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Abstract: Based on hybrid molecular dynamics/two-tem-
perature simulations, we study the validity of the appli-
cation of Lambert-Beer’s law, which is conveniently used 
in various modeling approaches of ultra-short pulse laser 
ablation of metals. The method is compared to a more rig-
orous treatment, which involves solving the Helmholtz 
wave equation for different pulse durations ranging from 
100 fs to 5 ps and a wavelength of 800 nm. Our simula-
tions show a growing agreement with increasing pulse 
durations, and we provide appropriate optical parameters 
for all investigated pulse durations.

Keywords: computer modeling; laser ablation; molecular 
dynamics.

1   Introduction
In the last two decades, ultra-short pulse (USP) laser-
metal interactions have been intensively studied due to 
novel applications, arising from the ability to confine the 
deposited energy within a small localized volume of the 
irradiated target material without thermally or mechani-
cally damaging the surrounding regions.

Because of the complex chain of events triggered by 
laser irradiation including the fast energy absorption by 
electrons, the electron-phonon energy transfer, transi-
tions to unusual metastable phases, generation of crystal 
defects, explosive boiling, etc., an experimental identifi-
cation of the governing phenomena proves to be difficult, 

thus, limiting the advancement of laser technologies 
into the realm of nano-scale material processing and 
fabrication.

Even though recent progress in X-ray and electron dif-
fraction probe methods has provided important insight 
into fast phase transitions [1, 2], the interpretation of the 
observations still stands in need of a better understanding 
of the underlying atomic scale mechanisms leading to this 
transitions.

In fact, the problem does not lend itself to analytical 
approaches, and only computer simulations seem capable 
of dealing with the complex thermo-mechanical pathway 
leading to ablation. However, computational modeling of 
these processes is challenging either and requires a com-
bination of different approaches ranging from electronic 
structure calculations [3], hydrodynamic modeling [4–6], 
and molecular dynamic (MD) simulations.

In this study we follow the latter approach, since 
MD simulations have proven to be a promising method, 
as they provide a means to handle the non-equilibrium 
phase transformations without the necessity to make a 
priori assumptions on the mechanisms and kinetics that 
may take place. A crucial factor in modeling laser ablation 
is the description of laser energy absorption. A commonly 
used approach to treat light absorption is the Lambert-
Beer (LB) law, which is based on the assumption of a 
linear relationship between light attenuation and electron 
number density. In this regard, the reflectivity and the 
absorption coefficient are supposed to be constants for a 
given wavelength and material. Our main objective in this 
study is to investigate the validity of this simplification in 
the context of USP laser-metal interactions and compare 
it to a more rigorous method, which involves solving the 
Helmholtz wave equation for the electromagnetic field.

2   Computational model
In order to take care of the thermal non-equilibrium 
between electrons and phonons during USP laser-matter 
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interaction, the simulations are carried out using the well-
known two-temperature model (TTM) [7], describing the 
electrons on a continuum level. Based on the assumption 
of instant electron thermalization, the model introduces 
distinct temperatures for the electrons Te and the ions 
Ti, the temporal evolution of which is governed by two 
coupled non-linear differential equations.

The temperature evolution of the free electron sub-
system is considered as an advection-diffusion problem, 
which is solved by means of the finite difference method 
with a constant cell thickness of approximately 1 nm on 
a one-dimensional (1D) grid. As shown in Ref. [8], non-
local heat transport phenomena may be neglected for 
rather low peak intensities I0 ≤ 1015 W/cm2 in the case of 
aluminum. Following Ref. [9], we formulate the energy 
balance in the Eulerian frame of reference as
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where ρ, Ee, and c
xv  correspond to the ionic density, the free 

electrons’ specific energy, and the center-of-mass velocity 
along the x-direction, respectively. The laser source term 
QL(t, x) is described in Section 2.1. The electronic heat 
conductivity k(Te, ρ) and the electron-ion coupling factor 
γ(Te, ρ) controlling the heat exchange between the subsys-
tems are calculated by wide-range models, interpolating 
between the metallic and plasma state as described in Ref. 
[10].

The ionic heat conductivity is automatically accounted 
for by the particles’ equations of motion with an addi-
tional friction term, while the MD/TTM coupling is estab-
lished by a Langevin thermostat. More details regarding 
the TTM/MD coupling can be found in Refs. [11–15] and 
references therein. For the inter-atomic interactions, we 
use the EAM potential developed in Ref. [16], which was 
designed to reproduce the cold stress curves, the shock 
Hugoniot, and the melting point with good accuracy.

In order to improve performance, we apply Strang’s 
operator-splitting scheme [17] and split the advection- 
diffusion problem Eq. (1) into two separate problems, which 
is second-order accurate in time and introduces an error of 
only ∝τ3 [18], where τ represents the time step. Assuming 
that bound and free electrons move together with their cor-
responding atoms, the advection step is given as [9]
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where Nj is the number of atoms in the jth cell at time t, 

1/2jN −
−

 and 1/2jN −
+

 correspond to the number of atoms flowing 

out of cell j into cell j − 1 across the boundary j − 1/2 and the 
number of atoms flowing out of cell j into cell j + 1 across 
the boundary j + 1/2, respectively. Similarly, 1/2jN +

−  and 1/2jN +
+  

represent the atomic flux into cell j from cell j − 1 and j + 1 
across the boundaries j − 1/2 and j + 1/2.

For the relation between Ee and Te we use  McCloskey’s 
electronic equation of state, which provides a suitable 
description of the thermodynamic behavior of metals for 
a very wide range of temperature and compression [19].

2.1   Laser energy absorption

In this study, we compare two different methods to 
describe the absorbed laser power-density QL(x, t). In 
both cases, the reflection of light needs to be accounted 
for. We assume that the laser energy is predominately 
absorbed by free electrons via inverse Bremsstrahlung. 
Further, we neglect any non-linear effects, which is jus-
tified as we are concerned with rather low intensities. 
For a Gaussian pulse, the LB law gives the absorbed 
power density
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where R is the surface-reflectivity, μ is the absorption 
coefficient, x is the position within the material along 
the laser irradiation direction relative to the surface, 
t0 is the time of peak intensity, τFWHM is the pulse dura-
tion of full width at half maximum, and F0 is the laser 
fluence, which is related to the peak intensity via 

0 FWHM / log(16).oF I τ π=
For the second method, which implicitly includes 

the dynamic reflection at the surface as well as within 
the material itself, the interaction between the linear 
polarized laser, incident along the x-direction and the 
metal is described by the Helmholtz wave equation. 
Here, we assume 1D geometry, and using the slowly 
varying envelope approximation, the magnitude of the 
electric field envelope E(x, t) = Ey(x, t) is obtained from 
solving
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with appropriate boundary conditions according to the 
continuity of tangential field components [20]. Here, ω0 is 
the laser angular frequency, and c is the vacuum speed 
of light. The complex permittivity ε(x, Te, Ti, ρ, ω0) of the 
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material is obtained from a wide-range model proposed 
in Refs. [10] and [20–22]. In a nutshell, the model inter-
polates between the Drude-like phenomenological model 
with an additional inter-band transition term for the cold 
metallic state and a plasma model for the hot state above 
the Fermi temperature.

Equation (4) is solved assuming the permittivity to 
be approximately constant within each individual cell by 
means of the analytical transfer-matrix method (TMM) 
[20, 23]. Then, for the jth cell, the absorbed power density 
is related to the divergence of the Poynting vector and is 
calculated from [9]
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We solve Eq. (5) using a fourth-order Runge-Kutta algo-
rithm with an adaptive step size.

2.2   Pressure-absorbing boundary 
conditions

In order to reduce the reflection of pressure and rarefac-
tion waves at the rear side of the sample, we enforce pres-
sure-absorbing boundary conditions for the very last layer 
of atoms. In this regard, we follow Ref. [24] and consider 
a monochromatic wave solution for the atomic motion. 
Instead of integrating the particles’ equations of motion 
resulting from the inter-atomic potential, these atoms are 
displaced according to
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Here, ui,n,m is the displacement vector of an atom at 
the lattice site l, n, m. For l = 0, we refer to an atom of the 
boundary layer (last layer), while for l = 1, the displacement 
vectors refer to the nearest neighbors of the corresponding 
boundary atom (second to last layer, see Figure 1). Further, 
m is the atom’s mass, and k is a force constant for which 
we use k = 13.28 kg/s2.

2.3   Computational setup

For all simulations, our target is a single crystal aluminum 
sample of size 0.8 μm × 10 nm × 10 nm of crystallographic 
orientation (1, 0, 0) along the x-direction and periodic 
boundary conditions applied along the y- and z-directions. 
The laser, having a wavelength of 800 nm and a fluence 
of 2 J/cm2 irradiates along the x-direction at normal inci-
dence. In total, six different situations with varying pulse 
durations are compared. It has to be noted that the thermo-
mechanical behavior of the sample strongly depends on 
the cross-section. However, in Ref. [16], it was shown that 
for two different samples, the larger one having a cross 
section of 49 nm × 49 nm and the smaller one 7 nm × 7 nm, 
the differences regarding the threshold temperatures for 
ablation and spallation are only about 2%. Still, we have 
to emphasize that this behavior must not be extrapolated 
to larger fluences, in general, and requires careful inves-
tigation of the cross-section dependence. As this study 

Figure 1: Illustration of boundary layer of fcc-(100) aluminum 
sample (A) (blue atoms) and schematic representation of nearest 
neighbors (green) for a single boundary layer atom (B).
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is mainly concerned with differences resulting from dif-
ferent theoretical approaches rather than experimental 
validation, we assume a negligible influence of the cross-
section for the chosen fluence.

3   Results and discussion
For the first set of simulations, the laser energy depo-
sition is computed by means of the transfer-matrix 
method. The results are then used to calculate averaged 
optical parameters, which are needed for the correspond-
ing simulations using the Lambert-Beer law. In order to 
make the comparison as fair as possible, for each situa-
tion, an individual absorption coefficient is calculated. 
This is done by time averaging the permittivity of the 
surface according to

 
1

pulse surface( )d ,t tτ−= ∫ε ε  (7)

where τpulse ≈ 3τFWHM corresponds to the duration of laser-
metal interaction. It should be noted that this averaging 
is not performed across the true skin depth. Instead, only 
the first non-empty cell within the finite-difference grid 
is used, which has a thickness of about 1 nm. Then, the 
absorption coefficient is obtained from
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Likewise, for the reflectivity, an averaged value is 
used, which is easily obtained from the ratio of the total 
absorbed fluence and the incident fluence according to 
R = 1 − Fabs/F0 (see Figure  2). The parameters for the LB 
simulations are summarized in Table  1. In line with the 
suggestion of one of the reviewers, we tested an additional 
scheme to determine μ: For this purpose, the absorbed 
power density profile at t = t0 was inspected, and the data 
was fitted with the natural logarithm of Eq. (3), which 
has the form log(Q(x)) = a − μx, with a being a constant. 
Hence, the slope gives an estimate of the absorption coef-
ficient across the full laser-affected depth. In addition, a 
combination of both schemes was tested by applying the 
procedure of the second method to every time step during 
the laser-metal interaction, followed by time averaging 
the summation of all μ(t) similar to Eq. (7). In the follow-
ing, we will refer to results obtained from these different 
schemes as LB(1), LB(2), and LB(3), respectively.

First, the resulting ablation depths are compared. 
This is done by summing the mass densities of the ablated 
cells and relating them to the original solid density 
ρ0 ≈ 2.7 g/cm3 according to

 
abl 0cellwidth ( )/ ,

i
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where i runs over all ablated cells. It should be noted that 
the ablation depth can be determined more accurately 
by counting the ablated atoms. However, the procedure 
according to Eq. (11) can be more easily automated, and 
more importantly, it does not require to save large files con-
taining every atom’s coordinates. For Figure 6, the former 
method was used, while the final ablation depths, depicted 
in Figure 3, were determined by the latter one. The result-
ing ablation depths as a function of the pulse duration are 
given in Figure 3A, while Figure 3B illustrates the relative 
differences between the TMM and LB simulations.

Overall, it seems like the LB approach becomes more 
and more accurate for growing pulse durations, except 
for LB(3), which works better for short durations τFWHM ≤ 1 
ps. For longer pulses, however, the LB(3) scheme is not 
appropriate as the μ(t) averaging is carried out over the 
full laser-metal interaction timespan, placing too much 
emphasis on those μ(t) where the intensity is rather low, 
resulting in unfavorable lowering of the mean value µ2 ( ).t  
A more suitable approach would be a weighted averag-
ing with respect to the laser intensity, thus, emphasizing 
the more important time-frame of laser-metal interac-
tion. This is evident from the growing agreement of the 
LB(2) approach, where only the absorption coefficient at 
the time of peak intensity is used. For τFWHM = 5 ps, the dif-
ference amounts to only about 4.5% with respect to the 
result from the TMM simulation. For short pulses, the 
system reacts very sensitively to changes in reflectivity 
and the absorption coefficient, as this drastically affects 
the temperature profiles within the target, as depicted in 
Figure 4A. For all pulse durations, the Helmholtz approach 
yields steeper profiles for the deposited energy compared 
to the LB law. However, with decreasing pulse duration, 
this difference becomes more pronounced. In contrast, for 
longer pulses, there is enough time for diffusion to relativ-
ize this difference.

In the remaining discussion, we focus on the compari-
son between the LB(1) scheme and the TMM case, as this 
scheme shows the least fluctuations in ablation depth as 
a function of pulse duration.

Interestingly, for τFWHM = 100 fs, the resulting ablation 
depths turn out to be very close even though the differ-
ence in electron-temperature profiles is comparable to 
τFWHM = 200 fs. In order to further examine this coincidence, 
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it is worth to inspect the temporal evolution of the total 
electronic specific energy in Figure 4B for the time span 
just before ablation starts. The cumulative integrated dif-
ference in electronic specific energy between the TMM 

and LB simulations can be interpreted as a measure of 
how similar the electron-phonon equilibration dynamics 
are. In this regard, it is evident that for τFWHM = 100 fs, this 
quantity turns out to grow slower compared to the other 
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sub-ps pulses. This is supposed to be a lucky coincidence, 
resulting from the complex interplay of temperature-
dependent thermal conductivity, electron-ion coupling 
and permittivity.

As a consequence, the ablation behavior for both 
methods is very similar in this case. This can be seen in 
Figure  5 illustrating the correlation between the evolu-
tion of ablation depth and the surface area of subsurface 

pores. The area is calculated from a surface construction 
algorithm given in Ref. [25], where the volume below the 
surface is analyzed using a virtual probe sphere with a 
radius of 0.5 nm.

The ablation depth is calculated from Eq. (11), where 
cells are regarded as ablated if they are separated from the 
surface by more than 5 nm of empty space. As is evident 
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Table 1: Averaged parameters used to compute laser-energy 
absorption by means of the Lambert-Beer law.

FWHM

ps
τ   abs

2Jcm
F

−
  R̅  Re( ε ̅)  Im( ε ̅)  k  1

8 110 m
µ

−
  2

8 110 m
µ

−
  3

8 110 m
µ

−

0.1   0.37  0.82  −56.21  44.08  3.69  0.58  1.49  1.15
0.2   0.36  0.82  −41.30  37.31  3.03  0.48  1.47  1.14
0.5   0.35  0.83  −43.23  45.33  2.94  0.46  1.47  1.27
1   0.35  0.83  −41.43  41.99  2.91  0.46  1.49  1.29
2   0.37  0.82  −32.72  42.97  2.35  0.37  1.48  1.29
5   0.41  0.80  −29.87  43.89  2.15  0.34  1.45  1.31

The absorption coefficients have been determined according to 
three different approaches as stated in the text.
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from all the figures, pores appear around 10 ps after the 
pulse, while ablation starts around 50 ps. The ablation 
depth continuously grows with the surface area of the 
pores until about 100 ps. For all simulations, the govern-
ing ablation mechanism resembles a combination of spal-
lation and explosive boiling: pores nucleate, grow, and 
coalesce even before a tensile wave is generated as can be 
seen in Figure 6.

However, the passage of the rarefaction wave further 
increases the surface area of the pores, eventually result-
ing in separation and ejection of melted layers from the 
front of the target [11, 26].

After about 100 ps, the correlation between further 
ablation and the number of subsurface pores seems 
to be less significant. This late ablation events result 
from deeper regions within the target, where the tem-
perature is lower, and explosive boiling is unlikely to 
occur. However, the tensile stresses of the rarefaction 
wave are increasing with depth, thus, enabling further 
ablation. This is not the case for the TMM simulation 
of τFWHM = 500  fs. As opposed to the LB case, the initial 
increase in the surface area of pores is more rapid due to 
the higher surface temperature suggesting an enhanced 
involvement of explosive boiling. Consequently, the 
resulting pressure and tensile waves are slightly more 
intense. Nonetheless, this is not sufficient for further 
spallation. On the other hand, using the LB law gives rise 
to higher temperatures at larger depths, thus, reducing 
the lattice’s resistance toward the arriving tensile wave 
in deeper regions. Likewise, for pulse durations of 1 ps 
and 2 ps, this ‘lattice-softening’ in deeper regions is the 
reason for larger ablation depths when using the LB law. 
For τFWHM = 5 ps, the situation regarding ablation depths 
is vice versa. However, for this specific case, this minor 
discrepancy may be neglected. All in all, the simulations 
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Figure 5: Temporal evolution of ablation depth and surface area of pores below the surface τFWHM = 100 fs (A, B) and τFWHM = 500 fs (C, D) using 
the TMM compared to the LB(1) case.

Figure 6: Hydrostatic pressure contour plot for τFWHM = 500 fs.
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show that approximating laser light absorption of alu-
minum by the Lambert-Beer law is sufficiently accurate 
for pulse durations above ≈2 ps, even for absorbed flu-
ences of more than 0.35 J/cm2, which exceed the thresh-
old fluences for ablation ≈60  mJ/cm2 and spallation 
≈120 mJ/cm2 by far [16].

4   Conclusion
In summary, we performed hybrid MD/TTM simulations 
of single-pulse laser ablation of single crystalline alu-
minum targets for different pulse durations. Laser light 
absorption was modeled using either the transfer matrix 
method, where the Helmholtz wave equation for the 
electromagnetic field is solved or the Lambert Beer law, 
where the absorption coefficient is obtained from three 
different approaches. For sub-ps pulses, the simulations 
reveal a maximum discrepancy between these methods 
of about 25% in the resulting ablation depths, indicat-
ing the importance of the dynamical reflectivity and 
absorption depth, which cannot be approximated by 
time-averaged optical properties. With increasing pulse 
durations, the differences become smaller, and already 
for a 5 ps pulse, the disparity drops below 5%  for two of 
the LB-approaches. This is attributed to slower heating 
and the elevated thermal diffusion of the excited elec-
trons, resulting in only minor differences in the spatial 
lattice temperature profiles.
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