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Abstract: High-power laser drivers are located in huge 
laser facilities built for inertial confinement fusion, and 
have achieved important progresses in the past decade; 
however, many unconventional optical elements imple-
mented still cannot be accurately measured. To solve this 
problem, the ptychographic iterative engine (PIE), which 
is a recently developed technique that can detect both 
the phase and modulus of the light field simultaneously, 
is adopted to measure the transmission function of these 
optical elements and then to accurately characterize their 
key parameters. The distinctive advantage of PIE over 
other traditional metrology techniques in measuring large 
optical elements is demonstrated in this paper by detect-
ing the focal length of a lens array and the surface profile 
of a continuous phase plate.

Keywords: diffractive optics; phase measurement; phase 
retrieval; ptychographic iterative engine.

1   Introduction
High-power laser facilities built for inertial confinement 
fusion (ICF) use hundreds of high-power laser beams 
to compress the target pill filled with nuclear material 

symmetrically to achieve extremely high temperature 
and pressure to lighten nuclear fusion [1, 2]. As the peak 
power of these laser beams can reach 1016 W or higher, to 
avoid laser-induced damage, all laser beams should be 
expanded to 400  mm in diameter to reduce the energy 
intensity in the processes of amplification, propagation, 
filtering, and frequency conversion. Laser pulses from the 
seed laser source always pass through a huge number of 
optical components when reaching the target, and the 
whole optical path is >100 m [3]. The wavefront of laser 
beams can be easily distorted by various factors such 
as material non-uniformity and the inaccurate surface 
profile of optics used. Although the wavefront distortion 
induced by a single individual optical element is tiny, the 
final wavefront of laser beams reaching the target can 
be seriously twisted after passing numerous optical ele-
ments, and in some cases the focal spot formed on the 
target can be remarkably dispersed, leading to the failure 
of physical experiments [4, 5]. To obtain focal spots with 
a high enough energy concentration ratio, the wavefront 
of laser beams should be very accurate during the whole 
optical path from the seed laser source to the target [6, 7]. 
Accordingly, the requirement on the quality of optical ele-
ments is extremely high, and the transmission function of 
each optical element should be accurately measured in 
advance. Most optical elements used in high-power laser 
facilities can be accurately measured with an interferom-
eter [8], which is a well-developed and widely applied 
instrument with high resolution and high reliability. The 
typical accuracy of a phase-shift interferometer is always 
>0.05λ, and the highest transverse resolution reachable 
is about 1 μm. However, in the field of high-power lasers, 
the diameter of optical elements can be 400 mm and their 
surface profile can be completely irregular; thus, it is very 
difficult to measure these unconventional optical ele-
ments with traditional interferometers. Take the random 
phase plate (RPP) as an example; as a key optical element 
to make focal spots smooth, the peak-valley value of the 
surface profile of RPP is about 30  wavelengths of the 
He-Ne laser, and the largest phase ramp of the transmis-
sion field under the planar illumination can be 10 rad/
cm, which exceeds the resolvable capability of common 
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interferometers. Though, in theory, the measurement 
of its transmission function can be realized by dividing 
whole aperture into sub-apertures and stitching all meas-
urements of every sub-aperture together, the measure-
ment will be too complex and time consuming.

The ptychographic iterative engine (PIE) [9, 10] is a 
recently developed coherent diffractive imaging (CDI) 
technique that scans a sample through a localized illu-
mination beam to many positions and records all diffrac-
tion patterns formed. When there is proper overlapping 
between two neighboring illumination regions, the 
complex amplitudes of both the illumination probe and 
that of the scanning object can be reconstructed faith-
fully with two counterpart updating formulas from the 
recorded diffraction array. Compared to traditional CDI 
techniques based on Fienup’s hybrid input-output and 
error reduction algorithms [11–13], PIE has the advantages 
of an infinite field of view in theory, high convergence 
speed, and high reliability. Different iterative algorithms 
have also been proposed for ptychographic reconstruc-
tion, such as the difference map, which has been effec-
tively demonstrated by experiments [14]. Like other CDI 
techniques, PIE is also mainly used for imaging with X-ray 
and high-energy electron beams [15–18]; however, it also 
finds many applications in the regime of visible light. In 
this article, we will illustrate how to use PIE to resolve 
some difficulties in measuring the unconventional optics 
used in high-power laser facilities [19].

2   Principle of extended PIE
As a modified PIE, extended PIE (ePIE) [20] was proposed 
to relax the high requirements for modeling the illumi-
nation. As ePIE can reconstruct illumination and object 
functions simultaneously with high convergence speed 

and high robustness to noise, it has various applications 
in different fields.

The geometry of PIE is shown in Figure 1. The object 
mounted on a translation stage has a transmission func-
tion of O(r) and is illuminated by a probe P(r), where r is the 
coordinate of the object plane. The object can be scanned 
laterally to many positions, and the diffraction patterns 
are recorded by a charge-coupled device (CCD) camera in 
far field. As an iterative method, PIE reconstructs the light 
field by propagating it forward and backward between the 
object plane and the detector plane.

The exit wave from the object can be written as 
the multiplication of P(r) and O(r) under “thin-object” 
approximation:

 ( ) ( ) ( ),n n nr P r O r Rϕ = −  (1)

where n indicates the nth iteration and R is the shift of 
probe to object.

Reconstruction can be carried out iteratively with the 
following steps:
(I) Propagate the exit wave ϕn(r) to the recording plane 

using the Fresnel formula [21] (Fourier transform can 
be applied when the detector is in the far field of the 
object) and replace the modulus of the calculated 
complex field with the square root of the recorded dif-
fraction pattern I(u).
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where I(u) is the intensity of diffraction pattern 
recorded by CCD and FFT represents Fourier transform.

(II) Backpropagate Ψn(u) to the object plane via an inverse 
Fourier transform:

 1( ) ( ( )),n nr FFT uϕ Ψ−=′  (3)

where FFT−1 represents the inverse Fourier transform.

Figure 1: Schematic of standard PIE.
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(III) Update Pn(r) and On(r − R) with the following two 
updating formulas:
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These two updating formulas are the origins of 
all fundamental advantages of PIE over other con-
ventional CDI techniques. They use spatially varying 
weight functions to relax the hard-edge limitation in 
conventional algorithms. The constants α and β can 
be adjusted to alter the step size of the updating.

(IV) Repeat the above computation steps for all positions 
in the nth iteration.

(V) Calculate the difference of two successive On+1(r) and 
On(r):
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If this difference is smaller than the given value ε, the 
iterative reconstruction stops; else, jump to step (I) to start 
another round of calculation.

3   Measurement of optical elements
As mentioned above, it is rather a challenge to accurately 
measure the transmission function of large optical ele-
ments used in high-power laser facilities with conven-
tional methods. In this section, we will demonstrate how 
to use ePIE to realize these measurements by measuring 
the focal lengths of lens array and the transmission func-
tion of continuous RPP.

3.1   Basic principle of measuring optical 
elements with ePIE

The experimental setup to measure the transmission 
 function of large optical elements is illustrated in Figure 2. 
A parallel beam is incident on a focusing lens and then 
transmits the optical element to be measured before reach-
ing a diffusing object mounted on a translation stage. All 
diffraction patterns are recorded by a CCD during the 

lateral scanning of the diffusing object. Before the optical 
element to be measured is put into the optical path, the 
illumination P0(x1, y1) on the scanning object and the 
transmission function O0(x1, y1) of the object can be recon-
structed simultaneously with the ePIE algorithm. Then, 
by propagating P0(x1, y1) to the plane exactly behind the 
focal lens in Figure 2, we obtain the field U0(x2, y2), which 
will illuminate on the optical element to be measured. By 
placing the optical element to be measured closely behind 
the focal lens and repeating the above measurement, the 
light field U1(x2, y2) leaving the optical element to be meas-
ured is obtained. The complex transmission function T(x2, 
y2) of the optical element to be measured can be obtained 
by calculating U1(x2, y2)/U0(x2, y2).

3.2   Measurement of the focal length of the 
lens array

ICF needs very strict experimental conditions, and 
uniform irradiation on target is absolutely required. Focal 
spots can be efficiently smoothed [22] when the lens array 
in Figure 3 is placed before the main lens. As each sub-
lens only changes the position of the original focal spot 

Figure 2: Fundamental configuration for measuring large optical 
elements.

Figure 3: Lens array used in the focal system.
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a little, its focal length should be very long, varying from 
10 m to dozens of meters. The focal lengths of lens array 
are not easy to measure with conventional techniques.

After the transmission function T(x2, y2) of the lens 
array is measured accurately with the experimental setup 
in Figure 2, the focal lengths of all sub-lenses can be 
easily determined simultaneously by numerically propa-
gating its transmitted field under ideally planar illumina-
tion and finding the positions of intensity peaks. In the 
experiment, the He-Ne laser beam is expanded and col-
limated to 280  mm in diameter, the focal length of the 
main lens in Figure 3 is 1575  mm, the scanning object 
mounted on translation stage is a holographic diffuser, 
an 8-bit CCD camera with pixels of 7.4 μm × 7.4 μm was 
placed downstream of the scanning object to record dif-
fraction patterns, and the distance of the scanning object 
to the central focal spot of the system and CCD are 15 
and 101.7 mm, respectively. One hundred diffraction pat-
terns over a 10 × 10 position grid were recorded. Figure 4A 
shows one of the diffraction patterns recorded before the 
optical element to be measured is put in the optical path, 
and Figure 4B shows the diffraction patterns recorded 
with the optical element to be measured. The scanning 
objet adopted is a diffuser made using computer-gener-
ated holography. The advantage of this kind of diffuser is 
that its diffuse angle is designable.

Two illuminations, P0(x1, y1) and P1(x1, y1), that are 
incident on the scanning object can be measured with 
two sets of diffraction patterns recorded without and 
with the lens array in optical path. The moduli of the 
reconstructed P0(x1, y1) and P1(x1, y1) are shown in Figure 
4C and  D, respectively. By propagating P0(x1, y1) to the 
back plane of the main focal lens, the illumination field 
U0(x2, y2) on the lens array is obtained, and the exit field 
U1(x2, y2) of the lens array can also be obtained by propa-
gating P1(x1, y1) to the back plane of the lens array. As the 
lens array is a pure phase object, its transmission func-
tion T(x2, y2) can be determined by calculating the phase 
of the angle *

0 2 2 1 2 2{ ( , ) ( , )}.U x y U x y⋅  The spatial resolu-
tion of the measurement can be calculated based on the 

Fresnel  propagator, 
diffuser ccd

= ,z zx
N x N x

λ λ∆ =
⋅∆ ⋅∆

 where λ  
 
is the wavelength of the He-Ne laser employed, z is the 
 distance between the main focal lens and the diffuser, N is 
the number of pixels in one dimension of the computing 
matrix, Δxdiffuser is the sampling interval at diffuser plane, 
and Δxccd is the pixel pitch of CCD. The sampling interval 
at the diffuser plane and that at the CCD plane are equal 
when the angular propagation algorithm is applied for PIE 
computation. For our experiment, the spatial resolution is 
about 65 μm, with the following parameters: λ = 632.8 nm, 
z = 1560 mm, N = 2048, and Δxccd = 7.4 μm.

Figure 4: Diffraction patterns recorded (A) without and (B) with lens array in the optical path; illuminations incident on the scanning dif-
fuser (C) without and (D) with lens array in the optical path.

A B C D

Figure 5: (A) Amplitude of the illumination field U0(x2, y2) and (B) exit field of the lens array U1(x2, y2). (C) Transmission function of the lens 
array and (D) phase distribution of the central sub-lens.
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Figure 5A and B show the modulus of U0(x2, y2) and the 
exit field U1(x2, y2), respectively, and Figure 5C shows the 
transmission function of the lens array. Figure 5D is the 
zoomed-in image of the phase distribution of the central 
sub-lens, where we can see the details of the phase profile.

We propagate the exit field U(x, y) under ideally 
planar illumination to the far field of 39 m away, which is 
the designed value of focal length. By propagating each 
focal spot backwards or forwards a little to search for 
the highest-intensity peak along the axis, the exact focal 
length of each sub-lens can be determined accurately. 
Figure 6A is the photograph of the lens array measured. 
Figure 6B–F show the intensity distribution of the central 
focal spot changing with the axis, and from them we can 
find that the exact focal length is 39.20 m and the diameter 
of focal spots is about 300 μm. The focal lengths of other 
sub-lenses can also be determined in the same way.

3.3   Measurement of the continuous phase 
plate

The continuous phase plate (CPP) is a diffractive optical 
element that is designed to smooth laser beams to obtain 
an ideal focal spot in a high-power laser system [23, 24]. In 
order to meet the requirements of physical experiments, 

CPP has a highly irregular surface profile. As its typical 
spatial period is about several millimeters and its phase 
gradient is rather huge, conventional measurement tech-
niques are not suitable for its transmission function meas-
urement. For example, the largest phase gradient of a CPP 
is about 8λ/cm; however, commonly used large-aperture 
interferometers can only measure the gradient of 2λ/cm. 
Figure 7A shows the photograph of CPP used in practical 
experiments, which has a diameter of 31 cm. Its designed 
surface profile is shown in Figure 7B, where the peak and 
the valley values corresponding to the He-Ne laser are 
13.8714 and −15.4880 rad, respectively. Figure 7C shows 
the measurement of a Zygo interferometer, and black 
regions represent places where the surface profile is too 
steep to resolve. Figure 7C shows the unwrapped phase 
using the least square method, and as phase unwrapping 
is essentially a global optimization technique, the exist-
ence of an invalid measurement makes the values of the 
other areas incorrect; thus, there is no similarity between 
the designed value and the measured value.

The measurement of the transmission function of a 
CPP is similar to the measurement of the lens array, and 
all experimental parameters are the same. Figure  8A 
and B show two diffraction patterns recorded before and 
after the CPP was put into the optical path. Illuminations 
on the diffusive object can be reconstructed accurately 

Figure 6: The lens array used and focus distribution at various distances. (A) The lens array used in the experiment. (B–F) Focus distribution 
at the distance of (B) 39 m, (C) 39.1 m, (D) 39.2 m, (E) 39.3 m, and (F) 39.4 m behind the convergent lens according to the phase function of 
the central sub-lens.

A B C

Figure 7: (A) The CPP used in the experiment; (B) the designed surface profile of CPP and (C) measurement results of CPP by the Zygo 
interferometer.
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with two sets of diffraction patterns. Figure 8C shows the 
modulus of the reconstructed illuminations without CPP, 
and Figure 8D shows the modulus of the reconstructed 
illuminations with CPP.

Similar to the measurement of lens array, the illumi-
nation U0(x2, y2) on the CPP and its exit field U1(x2, y2) can 
be obtained by propagating these two illumination beams 
to the back planes of the main lens and CPP, respectively. 
The transmission function T(x2, y2) of CPP can be obtained 
by calculating the phase of angle *

0 2 2 1 2 2{ ( , ) ( , )},U x y U x y⋅  
as CPP is a pure phase object. Figure 9C shows the wrapped 
phase of the measured phase distribution, and Figure 9D 
shows the unwrapped phase distribution. It is obvious that 
the measured value has high similarity to the designed 
value in Figure 7B. For clarity, we plot the designed value 
and the measured value along the horizontal and vertical 

lines in Figure 9E and F, respectively. We can find that the 
maximum difference between the measured and designed 
values is only about 2.1 rad, which means that the manu-
facturing accuracy is about one-third of the wavelength.

4   Conclusion
The ePIE algorithm was applied to measure large optical 
elements used in high-power laser facilities, and the 
advantages of this measurement technique were demon-
strated by measuring the focal lengths of a lens array and 
the surface profile of a CPP. In these two applications, the 
illumination beam on the optical elements to be meas-
ured and the exit beam were obtained by applying the 

Figure 8: Diffraction patterns recorded (A) without and (B) with CPP in the optical path; amplitude of the reconstructed illuminations on the 
diffuser plane (C) without and (D) with CPP in the optical path.

A B

DC
F

E

Figure 9: (A) Amplitude of the illumination field U0(x2, y2) and (B) exit field of U1(x2, y2) of CPP; (C) wrapped and (D) unwrapped phase of CPP 
measured by ePIE; (E) the measured result and designed value along the vertical line of Figures 7B and 9D; (F) the measured result and 
designed value along the horizontal line of Figures 7B and 9D.
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ePIE algorithm twice, then the transmission function was 
measured by calculating their phase difference, and other 
key parameters of the optical elements are available. The 
experimental results clearly showed that PIE has remark-
able advantages over conventional methods for measur-
ing large optical elements and can find many applications 
in the field of high-power laser. Different kinds of iterative 
algorithms will be used to realize the same measurement 
in the future.
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