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Abstract: Ptychography is a computational imaging 
method for solving inverse scattering problems. To date, 
the high amount of redundancy present in ptychographic 
data sets requires computer memory that is orders of 
magnitude larger than the retrieved information. Here, 
we propose and compare data compression strategies 
that significantly reduce the amount of data required 
for wavefield inversion. Information metrics are used 
to measure the amount of data redundancy present in 
ptychographic data. Experimental results demonstrate 
the technique to be memory efficient and stable in the 
presence of systematic errors such as partial coherence 
and noise.

Keywords: diffraction imaging; phase retrieval; 
ptychography.

1   Introduction
Ptychographic coherent diffraction imaging (PCDI) and 
Fourier ptychographic microscopy (FPM) have emerged 
as computational imaging methods for the solution 

of inverse problems and phase retrieval in electron, 
X-ray, and visible light microscopy [1–3]. While PCDI 
has become popular for experiments where the use of 
high-quality optics is challenging [4, 5], FPM allows 
for space-bandwidth product extrapolation beyond the 
resolution limit in visible light imaging [6]. In its origi-
nal conception, PCDI utilizes a fully coherent, localized 
illumination profile to produce scattered intensities from 
a spatially translated sample [7]. In practice, systematic 
errors hinder the ability for information recovery from the 
collected data sets, and the underlying inverse problem 
becomes ill posed. Current developments in the fields of 
PCDI and FPM aim at generalizing simple forward scat-
tering models and compensating for departures from the 
aforementioned idealization. Recent advances include 
the incorporation of partial coherence [8–11], beam insta-
bilities [12], scan position errors [13, 14], and statistical 
models for photoelectric counting distributions [15]. 
However, despite these successes, ptychography requires 
highly redundant data, typically orders of magnitude 
larger than the recovered information [16]. Moreover, the 
theoretically unlimited field of view in ptychography is 
practically limited by computational memory capac-
ity. This complication limits the practical application of 
ptychography to moderate and high-computing facili-
ties. In this paper, we investigate compression strategies 
for ptychographic diffraction imaging. Two compression 
strategies are proposed based on constrained sums and 
truncated singular value decomposition of diffraction 
data. The methods are tested and compared by numerical 
simulation and experiment.

2   Theory
This section reviews the elements of the theory of partially 
coherent light and describes the compression techniques 
underlying the simulation and experimental results 
described below.
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2.1   Ptychography with partially coherent 
illumination

Partially coherent illumination in the space-time domain 
(r1, r2, t) represents the scalar electromagnetic wave field 
E(r, t) by the mutual degree of coherence [17],

 1 2 1 2( , , ) ( , ) ( , ) ,E t E t dtΓ τ τ= +∫r r r r  (1)

where r1, r2 ∈ ℝ2 denote spatial variables, τ ∈ ℝ denotes 
time-shift, and the bar (here and in the following) denotes 
complex conjugation. Alternatively, the cross-spectral 
density (CSD), defined by the relation
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in the space-frequency domain (r1, r2, ω), is more conveni-
ently used than the mutual degree of coherence for two 
reasons. First, the CSD may be expanded into an infinite 
series [18]
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of orthonormal modes Ul, where λl are eigenvalues of the 
integral equation

 3
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Equation (3) may be well approximated by a finite number 
of summation terms L if the scalar wavefield exhibits some 
degree of correlation. This assumption holds true for any 
type of electromagnetic radiation as long as the source 
plane is not concerned, as correlation is introduced in any 
wavefield upon propagation as a consequence of the Van-
Cittert Zernike theorem [19]. From a computational point 
of view, the memory requirements, therefore, drastically 
decrease as the five-dimensional description of the CSD 
reduces to a finite number of two-dimensional modes 
and their corresponding energies. Second, the individual 
modes of the CSD obey a pair of Helmholtz equations 
[20], which allows to propagate the modes individually 
in numerical diffraction problems. The purity is a spatial 
coherence measure defined by [21]
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Compared to other possible measures of partial trans-
verse coherence [22], Equation (5) has the advantage 
that for a finite number of L equally weighted modes, we 
have L = 1/ν2 [23]. Therefore, 1/ν2 can be interpreted as the 
effective number of modes needed to describe a partially 

coherent beam of purity ν. Note that in this case the purity 
is minimal. Hence, for L unequally weighted modes, 1/ν2 
may serve as an upper bound for the effective number 
of modes needed to numerically represent a partially 
coherent beam. In what follows, we are concerned with 
monochromatic scalar wavefields and, henceforth, drop 
the dependence on ω. Ptychographic implementations 
for polychromatic radiation are described in Refs. [9] and 
[10]. Further information on the spatial coherence proper-
ties of synchrotron and X-ray free electron lasers (XFELs) 
are found in Ref. [24].

In a ptychography experiment with optically thin 
objects [4], each exit-surface mode (ESM) ψx,l (l = 1, 2, …, 
L) can be modeled by the product

 ( ) ( ),l lP Oψ = −  x r r x  (6)

where x ∈ ℝ2 denotes the sample translation, O describes 
the complex-valued sample transmission function, and 
Pl is the lth orthogonal mode in the illumination beam, 
usually referred to as probe in the context of ptychogra-
phy. The intensities measured on a detector placed in the 
far field are modeled as an incoherent superposition of the 
spatial Fourier transforms of each individual ESM, i.e.

 
ψ= ∑ 2| | .,l

l
Ix xF

 
(7)

Recovery of the ESMs ψx,l from the set of measure-
ments Ix is a nonlinear inverse problem that may be solved 
by iterative algorithms. Let n

,lψx  describe an estimate for 
the lth ESM with sample translation x at the nth iteration. 
An improved estimate of n

,lψx  complying with Equation 
(8) is then given by [8]
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After satisfying the far-field intensity constraint, the 
updated ESMs 1n

,lψ +
x  are used to improve estimates of the 

probe modes and the object estimate to satisfy the ptycho-
graphic overlap constraint. This may be done using the 
difference map or the extended ptychographic iterative 
engine (ePIE) update rules described in Refs. [4] and [25], 
respectively. Finally, the probe modes have to be orthog-
onalized in accordance with the cross-spectral density 
being Hermitian [Equation (2)]. Various orthogonalization 
methods such as Gram-Schmidt orthogonalization, QR 
decomposition, and singular-value decomposition (SVD) 
may be used [26]. In the ptychographic reconstructions 
described below, we decompose the set of probe modes 
using a rank-L SVD, i.e.
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 ,=P USV  (9)

where P = [P1 | P2 | … | PL] ∈ ℂN×L, U ∈ ℂN×L, S ∈ ℝL×L, V ∈ ℂL×L, 
and N is the number of samples in a discretized wave of 
finite extent. It is noted that the SVD of P is compatible 
with Equation (4). This is readily seen adapting a finite-
dimensional linear algebra point of view [22]. Assume a 
finite number of probe modes L, and write Equation (4) in 
matrix notation

 ,W U UΛ=  (10)

where W ∈ ℂN×N, U ∈ ℂN×L, and Λ ∈ ℂL×L. Then comparing 
Equation (10) and

 2 ,=PP US U  (11)

it is seen that US provides an orthogonal basis for P that 
is unique up to a constant complex phase factor exp [iφ], 
a trivial non-uniqueness typically encountered in phase 
retrieval problems. In the ptychography implementa-
tion described below, the mode orthogonalization step 
is done via

 1 ,n n n+ =P U S  (12)

where 1 2[ | | ...| ]n n n n n n n
LP P P= =P U S V  is the set of probe 

mode estimates and its SVD at the nth iteration. Equations 
(10) and (11) are related by a similarity transformation 
depending on the basis in which the signals are repre-
sented, and we can identify 2 .l lλ σ=  In words, orthogo-
nalization of a set of probe mode estimates by means of 
singular-value decomposition allows for interpreting 
the singular values as the square root of the energy con-
tained in each respective mode. If the purity of the beam is 
unknown, L may be chosen sufficiently large, and a rank 
minimization algorithm may be used to find the effective 
degree of coherence [27, 28].

2.2   Information metrics

To compare the amount of information reduction in the 
original and compressed data, we define the compression
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where b0 and b1 are the number of bytes in the uncom-
pressed and compressed data sets, respectively. This 
metric is related to the redundancy

 1 .R C= −  (14)

The ptychographic oversampling σ [29] is defined as
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L
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(15)

where M is the number of diffraction patterns measured, 
and L is the effective number of modes, which depend on 
the purity as specified by Equation (5). Here, the effective 
ptychographic oversampling

 eff Cσ=σ  (16)

is used to quantify the effective amount of sampling. In 
particular, we refer to σeff ≥ 1 as conventional ptychogra-
phy and to σeff < 1 as compressive ptychography.

2.3   Compression based on singular value 
decomposition

A ptychographic data set consists of multiple diffraction 
patterns related to the windowed Fourier transform of 
the sample [30]. It has been suggested that for pinhole 
illuminations in PCDI, the scanning step should be 
chosen in a way such that the linear overlap parameter 
between scan positions is above 60% [31]. This implies 
that diffraction intensities from neighboring and over-
lapping scan positions are typically correlated accord-
ing to the ptychographic oversampling. Moreover, many 
samples are sparse or periodic in the spatial domain 
or contain homogeneous regions for which the diffrac-
tion intensities do not significantly change. In this case, 
the diffraction data becomes linearly dependent (low 
rank). In both cases, correlation or low rank, the data 
matrix can be approximated by a singular value decom-
position. We therefore investigate to use singular value 
decomposition-based compression (SVDC) for PCDI data 
sets. The method treats each diffraction intensity in 
the uncompressed ptychographic data set as a column 
of a rectangular data matrix 

1
[ | ...| ] ,

M

N MD I I ×= ∈xx R  
where the number of detector pixels, N, is much larger 
than the number of scan positions, M. The SVDC method 
achieves data compression by means of a truncated 
SVD, i.e.

 † ,D USV≈  (17)

where U ∈ ℝN×K, S ∈ ℝK×K, and V ∈ ℝM×K is a rank K < M = N 
approximation of the full rank SVD of D. It is noted that U 
and V can be chosen real as D is real. The SVDC compres-
sion rate is
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2.4   Compression based on constrained pixel 
sums

In the same way that incoherent superpositions of exit 
surface modes can be discriminated using Equation (8), 
further modification of the denominator allows to separate 
other incoherent sums, for instance, as a consequence of 
binning. Reduction of diffraction data by summation over 
given regions S is referred to here as constrained pixel sum 
compression (CPSC). The method is described as follows 
(see Figure 1): all pixels p belonging to a region S in the 
original intensity I are summed up to form a pixel in a 
downsampled intensity Is. In PCDI, this constraint can be 
used to modify an exit wave mode by the update rule
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The compression achieved by this method is given by 
C = 1/|S|, where |S| denotes the number of pixels that belong 
to the region S. In the presence of sufficient data redun-
dancy, this method principally allows for the recovery of 
the original intensity I from its downsampled version Is. 
In contrast, binning leads to integration over finite detec-
tor areas, a decoherence effect present in any diffraction 
intensity but amplified through binning. Therefore, CPSC 
is not identical to binning as not the pixels in S, but only 
their sums are constrained, similar to Sudoku. Moreover, 
the method can be implemented with any partition of the 

original intensity domain, and |S| does not have to be con-
stant, in general. In this paper, we will explore only the 
extreme case of random summation with constant |S| to 
demonstrate the method’s generality.

2.5   Resolution assessment

Resolution measures the spatial frequency response of 
an imaging system and, as such, is a measure of quality. 
Instead of giving a single-valued resolution metric, it is 
more precise to quantify resolution as a function of spatial 
frequency, as aberrations, noise, and systematic errors 
such as misalignment affect the entire spatial frequency 
response of an imaging system. The resolution of coherent 
and incoherent lens-based imaging systems is typically 
quantified by the amplitude and optical transfer func-
tion (ATF and OTF), respectively [32]. For lensless imaging 
systems, where specimen information is recovered by 
means of computational methods, closely related to the 
ATF and OTF is the Fourier ring correlation (FRC) given by
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where q ∈ ℝ2 denotes spatial frequency, and the summa-
tions range over concentric rings of radius qi. Õk(q) = ℱO(r), 
k = 1, 2, are Fourier transforms of object reconstructions 
from two independent data sets. In this way, the FRC 
measures reproducibility of spatial frequency content as 
a normalized correlation of two signals. The intersection 
between the FRC and a 1-bit information threshold curve 
is defined as the resolution of the reconstructed object. 
This is referred to as the 1-bit criterion, which indicates 
the spatial frequency, as a fraction of the theoretical 
maximum (Nyquist limit), at which the reconstructed sig-
nal-to-noise ratio (SNR) is one. It has been noted that the 
1-bit criterion, in practice, yields overly conservative reso-
lution estimates, so for experimental data, the 1/2 bit cri-
terion is typically used to assess resolution [33]. Because 
the FRC may exhibit oscillatory behavior, and thus many 
intersections with the 1/2-bit curve, we alternatively use 
the area under curve (AUC) defined by

 
AUC FRC( ),

i

i
q

q= ∑
 

(21)

as a resolution measure. If the spatial frequency response 
drops in the low or mid spatial frequency range, the 1/2-bit 
criterion is not sensitive to such changes, whereas the 
AUC detects information loss over the entire spatial fre-
quency range.
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Figure 1: Constrained pixel sum geometry. (Top) The original data; 
(bottom) the downsampled signal from a sum over randomized pixel 
locations.
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3   Simulation
We performed numerical simulations to test the SVDC 
and CPSC compression strategies, both individually and 
in combination. To this end, six ptychographic data sets 
with varying compression rates (CSVDC = 1, 0.5, 0.25; CCPSC = 1, 
0.25) were generated as summarized in Table  1. All data 
sets were assumed to be recorded on a detector with a 
dynamic range of 14 bit causing Poisson noise given by 
Mandel’s formula [20] according to which the probability 
of recording n photoelectric counts given a time-integrated 
intensity ∫ Idt is described by the probability density
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(22)

resulting in an average root mean square deviation com-
pared to the noiseless data sets of 18%. A Gaussian-Schell 
model source was simulated using four Hermite-Gaussian 
probe modes [34] TEM00, TEM10, TEM01, and TEM11 with a 
relative energy of 59.8%, 22%, 13.3%, and 4.9% result-
ing in a purity of 65%. The probes were cropped to not 
oversample the diffraction patterns, as this would allow 
for trivial compressibility of the data by conventional 
binning. The linear overlap parameter in the partially 
coherent data sets was 70%, which is larger than the pro-
posed value of 60% in Ref. [31] to enable probe recovery 
with partial coherence. All reconstructions were obtained 
using an ePIE algorithm with 1000 iterations and a feed-
back parameter β = 0.5 [25].

3.1   SVDC

The results for the SVDC simulation are shown in Figure 2 
where the compression rate is indicated by red (CSVDC = 1), 
green (CSVDC = 0.5), and blue boxes (CSVDC = 0.25). The visual 
similarity of the compressed reconstructions compared to 

the uncompressed reconstruction is in qualitative agree-
ment. A quantitative analysis provided by the FRC curves 
shown at the bottom right of the top half of Table 1 sum-
marizes the compression factors CSVDC, the resolution as 
intersection with the 1/2 bit threshold, the AUC value, and 
the effective sampling σeff. As one would expect, the 1/2-bit 
resolution and AUC decrease slightly with increasing 
compression. The computational memory requirement 
decreases proportional to CSVDC as indicated by σeff.

3.2   CPSC

The results for the CPSC simulation with random binning 
(CCPSC = 1/ | S | = 0.25) are shown in Figure  3, where the 
colored boxes indicate results when an additional SVD 
compression is used. The FRC curves with CPSC in 
Figure 3 show decreased reconstruction quality compared 
to the pure SVDC without binning (Figure 2). The quantita-
tive analysis for the CPSC is summarized in the lower half 
of Table 1. It is important to note that the reconstructed 
object with CCPSC = 0.25 and CSVDC = 0.25 in the blue box 
has an effective oversampling smaller than unity. In this 
regard, these reconstructions are compressive in that they 
are obtained from a smaller number of data points than 
degrees of freedom in the object and probe modes recon-
structed. This point is further discussed below.

Table 1: Resolution and AUC for various compression factors on 
simulated data.

CSVDC CCPSC 1/2-bit resolution (%) AUC (%) σeff

1 1 70 66 7.6
0.5 1 66 62 3.8
0.25 1 65 60 1.9
1 0.25 61 56 1.9
0.5 0.25 58 55 1
0.25 0.25 48 49 0.5

Compressive ptychography with undersampling σeff < 1 was success-
fully realized with combinations of SVDC and CPSC.

Figure 2: PCDI reconstruction for SVDC compression rates 100% 
(top left), 50% (top right), 25% (bottom left), and their FRC curves 
(bottom right) showing contrast vs. spatial frequency normalized to 
the Nyquist frequency.
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4   Experimental results (diatom)
Experimental data was collected at the soft X-ray beamline P04 of the 
PETRA III storage ring [35]. The APPLE-II type undulator was tuned 
to generate photons with energy of 500 eV (λ = 2.48 nm), i.e. close to 
the oxygen K absorption edge. A spectral bandwidth of 25 meV was 
selected by an exit slit opening of 25 μm of the monochromator. For 
this spectral bandwidth, the expected temporal coherence was about 
50 μm. A focused beam with full width at half maximum (FWHM) 
of 15 μm in both directions was spatially filtered by a pinhole with 
a 5-μm diameter. The photon flux behind the pinhole was about 700 
photons/s. Compared to a previous experiment with a twice smaller 
pinhole diameter [36], a similar photon flux at three times smaller 
X-ray bandwidth was obtained due to a newly added horizontal focus-
ing mirror. The measurements were performed in the HORST (holo-
graphic roentgen scattering) vacuum chamber in the PCDI mode [37]. 
The PCDI data set was measured at a distance of 16 cm in the far field. 
To image an area of 20 μm × 25 μm on the sample, 86 scan positions 
arranged on a Fermat spiral [38] with an average linear overlap of 
60% between the illumination positions were scanned. The detector 
was a back-illuminated and Peltier cooled (–60°C) CCD image sen-
sor (DODX436-BN, Andor Technology Ltd., Belfast, UK). The square 
detector area of 27.6  mm × 27.6  mm consisted of 2048 pixels with a 
pixel size of 13.5 μm × 13.5 μm. The diffraction data was cropped to an 
effective detector size of 6.8 mm × 6.8 mm, resulting in a reconstruc-
tion pixel size (Nyquist resolution) of 58.3 nm. The specimen exam-
ined was a diatom with an exoskeleton consisting of silicon dioxide 
(SiO2). The diatom skeleton was dispersed on a silicon nitride (Si3N4) 
membrane and air dried for the measurement under vacuum.

PCDI reconstructions for the diatom with varying compression 
rates are shown in Figure  4. The top row shows L = 1/ν2 ≈ 3 recon-
structed probe modes of the beam, for which a purity of ν = 59.5% was 

estimated. Panels D, E, and F show the diatom reconstruction with no 
compression (NC), SVD compression (SVDC), and constrained pixel 
sum compression (CPSC). The resolution of the uncompressed recon-
struction was estimated by averaging the resolutions for four-edge 
scan as indicated by the white lines in panel D. The line was fitted 
by an integrated Gaussian profile with an average FWHM of 80 nm 
and an average 10%–90% amplitude increase within an interval of 
88  nm. From these values, we estimate the uncompressed recon-
struction to have a resolution on the order of 80–90 nm. The SVDC 
result in panel E was obtained with a compression rate of CSVDC = 0.5 
(σeff  ≈ 3.1). The CPSC result in F was obtained with CCPSC = 0.25 (σ ≈ 1.5). 
Higher compression rates were tested for both methods but resulted 
in increasingly visible artifacts. Panel G shows Fourier ring correla-
tion curves for the reconstructions in panels E and F compared with 
panel D. We emphasize that, the compressed reconstructions were 
correlated with the Fourier transform of the uncompressed recon-
struction and not, as customary, with a reconstruction from two inde-
pendent data sets. We chose this procedure to facilitate comparison 
of reconstruction quality for varying degrees of compression within 
the same data set. The resulting FRC curves indicate that the SVDC 
method with a compression rate of 0.5 resulted in a half-bit resolu-
tion (half period) of 81  nm. The CPSC method with a compression 

Figure 4: Compression results for experimental data. The colorbars 
(bottom) show relative phase shift (hue) and transmission (bright-
ness) of the probe/sample. (A, B, C) The reconstructed modes TEM00, 
TEM01, and TEM10, respectively, in the pinhole plane. The recon-
structed diatom for no compression (NC), SVDC 50%, and CPSC 25% 
are shown below (D, E, F). (G) The FRC curves for the compressed 
reconstructions compared to the uncompressed reconstruction.

Figure 3: PCDI reconstruction and FRC curves for CPSC random 
binning (CCPSC = 1/ | S | = 25%) and SVDC compression (colored boxes). 
The diffraction patterns were binned as shown in Figure 1B.
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rate of 0.25 achieved a half-bit resolution (half period) of 92 nm. Visu-
ally inspecting the reconstruction results in Figure 4, panel E shows 
only minor differences compared to panel D, in agreement with the 
comparable resolution values attributed to these images. Panel E, in 
contrast, clearly shows artifacts such as ringing at the specimen edge 
and reduced contrast in the horizontal structures of the diatom.

5   Discussion
The SVD compression described in this paper and the dis-
crete cosine transform (DCT), which underlies the lossy 
encoding step in JPEG compression [39], are compared 
in Figure  5. Panel A shows the uncompressed average 
diffraction pattern, also termed power spectral density 
(PSD), as used for the simulations in Section 3. Panels B 
and C show the PSDs obtained for the DCT and SVD com-
pression methods. While the DCT compression method 
finds a suitable intra-frame basis for 8 × 8 pixel blocks, the 
SVD achieves inter-frame compression by finding the least 
square approximation for a truncated basis of the whole 
data set. The superiority of the SVD-based compression 

over the DCT-based compression is quantified by the 
mean square deviation shown in Panel D. For comparison, 
the lossless PNG format could only obtain a compression 
of about 70% due to the noise in the data.

The success of the compression methods proposed 
here strongly depends on the object under investigation. 
However, there are criteria to identify data compressibil-
ity. For example, periodic specimen such as lithographic 
masks and integrated circuits [16, 40] result in PCDI scans 
with repeating diffraction patterns when adequately 
scanned. The SVDC method can take advantage of this 
periodicity by finding a lower dimensional basis to rep-
resent the data in. In other words, the data matrix is not 
full rank and, thus, is singular. In practice, however, the 
data contains noise so the SVDC method has to filter 
out the principal components of the data matrix. In the 
experiment reported here, the data could be reduced by 
50% without sacrificing significant resolution. Tests with 
higher compression rates resulted in noticeable artifacts. 
If there is no a priori knowledge about the specimen, com-
pressibility by means of the SVDC method can be identi-
fied by inspection of the singular values of the data matrix 
as depicted in Figure 5E for the diatom data set. Here, the 
original rank-86 data matrix is approximated by a rank-43 
truncated SVD, whereby the singular values of the latter 
sum up to 95.3% of the former. The normalized root mean 
square error of the SVDC approximation for the diatom 
data is given by [see Equation (17)]
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where tr denotes trace, and sk,k are the diagonal elements 
of S.

Compressibility using the CPSC method depends on 
various factors such as the overlap in scan positions and 
the structure of the probe. It was demonstrated by Edo 
et  al. [41] that undersampling the diffraction data may 
be compensated by increasing the overlap in the scan 
positions. The CPSC includes the possibility of binning 
neighboring pixels but allows for more general binning 
geometries while preserving the photon statistics of the 
original data. An interesting question for future research 
is how to construct suitable binning masks that achieve 
maximum compression. As a trivial example, if a given 
zero photon count region is binned, the constrained sum 
leaves no doubt about the individual pixels. Another 
implication of the CPSC method is that it may be applied 
in reverse, namely, if the sampling on the detector is too 
coarse; for instance, to resolve a small speckle, the CPSC 
method may be used to constrain upsampled data [42]. 

Figure 5: Original power spectral density (A) compared to DCT (B) 
and SVD (C) compression for a compression rate of 3% applied to 
the simulated data in Figure 2. (D) Mean square deviation of DCT 
(red) and SVD (green) compression from original data set for various 
compression rates. (E) Percentage of the truncated SVD coefficients 
compared to the trace of the full rank SVD. Half of the full rank SVD 
describes 95.3% of the diatom data set.
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A difference between the SVDC and the CPSC should be 
mentioned. The former approximates the data, while the 
latter loses information about the data. Approximation of 
the data leads to systematic errors. We observed that these 
have a smaller effect when the ePIE algorithm is used in 
conjunction with small feedback parameters effectively 
leading to averaging various object estimates. The draw-
back is that this leads to slower convergence. Losing 
information about the data does not lead to inconsisten-
cies due to systematic errors but may render the inverse 
problem ill posed. A priori knowledge such as sparsity [43] 
may be beneficial in such cases.

6   Summary and conclusion
We have demonstrated two novel compression strate-
gies for ptychographic diffraction imaging. The proposed 
methods were tested by simulation and experiment. It is 
expected that data compression techniques will become 
relevant as coherent diffraction methods increase in com-
plexity and computational demands. Last, shifting the 
focus from providing more information to filtering the rel-
evant information will not only be beneficial in big data 
problems but also in small-scale devices such as portable 
Fourier ptychographic microscopes on cell phones [44].
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