-laser-excited silicon (Si) 
using the Te-dependent density functional theory (DFT). 
We considered the case in which the potential energy sur-
face (PES) is strongly modified by the laser excitation, so 
that nonthermal melting occurs. We analyzed the corre-
lation between the time dependence of electronic prop-
erties like the band gap and the laser-induced atomic 
motion. Surprisingly, we found that the indirect electronic 
band gap decreases as a universal function of the atomic 
mean-square displacement (MSD) almost independently 
of the electronic temperature (laser fluence) and that the 
dependence is linear for a wide range of MSDs. We also 
found that a universal dependence is also present when 
analyzing the band gap as a function of the relative Bragg 
peak intensities, which can be directly measured in 
experiments.
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1  �Introduction
Silicon (Si) is the most used semiconductor worldwide. 
It exhibits an indirect band gap of 1.17 eV between the Γ 
and the X points of the Brillouin zone [1]. The direct gap 
at the Γ point amounts to 3.42 eV [1]. It is known from 
high-pressure experiments that the band gaps of Si are 

very sensitive to external conditions. For instance, apply-
ing an external pressure of 20 GPa produces a closure of 
the band gap and consequently a metalization of Si [2, 3]. 
This occurs because, under high pressure, the interatomic 
distance slightly decreases, which leads to an increase of 
the covalent bond strength (or hopping elements). This, in 
turn, results in a broadening of the valence and conduc-
tion bands, which then overlap.

In gallium arsenide (GaAs), it was theoretically shown 
that the laser-induced melting induces a collapse of the 
band gap [4]. Femtosecond (fs)-laser excitation of Si can 
also lead to a metalization if the laser fluence is high 
enough. However, the mechanism in this, although also 
related to atomic displacements, is completely different. 
The closure of the band gap occurs due to melting. Liquid 
Si is metallic because it exhibits a larger number of nearest 
neighbors than the zinc-blende crystalline structure, thus 
leading to a broadening of the valence and conduction 
bands. The metallic character of liquid Si has been experi-
mentally confirmed [5]. The laser-induced melting and 
consequent metalization of Si were predicted by Stampfli 
and Bennemann in 1994 [6] using the tight binding theory 
and by Silvestrelli and Parrinello in 1996 [7] using elec-
tronic-temperature-dependent density functional theory 
(DFT).

Now, based on the aforementioned facts, one can con-
clude that the band gap of Si closes upon a tiny displace-
ment of the atoms or upon a big rearrangement of the atomic 
environment. One can expect that simultaneous small dis-
placements and rearrangements, as it happens during the 
first stages after laser excitation, will produce a reduction 
of the band gap in Si. It is, however, not yet known how 
the band gap behaves as a function of the combined action 
of displacement and rearrangement during laser-induced 
melting. An appropriate quantity to measure the degree of 
atomic motion and structural rearrangement is the atomic 
mean-square displacement (MSD), which has also the 
advantage that it can be accessed through, for instance, 
the measurement of time-dependent Bragg peak intensi-
ties in time-resolved crystallographic experiments [8, 9]. 
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In this paper, we predict that the band gap of Si exhibits 
a universal behavior as a function of the MSD upon non-
thermal laser-induced melting almost independent of the 
laser intensity. Moreover, the band gap depends linearly 
on the MSD in a relatively large interval. Plotted as a func-
tion of the intensity of different Bragg peaks, the band gap 
can be represented by a universal function. The findings 
of this work might trigger pump-probe experiments to 
confirm the prediction.

The paper is organized as follows. Section 2 describes 
the simulation method. We explain the physical picture of 
a fs-laser excitation, the modeling by electronic-temper-
ature-dependent DFT and our simulation code CHIVES 
(Code for Highly excIted Valence Electron Systems). In 
Section 3, we present the results of our molecular dynam-
ics (MD) simulations of fs-laser-excited Si. We show that 
an intense fs-laser excitation melts Si in less than 100 fs 
and that the electronic band gap vanishes during this 
process. Furthermore, we show that the band gap is a uni-
versal function of the atomic MSD or of the relative Bragg 
peak intensity. We finish the paper with Section 4, where 
we discuss or results.

2  �Simulation method

2.1  �Physical picture of fs-laser excitation

Intense fs-laser pulses mainly excite the electrons in a 
solid, whereas, in most cases, the ions remain initially 
mainly unaffected. The fs-laser field excites in semicon-
ductors a significant amount of electrons from the valence 
band into the conduction band, so that hot electron hole 
pairs are created. Through intraband scattering and inter-
band Auger processes, a fast thermalization of the elec-
trons and holes occurs within a timescale of 10–50 fs. After 
the thermalization, the electrons and holes form a Fermi 
distribution with a common chemical potential μeh at a 
high temperature Te [10, 11]. In this so-called one-μ model, 
Te is an input parameter that controls the laser-excitation 
strength. A different model for describing the thermal-
ized electron hole pairs was developed by Tangney and 
Fahy [12]: They assume that the intraband thermalization 
is fast and the interband thermalization needs a much 
longer time, so that the electrons and holes are not in 
equilibrium. They further assume that the electrons and 
holes have the same temperature Te, but different chemi-
cal potentials, namely μe and μh. In this so-called two-μ 
model, the temperature Te and the fraction nex of excited 
electron hole pairs are input parameters. In Figure 1, both 

models are illustrated using the ab-initio electronic band 
structure of Si obtained from the DFT code WIEN2k [13]. 
The state described by the one- or two-μ model far away 
from the thermal equilibrium with hot electrons and cold 
ions decays via incoherent electron-ion scattering on a 
picosecond (ps) timescale.

The electrons are responsible for the interatomic 
bonding. Following the Born-Oppenheimer approxima-
tion, the ions move on a potential energy surface (PES) 
generated by the electrons. The presence of hot electrons 
and holes changes dramatically the bonding behavior of 
the ions, or in other words, changes the PES. As a conse-
quence, the ions feel forces that differ significantly from 
the forces occurring in the electronic ground state and the 
ions are accelerated on the laser-excited PES.
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Figure 1: Illustration of the two-μ model (A) and the one-μ model 
(B). For description see text.



B. Bauerhenne and M.E. Garcia: Universal behavior of the band gap in laser-excited silicon      147

2.2  �Modeling the effect of hot electrons and 
holes

The PES generated from thermalized laser-excited elec-
tron hole pairs is determined by the Helmholtz free energy 
F, which reads in Te-dependent DFT [10]
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Here, {ri} denotes the atomic coordinates and n(εm, Te) 
describes the occupation number of the Kohn-Sham 
energy level εm. Within the one-μ model, these occupation 
numbers are given by a Fermi distribution at temperature 
Te:
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where kB denotes the Boltzmann constant and the chemi-
cal potential μeh is obtained from the conservation of the 
total number of electrons
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The factor 2 in Eq. (2) accounts for the spin-up and 
-down electrons. Within the two-μ model, the occupa-
tion numbers of the holes in the valence band and of the 
electrons in the conduction band are given by individual 
Fermi distributions with different chemical potentials μh, 
μe and the same temperature Te:
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Here, the states below the Fermi energy εF are referred 
to the valence band and the states above the Fermi energy 
εF are referred to the conduction band. The two chemical 
potentials μh, μe are obtained from the two conditions that 
the total number of electrons (3) and that the given frac-
tion nex of excited electrons are reached:
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Furthermore, in Eq. (1), ρ is the electronic charge density
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with ϕm(r) being the Kohn-Sham orbitals. EXC denotes the 
exchange and correlation energy and VXC the exchange 
and correlation potential. VII describes the ion-ion repul-
sion and Se is the electronic entropy
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The indirect band gap is calculated as the difference 
between the highest occupied energy level and the first 
unoccupied energy level at Te = 0. Thus, using the ascend-
ing sorted Kohn-Sham energy levels εm, the indirect elec-
tronic band gap can be calculated from
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where 
1 F

e2
N

ε ε=  corresponds to the Fermi energy. The factor 

1
2

 accounts that two electrons can occupy one Kohn-Sham 
energy level due to the spin. For Si, Ne is always an even 
number, so that e

1
2
N  is an integer. As Si has got an indi-

rect band gap, one has to consider several k-points for the 
electrons in the calculations. Using the Helmholtz free 
energy (1), the force fj on atom j, needed for MD simula-
tions, can be calculated just by

	 e({ }, ).j ij
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2.3  �Ab-initio code CHIVES

We perform ab-initio simulation of laser-excited solids by 
using the Te-dependent DFT code CHIVES [14–18], which 
was developed in our group. We implemented the local 
density approximation (LDA) in CHIVES. A benchmark 
test in Si shows that our code can be more than 200 times 
faster compared with the free available code ABINIT at 
the same level of accuracy in simulating the structural 
response of Si after fs-laser excitation [18].

To achieve an efficient implementation of Te-depend-
ent DFT, we proceeded as follows: We separated the elec-
trons into core and valence electrons. The atomic nuclei 
and the core electrons are treated with Goedecker, Teter 
and Hutter pseudopotentials [19]. The valence elec-
trons are described explicitly by an optimized basis set 
of atom-centered Gaussian functions of s, p and d type. 
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The usage of Gaussian functions allows us to use much 
less basis functions to reach the same accuracy com-
pared to the widely used plane waves. Nevertheless, the 
drawback of Gaussian functions is the more complicated 
implementation and that one has to determine the basis 
set for each individual element separately. Furthermore, 
we use the so-called order (N) methods [20], where N 
is the number of treated atoms: The Hartree potential, 
which corresponds to the fourth term in Eq. (1), and the 
exchange and correlation potential VXC as well as the 
electronic charge density ρ are calculated on a fine cubic 
mesh of grid points without further approximations. The 
one-μ and two-μ models are implemented to simulate the 
effects of a fs-laser excitation. 1, 2, 4 or 8 k-points can be 
chosen for the electrons. We implemented the sum over 
the k points using the message passing interface (MPI). 
We utilized open multi-processing (OPENMP) parallelized 
computation for the Hamiltonian matrix elements, elec-
tronic charge density and the density matrix. The diago-
nalization is efficiently performed using optimized linear 
algebra package (LAPACK) subroutines. The Pulay-Kerker 
mixer is applied in the self-consistent cycle for solving the 
Kohn-Sham equations, which allows also the treatment of 
surfaces [16]. Furthermore, the self-consistent cycle is effi-
ciently initialized by using a charge density extrapolation 
from previous time steps. We implemented the velocity 
Verlet algorithm to simulate the MD.

3  �MD simulations of Si at high Te

For all presented calculations, we utilized a bulk super-
cell containing Nat = 432 Si atoms. This supercell consists 
of 3 × 3 × 6 primitive cells. We set periodic boundary condi-
tions in all room directions and used the lattice parameter 
a = 0.539872 nm, which we obtained by a lattice parameter 
optimization of the ideal diamond-like crystal structure at 
Te = 316  K (1  mHa) within the one-μ model. We considered 
8 k-points for the electrons. We initialized the atoms at an 
ionic temperature of Ti = 316 K using real random numbers 
from https://www.random.org. For this, we utilized the har-
monic approximation of the PES, which allows to set directly 
atomic displacements and velocities compatible to Ti = 316 K. 
The approach is described in detail in Zijlstra et al. [21].

Using different sets of random numbers, we gener-
ated 12 independent initializations, which we used to get 
always 12 independent MD simulation runs.

To simulate the influence of a fs-laser pulse, we first uti-
lized the one-μ model and raised Te to a constant high value 
and performed MD simulations using a time step of 2 fs. We 

simulated 0.25 ps, so that we can neglect the effects induced 
by electron-phonon coupling. The six Te s, namely 12 631 K 
(40 mHa), 18 947 K (60 mHa), 25 262 K (80 mHa), 31 578 K 
(100 mHa), 37 893 K (120 mHa) and 44 209 K (140 mHa), 
were simulated. In a second step, we used the two-μ model 
to perform MD simulations of fs-laser excited Si.

3.1  �Effects of the high Te

To measure the disorder of the crystal lattice structure, we 
use the atomic MSD defined by
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where uj(t) denotes the displacement of the j-th atom from 
its equilibrium position at time t. We finally average the 
obtained MSD values over the 12 runs:
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where MSDk(t) denotes the atomic MSD of run k at time t. 
Due to the presence of hot electrons, the lattice melts ultra-
fastly for the Te s 18 947 K, 25 262 K, 31 578 K, 37 893 K and 
44 209 K. This can be clearly seen in Figure 2, where the 
atomic MSD 〈MSD(t)〉 averaged over the 12 runs is shown as 
a function of time. Except for Te = 12631 K, the atomic MSD 
exceed the Lindemann stability limit within 120 fs or faster. 
Due to the excitation of a significant amount of electrons 
from bonding to anti-bonding orbitals, the laser-excited 
PES induces strong forces on the atoms, which are dra-
matically accelerated, so that the crystal structure is ultra-
fastly destroyed. In a previous study [22], we found out that 
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Figure 2: Atomic mean-square displacement is shown as a function 
of time t averaged over 12 runs at the studied Tes. The thickness of the 
curves corresponds to the standard deviation between the 12 runs.
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Te = 17052 K (54 mHa) is the critical electronic temperature 
Te that induces the so-called non-thermal melting.

In experiments, one does not have direct access to the 
atomic MSD. Moreover, one can measure time-resolved 
the intensity changes of the Bragg peaks [8, 9]. The Bragg 
peaks are commonly labeled by the Miller indices h, k, l. 
The relative intensity of a Bragg peak can be directly cal-
culated from the atomic coordinates 1 at

( ), , ( )Nt tr r…  as
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The related scattering vector
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is constructed from the reciprocal lattice vectors b1, b2, b3 
with the help of the Miller indices h, k, l. Here, for Si, the 
reciprocal lattice vectors form a bcc grid, as the bcc grid 
is the reciprocal grid of the fcc grid and the diamond-like 
structure is constructed as a fcc grid with two basis atoms, 
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dependent Debye-Waller theory [23] allows approximately 
to connect the intensity decay of the Bragg peaks with the 
atomic MSD:
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Here, t0 denotes the start time of the MD simulation. 
In the top panel of Figure 3, we show the time-dependent 

relative intensities of the (111), (220), (311) and (400) Bragg 
peaks directly calculated from the atomic coordinates 
using Eq. (12) averaged over 12 runs at Te = 25262  K. The 
dashed curves indicate the time behavior of these Bragg 
peaks obtained from the atomic MSD using the Debye-
Waller theory (14). In the bottom panel of Figure 3, we 
show the time-dependent intensity of the (111) Bragg 
peak at all studied Te s averaged over 12 runs. Again, the 
dashed curve indicates the time behavior obtained from 
the Debye-Waller theory.

In Figure 3, we can clearly see that time-dependent 
Debye-Waller theory describes accurately the intensity decay 
of the Bragg peaks. Only at very low peak intensities, a small 
mismatch occurs. Equation (14) indicates that Bragg peaks 
related to a bigger scattering vector qhkl decay faster with 
increasing atomic MSD and, consequently, decay faster to 
zero, which can also be seen in the top panel of Figure 3.

Now, we study the influence of a fs-laser excitation 
on the indirect electronic band gap. Figure 4 shows the 
indirect electronic band gap 〈Egap(t)〉 as a function of time 
t. Again, we averaged the band gap similar to the atomic 
MSD over the 12 runs. The increase of Te firstly increases 
the indirect band gap. Then, the band gap decreases 
monotonously to zero for Tes above the non-thermal 
melting threshold. For Te = 12631 K below the non-thermal 
melting threshold, it decreases slightly at first and then 
remains almost constant.

3.2  �Correlation between band gap and 
atomic displacements

To further analyze the behavior of the indirect elec-
tronic band gap, we plot it as a function of the atomic 
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MSD averaged over 12 runs in Figure 5. The thickness 
of the curves correspond to the standard deviation 
between the 12 runs. Figure 5 indicates that there exists 
an universal relation between the band gap and the 
atomic MSD almost independent of Te. In addition, this 
dependency is approximately linear for a wide range 
of atomic MSDs. We conclude that the actual value of 
the band gap depends only on the atomic MSD and is 
almost independent on the laser fluence. In addition, 
the band gap is highly sensitive to atomic displace-
ments, as it disappears already at an atomic MSD of 
0.003 nm2, where the crystal structure is still recogniz-
able. We can clearly see this in Figure 6, where the Si 
supercell is shown for an atomic MSD of 0.003 nm2 and 

0.0002 nm2, which corresponds to the atomic structure 
before the laser excitation. In addition, we showed the 
atomic structure for an atomic MSD of 0.02 nm2, where 
the crystal structure is clearly molten.

Indeed, the increase of the atomic MSDs from 
0.0002 nm2 to 0.0030 nm2 changes significantly the elec-
tronic density of states, which can be seen in Figure 7, 
where the latter is shown for both MSDs at Te = 18947 K.

3.3  �Correlation between band gap and Bragg 
peak intensities

If we plot the indirect electronic band gap, which is 
directly measurable in experiments [24], as a function 
of the relative Bragg intensity, which is also directly 
available in experiments, we again obtain a universal 
behavior approximately independent of Te, as it can be 
seen in Figure 8 for the studied Bragg peaks. Moreover, 
the dependency is again approximately linear for a wide 
range of relative Bragg peak intensities for all considered 
peaks.

Bragg peaks related to a smaller scattering vector qhkl 
decay slower with increasing atomic MSD. Therefore, for 
such Bragg peaks, the indirect band gap decays faster to 
zero as a function of the relative peak intensity compared 
to Bragg peaks with bigger scattering vectors.

We want to note that, besides the study of bragg peak 
intensities, the electron thermalization following a fs-
laser excitation can be directly measured using electron 
or photon spectroscopy [24].
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Figure 5: Indirect electronic band gap is shown as a function of 
atomic mean-square displacement averaged over 12 runs at the 
studied Tes. The thickness of the curves corresponds to the standard 
deviation between the 12 runs.

Figure 6: 432-Atom Si supercell projected in the [110]-direction is shown for an atomic mean-square displacement (MSD) of 0.0002 nm2 
(left), 0.003 nm2 (middle) and 0.02 nm2 (right).
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3.4  �Results obtained from the two-μ model

We considered nex = 14.14% excited carriers, which cor-
respond approximately to the fraction of excited carriers 
within the one-μ model at Te = 25262 K, and performed MD 

simulations within the two-μ model at various Te s, namely 
316 K, 12 631 K, 18 974 K and 31 578 K. We utilized the same 
initial conditions as before and performed again at each 
temperature Te 12 independent runs. In Figure 9, we present 
the indirect electronic band gap as a function of the atomic 
MSD for the different Tes and nex = 14.14% within the two-μ 
model. We also show the curve obtained within the one-μ 
model at Te = 25262 K with approximately nex = 14.14%.

In addition, we considered Te = 25262  K, at which 
approximately nex = 14.14% of the carriers are excited 
within the one-μ model, and performed MD simulations 
within the two-μ model at various nexs, namely 9.81%, 
12.81%, 18.16% and 21.89%. We utilized the same initial 
conditions as before and performed again at each fixed 
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fraction of excited carriers nex 12 independent runs. In 
Figure 10, we present the indirect electronic band gap as 
a function of the atomic MSD for the different nex s and 
Te = 25262  K within the two-μ model. We also show the 
curve obtained within the one-μ model at Te = 25262 K with 
approximately nex = 14.14%. At nex = 9.81%, the number 
of excited carriers is too small to induce a melting of the 
crystal structure. Consequently, the indirect band gap 
does not vanish.

Also within the two-μ model, the indirect band gap 
vanishes after the fs-laser excitation, if the crystal struc-
ture melts. But now, the indirect band gap is not a univer-
sal function of the atomic MSD as it is the case within the 
one-μ model.

4  �Discussion
The two-μ model explains very well the fs-laser-induced 
oscillation of the A1g phonon mode in bismuth [25] and 
TiO2 [26] compared with experiments at quite low fs-laser 
excitations, where the crystal structure keeps intact. After 
the fs-laser excitation, the relaxed electrons in Si are prop-
erly described by the one-μ model using a high electronic 
temperature [7, 11]. Therefore, the two-μ model can only 
describe very early states of intense fs-laser-excited Si, and 
the two different μs will soon converge to the same value. 
Consequently, we expect that the band gap in Si as a func-
tion of the atomic MSDs will not follow a universal curve 
for different laser intensities at very small MSDs, where 
the two-μ model may be valid, and will then converge to 
one universal function, as soon as one chemical poten-
tial for electrons and holes is reached. The time-resolved 
measurement of the band gap and the Bragg peak inten-
sity at different laser fluences could confirm the universal 
behavior of the band gap. Moreover, such an experimental 
setup may also determine at which MSD the convergence 
to a universal curve will occur. The latter will indicate the 
point, where the joint thermalization of electrons and 
holes is finished and the one-μ model is valid.

Our simulations are based on DFT within the LDA. It 
is well known that LDA generates too small band gaps in 
semiconductors compared to experiments [27]. We obtain 
an indirect band gap of 0.48 eV at 316  K, whereas the 
experimental value of the indirect band gap at 316 K is 1.12 
eV [28]. In addition, LDA predicts an increase of the band 
gap at increasing Te, as one can see in Figure 5, which is 
only an artifact [29]. The reason for this is that the build-
up of the screening of the excited carriers is not accurately 
described by LDA in semiconductors. In contrast, metals 

are well described by LDA. As Si becomes metallic due 
to the melting, we are convinced that the behavior of the 
band gap due to the laser excitation is correctly described 
by LDA. Besides this, also experiments show a reduction 
of the band gap with increasing temperature.

Already in 1958, the reduction of the direct band gap 
was measured at very low excitations [30, 31]. In 1974, 
this behavior of the direct band gap was measured from 
5 K up to 300 K [32]. Alex et. al. measured a decrease of 
the indirect band gap with increasing temperature up to 
750  K [28]. In 2010, Beye et  al. measured the band gap 
closure following an intense fs-laser excitation by probing 
directly the valence electrons using a free-electron laser 
[24]. They explained the closure by different phase tran-
sitions. In 2014, a study at high excitations produced by 
a fs-laser shows that the direct band gap decreases due 
to the fs-laser excitation [33]: First, the electronic excita-
tion decreases the direct band gap immediately after the 
fs-laser excitation. Then, a further decrease was measured 
due to the atomic disordering. Also, the Te-dependent DFT 
calculations of Silvestrelli et  al. show that Si melts and 
becomes metallic after an intense fs-laser excitation [7]. 
Recently, in 2019, Medvedev et  al. studied theoretically 
the band gap closure following a fs X-ray excitation from 
an X-ray free-electron laser [34] and related it to the Bragg 
peak behavior.
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