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Abstract: Optical systems can benefit strongly from free-
form surfaces; however, the choice of the right representa-
tion is not trivial, and many aspects must be considered. 
Many possibilities to formulate the surface equations in 
detail are available, but the experience with these newer 
representations is rather limited. Therefore, in this work, 
the focus is to investigate the performance of several clas-
sical descriptions as well as one extended freeform sur-
face description in their performance in concrete design 
optimization tasks. There are different influencing fac-
tors characterizing the surface representations, the basic 
shape, the boundary function, the symmetry, a projection 
factor, as well as the deformation term describing higher 
order contributions. We discuss some possibilities and 
the consequences of describing and using these options 
with success. These surface representations were chosen 
to evaluate their impact on all these aspects in the design 
process. As criteria to distinguish the various options, the 
convergence over the polynomial orders, as well as the 
quality of the final solutions, is considered. As a result, 
recommendations for the right choice of freeform surface 
representations for practical issues in the optimization 
of optical systems can be given under restrictions of the 
benchmark assumptions.

Keywords: correction; freeform surface; optical design; 
optimization; surface representation.

1   Introduction
Because of the growing computer resources as well as the 
ongoing progress in technological possibilities to fabricate 
complicated-shaped surfaces with high optical quality, 
the additional degrees of freedom created by freeforms 
have been extensively used in optical design in the last 
years. There are very special geometries and applications, 
which are not symmetric by definition of the application 
concept; typically, such setups benefit significantly from 
freeform surfaces. Because of the advantageous proper-
ties of symmetric systems and the fundamental principles 
of aberration theory, it makes no sense to use freeform 
surfaces if there is no other need to break the circular 
symmetry of the optical system. In very compact systems 
or obscuration-free mirror systems, a great boost of new 
superiorly performing optical concepts is observed if free-
forms are used. However, the community has learned in 
the past that many aspects, assumptions, definitions, 
methods, tools, and algorithms are changing if the tra-
ditional symmetry is given up. Therefore, the complete 
development chain must be modified and adapted to the 
new technology. In a previous paper [1], we showed some 
opportunities on how the surfaces can be descried from 
the mathematical point of view. Based on these possibili-
ties, the next question of an optical designer would be how 
to select the surface type optimal for an efficient optimiza-
tion process with a comfortable result. In this article, we 
present the results of a first assessment of the mathemati-
cal options from the design application viewpoint. We are 
restricting to the issues of the surface representation in the 
design phase without considering questions of sensitivity, 
tolerancing, and manufacturing. Therefore, the results 
are collected in the form of a benchmark, which compares 
different freeform surface descriptions for optical systems 
for various applications with different properties. From 
the viewpoint of practical work and efficiency, there are 
several criteria for the selection of a special surface repre-
sentation. The surface representation should allow for a 
fast ray trace, the parametrization should be flexible with 
a small number of parameters, and the optimization of the 
parameters should be robust and converge quickly with a 
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good result in the design process. In particular, the stabil-
ity of the freeform surface equations in the optimization 
seems to be a problem if higher orders are included.

Practical results of optical freeform design work are 
found in literature with a large amount of publications 
(see, for example, Refs. [2–6]). Typically, the representa-
tion of the freeform surface used by the authors is gov-
erned by the available options in the commercial design 
programs. Therefore, a more systematic comparison and 
critical review of different options is missing until today. 
To limit the complexity and make the results easier for 
interpretation, here, only a small number of four sample 
systems is selected. Because of the complexity of the 
problem, all examples are restricted to the use of only 
one freeform surface. We tried to select practical relevant 
setups with different types of symmetry, including refrac-
tive, reflective, and catadioptric systems.

Only the most important surface descriptions are 
used here. The properties of these representations under 
the viewpoint of different initial systems, special prop-
erties of the systems, sensitivity in optimization, and 
quality of the final result are compared and discussed. In 
particular, the influence of the basic shape selection, the 
basic geometry to be Cartesian or polar, and the impor-
tance of the orthogonality are investigated. To obtain a fair 
and objective comparison, the design task is formulated 
simply, and the final results typically do not have the best 
performance that is possible. Furthermore, the algorithm 
for optimization, which is used, plays a significant role. 
Here, the implementation of a damped least square algo-
rithm in the commercial tool Zemax™ is used. However, a 
comparison of the various cases is critical because there 
are quite many possibilities of parameter combinations, 
fixation of constraints, and optimization strategies.

In the second section of this publication, the method 
of the benchmark is explained in detail. An overview of 
the tested freeform representations shows the approach 
to cover the most relevant possibilities. The optimization 
procedure with initial system selection, growing degree of 
freedoms, as well as the re-optimization of the remaining 
system data is described to make the process of computa-
tion transparent. The third section describes the properties 
of the selected optical systems and the reasons for these 
special choices. The systems under investigation are a sym-
metry-free Yolo-type two-mirror telescope, a plane-sym-
metric three-mirror anastigmat (TMA), a head-mounted 
device (HMD) in a recently suggested folded setup [7], 
and a double-plane-symmetric anamorphic system with 
remaining straight optical axis. In Section 4, the detailed 
results of the benchmark calculations are presented and 
discussed for each system individually and in comparison. 

Finally, in a conclusion, the major results are summarized, 
and a recommendation for practical work is formulated.

2   Benchmark method
As described in the first part of this publication [1], many 
choices for freeform surface descriptions are available. 
A goal of this investigation is to evaluate the criteria for 
choosing an appropriate representation for a given task 
with a freeform system. Therefore, a benchmark with dif-
ferent freeform systems was performed. Hereby, each of the 
chosen representations is used to optimize the systems over 
several polynomial orders, and the performance is evalu-
ated. The polynomial order is hereby defined as the sum of 
the radial and azimuthal order of the polynomial terms. For 
Cartesian descriptions, the polynomial order is one half of 
the sum of the order in x and y, due to simple coordinate 
conversion. Contrary to other investigations [3, 6] were the 
number of degrees of freedom is equivalent for all represen-
tations, we prefer the approach that the polynomial order 
for all descriptions is equivalent. This leads to the fact that 
the number of degrees of freedom per surface differs for the 
various descriptions for each polynomial order.

The optimization algorithm used here for the bench-
mark is the damped least square (DLS) provided by 
Zemax™. To investigate the convergence over the poly-
nomial order and specific contribution by each order, 
the optimization is proceeded stepwise. Starting with the 
initial system (Figure 1), setting the basic shape and addi-
tional system variables (see Table 2), we increase, order 
by order, the parameter of the deformation terms of the 
freeform surface (beginning with the fourth) and re-opti-
mized each time with 300 cycles of DLS up to the 14th pol-
ynomial order. The used surface parameters are limited 
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Figure 1: Benchmark process.
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to those that contribute to the symmetry of the system. 
Moreover, the lower-order terms, like tilts and offset, as 
well as defocus, are not used for the correction. Previous 
investigations [8] have shown that the convergence speed 
within one order is mainly dependent on the presence of 
orthogonality, not on the kind of orthogonality; therefore, 
we concentrate, here, on the convergence over the orders, 
so there is improvement of the performance for additional 
polynomial orders and, therefore, degrees of freedom.

The descriptions chosen for the benchmark can be 
seen in Table 1. As in part 1, we concentrate on global 
freeform descriptions. Each of them represents a different 
combination of none, spatial, and gradient orthogonality 
and of a (unit) circle or square domain. The Monomials are 
a special case here: as they are not orthogonalized on a 
unit grid, they can be used either way. The A-polynomials 
2nd kind, introduced in Part 1, are not considered in this 
benchmark.

Additionally, the three polar-defined Zernike Fringe, 
Q-polynomials, and A-polynomials 1st kind (due to the 
Zernike Fringe set as a basis) are chosen to investigate the 
impact of the choice of basic shape. Therefore, each of 
the three descriptions performs the benchmark once with 
a conic basic shape and once with a biconic. In the case 
of the Q-polynomials, the ‘best-fit-conic’ basic shape was 
extended to ‘best-fit-biconic’. The other descriptions used 
a biconic basic shape for the whole benchmark.

In order to investigate the influence of a different 
weighting over the domain, the Chebyshev 1st kind, 2nd 
kind, and Legendre (each in 2D) were chosen for the 
spatial orthogonal description defined on a unit square. 
With the Monomials, they represent the descriptions of 
Cartesian definition.

As our investigations have shown, there is no signifi-
cant impact of the projection factor on the performance of 
these systems. This was not addressed here. In the case of 
systems with stronger inclination of the rays at the bound-
ary, this aspect might be more important.

3   Benchmark systems
For the benchmark, four systems with different symme-
try representing typical refractive, reflective, and catadi-
optric applications of freeform surfaces are investigated 
(Figure  2): a symmetry-free Yolo-type two-mirror tele-
scope, a plane symmetric TMA, a plane symmetric HMD 

Table 1: Investigated representations: (blue) Cartesian-defined 
descriptions, (red) polar-defined representations.

Orthogonality Domain

(Unit) Circle (Unit) Square
None Monomials Monomials

Spatial Zernike Fringe Chebyshev 2D 1st kind
Chebyshev 2D 2nd kind
Legendre 2D

Gradient Q-polynomials A-polynomials 1st kind
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Figure 2: Layouts of investigated systems: (A) Yolo telescope, (B) TMA, (C) HMD, (D) anamorphic system.
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in a recently suggested folded setup, and a double-plane-
symmetric anamorphic system with straight optical axis. 
All systems are imaging setups and should be corrected 
for an improved resolution by one freeform. Because 
of simplification and comparability with the original 
design, the correction of distortion was not considered. 
For all examples, the focal length (EFFL) is kept con-
stant during re-optimization. For simplification, only one 
wavelength is considered. The norm radius, respectively, 
the norm width was adapted to the semi-diameter plus a 
small offset after each cycle to make sure the domain of 
the surface description and the optical region of interest 
are equivalent.

The Yolo telescope (Figure 2A) is based on two tilted 
mirrors (the first one bending in y and the second one in x), 
which leads to a symmetry-free system with a small field 
of view (FOV) and F number (Table 2A). The first mirror is 
hereby the freeform and the second a conic. The footprint 
on the freeform surface (Table 2A) is almost perfectly cir-
cular. The main criteria for the performance is the resolu-
tion (rms spot). In addition to the surface parameters of 
the freeform, the radius and conic of the second surface 
as well as the final distance and the tilt of the image plane 
are used as optimization variables.

The TMA is a reflective plane-symmetric system 
(Figure 2B). The first and second mirror are spherical, 
and the third one a freeform. With the small F number 
and FOV (Table 2B), the separation of the field bundles 
is very poor, seen on the nearly circular footprint of the 
freeform (Table 2B). The criteria for optimization are the 
resolution (rms spot) with small contribution by effective 
focal length, as well as restrictions for the obscuration. 
The radii of the first two mirrors plus the final distance are 
additional variables for the optimization.

The folded HMD (Figure 2C) based on the recently 
published design by Chen [7] is slightly simplified for the 
benchmark.

The plane-symmetric catadioptric system has a spher-
ical refractive entrance (first) and exit (fourth) surface and 
a plane mirror as a second surface. The third surface is the 
reflective one used as a freeform. The system has a large 
FOV and F number (Table 2C). The good separation of the 
field bundles can be seen in the rectangularly shaped foot-
print on the freeform surface (Table 2C). The optimization 
criteria are similar to the TMA, namely, the resolution (rms 
spot) and obscuration restrictions. For the optimization, 
only the radii of the front and rear surface are additional 
variables. For comparability with the original design, 

Table 2: System data of benchmark-systems: A) Yolo telescope, B) TMA, C) HMD, D) anamorphic system.

A) Yolo telescope B) TMA C) HMD D) Anamorphic system

Symmetry – Plane symmetry Plane symmetry Double-plane symmetry
Specification EPD: 21 mm

FOV: 1.5° × 1.5°
Field points: 9
F-number: 1.9
Wavelenght: 0.55 μm
Stop position: surface 1

EPD: 28 mm
FOV: 0° × 3°
Field points: 3
F-number: 2.14
Wavelength: 0.66 μm
Stop position: surface 2

EPD: 4 mm
FOV: 25° × 30° 
Field points: 12
F-number: 10.89
Wavelength: 0.5775 μm
Stop position: before system

EPD: 7.49 mm
FOV: 12° × 25°
Field points: 5
F-number: 4.0
Wavelength: 0.587 mm
Stop position: surface 9

Optimization Criteria: rms spot Criteria: rms spot 
+ restrictions for 
obscuration

Criteria: rms spot +
restrictions for obscuration

Criteria: rms spot

Surfaces Surface 1: freeform
Surface 2: conic

Surfaces 1 and 2: sphere
Surface 3: freeform

Surfaces 1 and 4: sphere
Surface 2: plane
Surface 3: freeform

Surfaces 1, 3, 5–9: sphere
Surfaces 2 and 4: cylinder
Surface 10: freeform

Footprint 
freeform 
surface

Additional 
variables

–  Radius and conic 
parameter of surface 2

–  Tilt of the image plane 
in x and y

– Final distance

– Radii of surfaces 1 and 2
– Final distance

– Radii of surfaces 1 and 4 – Radii of surfaces 1–9
– Final distance

EPD, entrance pupil diameter.
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distortion was not considered in the merit function. This 
simplification may distort the final results slightly.

The anamorphic system (Figure 2D) is a double-plane-
symmetric refractive freeform system based on a patent 
by Wartmann [9], which is simplified for the benchmark. 
The first nine surfaces are spherical, except the second 
and the fourth, which are cylinders. The last surface in 
front of the image plane is the freeform. The system has 
a medium FOV and F number (Table 2D). The poor sepa-
ration of the field bundles is again seen on the footprint 
of the last surface (Table 3D). The optimization criterion 
is similar to the Yolo telescope, namely, the resolution 
(rms spot). The radii of the nine non-freeform surfaces, 
as well as the final distance, are additional variables for 
the optimization.

4   Results
In the following, we present the results of the benchmark 
for the four investigated systems. The performance values 
in the figures are in all cases the averaged spot radius of 
the selected field points (merit function).

4.1   Yolo telescope

The Yolo-type telescope has, due to the lack of symmetry, 
the full set of parameters for the optimization. In the case 
of the polar descriptions (Zernike Fringe, Q-polynomials 
and A-polynomials 1st), these are 60 in total up to the 14th 
order (second-order terms are excluded); for the Cartesian 
descriptions, these are 33.

As seen in Figure 3A, with these asymmetric degrees 
of freedom, the system can be improved up to a factor of 
25 (biconic → biconic + A-polynomials 1st). Specifically, 
for the fourth-order, the Monomials and Chebyshev 2nd 
kind are not able to correct in the same way as the Zernike 
Fringe, Q-polynomial, or A-polynomials 1st. However, 
with higher orders and a higher number of degrees of 
freedom, the different descriptions are in a similar range, 
so the Monomials and Chebyshev 2nd kind could com-
pensate the disadvantage within one order, and very 
high orders (12th to 14th) correct in a better way than the 
Zernike Fringe or Q-polynomial set. The A-polynomial 1st 
kind, on the other hand, seems to have a slight advantage 
over the other descriptions for lower and middle orders. 
Specifically, higher orders improved much better than the 
similar Zernike Fringe and Q-polynomial, so that the final 
result is similar to one from Chebyshev 2nd kind and differ 

by a factor of around 1.5 compared to the one from Zernike 
Fringe, for example.

The freeform contribution by the deformation terms 
(seen in Table 3A) by each description investigated for 
these systems shows that the general shape is almost 
identical for Zernike Fringe, Q-polynomial, and A-polyno-
mials 1st kind, including the absolute values of the sag. 
So during the optimization, these descriptions followed, 
probably, the same path to this minima, with the A-pol-
ynomials 1st kind benefitting from better higher-order 
contributions, which leads to small differences in shape 
(right and left boundary) and a better final result. Looking 
at the freeform sag-contribution by the deformation terms 
(seen in Table 3A) for the monomials and Chebyshev 2nd, 
the result is less clear. Some similarities in shape can be 
seen (outer boundary), but the center parts have neither 
a resemblance with each other nor with the other three 
descriptions. So, despite the similar result for the optimi-
zation and resolution for all orders up to the 14th order 
(except the 12th), the descriptions found paths to achieve 
this, which end up in very different shapes. Additionally, 
in the case of the Chebyshev 2nd, the overall sag is a factor 
of 5 smaller than for the other descriptions (−0.03 −0.01 to 
−0.1 to 0.1 for the Zernike Fringe, for example).

Another aspect, the choice of basic shape investigated 
with the Zernike Fringe, Q-polynomial, and A-polynomials 
description, can be seen in Figure 3B. It is clearly shown 
that the benefit of a more sophisticated basic shape can 
lead to an improvement by a factor of 2 (with the same 
number of freeform parameters, but two additional for the 
biconic). This can be explained with the dominating xy-
coupling terms, due to the tilts of the mirrors in x and y. 
Moreover, the results for the different orders show that the 
same correction can be obtained by a conic with 60 addi-
tional freeform parameters (14th order) or a biconic with 21 
additional freeform parameters (eighth order). The impact 
of almost 40 parameters can, here, be compensated com-
pletely by the additional two biconic parameters.

Additionally the influence of the weighting of the 
description over the domain on the performance with the 
Monomials, Chebyshev 1st kind, Chebyshev 2nd kind, 
and Legendre polynomials was investigated. The result is 
shown in Figure 3C. Up to the 10th order, only minor differ-
ences occur, but with the next two orders, the descriptions 
separate into two groups: one with the Chebyshev 1st and 
Monomials, the second with the Chebyshev 2nd and Leg-
endre polynomials. As discussed before, the freeform sag 
contribution (seen in Table 3A) by the deformation terms 
do not indicate the separation so clearly as they differ in 
shape (specifically the center) and absolute value (factor 
5). The four descriptions seem to have found different 
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minima with similar final results in which the two descrip-
tions with generally higher values at the boundary than 
in the center (Legendre and Chebyshev 2nd kind) tend to 
correct the system slightly better.

4.2   Three-mirror anastigmat

The TMA is a plane-symmetric system, which reduces the 
number of additional degrees of freedom by the deforma-
tion terms to 33 in the case of Zernike Fringe, Q-polyno-
mial, and A-polynomial 1st kind and 18 for the Monomials, 
Chebyshev 1st, Chebyshev 2nd, and Legendre (excluding 
the second order).

The improvement, as seen in Figure 4A, by the free-
form surface is a factor of 8 compared to a biconic. The 
final result of the optimization for the different descrip-
tions is hereby very similar. However, from the fourth 
order, specifically the descriptions with a rectangular 
domain lack performance, but with the sixth order, this 
is compensated. The Monomials, as the one description 

without any orthogonality, cannot compensate this lack 
for the first 10 orders, but with the 12th and 14th order 
reach the same result as the others. A look on the freeform 
sag contribution by the deformation terms of the freeform 
surface (seen in Table 3B) shows that the shape for the 
Zernike Fringe, Q-polynomial, and A-polynomials 1st kind 
is almost identical with slight differences in the absolute 
values. Again, the A-polynomials are slightly better in cor-
rection for the final order. On the other hand, the shape 
defined by the Monomials and Chebyshev 1st has a domi-
nating y dependence with almost no x dependence seen. 
Although similar in shape, the absolute values differ by a 
factor of 3. Compared to, e.g. the Zernike Fringe, there are 
similarities for the outer boundary, but again, they differ 
for the center part. So, the shape found by each group 
during the optimization leads to the same final result for 
resolution, independent of its differences.

Contrary to the previous system, the impact of the 
extended basic shape (Figure 4B) is only seen for low 
orders and can be equally compensated by each of the 
polynomial sets with the 10th order. So, the astigmatism 
correction is of such low order that the conic plus the 
deformation terms up to the investigated order are enough 
to represent that correction.
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Figure 3: Results for Yolo telecscope: (A) performance of the main 
representations (all with biconic basic shape), (B) impact of different 
basic shapes for the performance of polar descriptions, (C) compari-
son of Cartesian descriptions (all with biconic basic shape).
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tions (all with biconic basic shape), (B) impact of different basic 
shapes for the performance of polar descriptions, (C) comparison of 
cartesian descriptions (all with biconic basic shape).
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The influence of the weighting over the domain, as 
seen in Figure 4C, shows again that the Chebyshev 1st 
kind lack specifically the fourth order of impact, but for 
higher orders, the impact is much higher than for the Leg-
endre or Chebyshev 2nd kind. In the case of the Legendre 
polynomials, the improvement after the sixth order is 
minimal, but still better than for the Chebyshev 2nd kind. 
The final results (14th order) of both (each with 18 freeform 
parameter) is similar to the result of the Chebyshev 1st 
with only fourth- and sixth-order deformation terms (four 
parameters). Although the Monomials are in the range of 
the Chebyshev 2nd kind until the 10th order, they improve 
to the range of the Chebyshev 1st within the following two 
orders. This difference in final performance by a factor of 
2 (Chebyshev 1st kind/Monomials to Legendre/Chebyshev 
2nd kind) is not indicated by shape or absolute values of 
the sag contribution of the asymmetric deformation terms 
(seen in Table 3B), but may occur due to a higher-order 
contribution to the correction.

4.3   Head-mounted device

Like the TMA, the HMD is a plane-symmetric system, 
which leads to 18 freeform parameters for the Monomials, 
Chebyshev 1st, Chebyshev 2nd, and Legendre, and 33 for 
the Zernike Fringe, Q-polynomial, and A-polynomials 1st 
kind with an optimization up to the 14th order.

The improvement by a freeform in this system was a 
factor of 45 (biconic to Q-polynomial with biconic). Com-
paring the different descriptions (Figure 5A), a similar 
behavior for the Zernike Fringe and Q-polynomial can be 
seen for the lower orders. However, with higher orders, 
the Q-polynomial improves better than the other two. The 
freeform sag contribution by these three (Table 3C) shows 
a very similar shape, but a clear difference in the abso-
lute values (−0.42 to 0.58 for the Q-polynomial to −1.13 to 
2.25 for the A-polynomials 1st kind) and specifically in the 
lower outer region of the domain. Comparing these results 
with the Chebyshev 1st kind and Monomials, it is clearly 
seen that the Monomials lack the ability for correction in 
this specific system over the complete optimization. The 
results in each order are around a factor 5 worse than the 
best performing description in this order. The freeform sag 
contribution (Table 3C) of the Monomials shows a much 
different shape and have a factor 5 higher sag values for 
the HMD than the other descriptions. Why the Monomials 
are not able to represent the needed correction is not clear, 
but it might be a problem of orthogonality. The shape of 
the Chebyshev 1st kind, on the other hand, has similari-
ties with the shapes of the Q-polynomial, specifically in 

the outer region of the boundary, but again differs in the 
center. So, despite the lack of correction ability for lower 
orders, it results finally in a comparable result to the 
A-polynomials 1st kind and end up with similarities in 
the shape, although the path during the optimization was 
a different one. The influence of the basic shape for the 
performance (Figure 5B) can be seen in the lower orders, 
as well as for the final result. Between the sixth and 10th 
order, the difference is negligible. Nevertheless, the com-
bination of biconic basic shape and high-order freeform 
terms leads to a difference of a factor of 1.5 for all three 
representations.

The weighting over the domain, as seen in Figure 5C, 
has no visible impact on the performance in this HMD 
design. The three descriptions Chebyshev 1st kind, Che-
byshev 2nd kind, and Legendre have similar performance 
values over the complete run and a similar shape of the 
final freeform sag contribution. The difference in the abso-
lute values and center of the surface (Table 3C) is based 
in the different weighting, but does not affect the perfor-
mance for this system.
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Figure 5: Results for HMD: (A) performance of the main representa-
tions (all with biconic basic shape), (B) impact of different basic 
shapes for the performance of polar descriptions, (C) comparison of 
cartesian descriptions (all with biconic basic shape).
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4.4   Anamorphic system

The anamorphic system is a special benchmark system due 
to the double plane symmetry. This leads to a reduction 
in the contributing terms up to nine for the Monomials, 
Chebyshev 1st kind, Chebyshev 2nd kind, and Legendre. 
Additionally, due the specific structure of the polynomial 
set, every second order (sixth, 10th, and 14th) has no con-
tribution at all. For the Zernike Fringe, Q-polynomial and 
A-polynomials 1st kind, the number is reduced to 18 with 
every order being present.

The improvement by the freeform surface in this 
system is only a factor of 4 (biconic to A-polynomials 
1st kind with biconic). The lack of contribution by every 
second order is also seen in the performance (Figure 6A) 
of the Chebyshev 2nd kind and Monomials. Interest-
ingly, although the final performance is similar, the 

freeform sag contribution (Table 3D) is not only differ-
ent in shape but also in absolute values. A resemblance 
in the surfaces can be seen for the outer boundary, but 
the center is completely different, which means with 
the minimal number of degrees of freedom, the two 
descriptions choose two different paths in the optimi-
zation, with similar performance but different surfaces. 
The performance of the system can be improved better 
by Zernike Fringe, Q-polynomial, and A-polynomials 1st 
kind over the orders. However, the Q-polynomial lacks 
the correction ability here compared with the Zernike, 
which results in a slightly worse result over the orders. 
On the other hand, the A-polynomials 1st kind has 
slightly better results for higher orders. The difference of 
the final performance is relatively small, like the differ-
ence of the freeform sag contribution between the three 
descriptions, which is based mainly on higher-order 
contribution.

The impact of the basic shape on this double-plane 
symmetric system can be seen in Figure 6B. Over the 
orders and for all three descriptions, the difference is 
a factor of 2, which means that the correction for the 
system contains very high-order astigmatism, which 
cannot be compensated by the polynomial setup to the 
14th order.

As discussed before, the performance of the Monomi-
als, Chebyshev 1st kind, Chebyshev 2nd kind, and Leg-
endre lacks the ability of correction due to the extremely 
reduced number of parameters and orders. The freeform 
sag contribution of Chebyshev 1st and Legendre have, 
hereby, more resemblance with the Monomials, contrary 
to the Chebyshev 2nd, which have much more similarities 
with the Zernike Fringe, Q-polynomial, and A-polynomi-
als 1st kind. Despite the reduced degrees of freedom, the 
descriptions tend toward different paths, and specifically, 
the Chebyshev 2nd end up with the similar shape like the 
Zernike Fringe, with a completely different path to this 
minimum.

4.5   Comparison

The systems show an improvement from a factor of 4 up to 
45 when using a freeform for the correction, depending on 
the system. Moreover, the differences in the final results 
by the different descriptions correspond to the averaged 
rms spot radius over the fields for the system (Table 3). 
A comparison of the freeform sag contribution by each 
description between the investigated systems is not rea-
sonable, as this is highly dependent on the overall system 
specification and other surface parameters.
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Figure 6: Anamorphic system: (A) performance of the main rep-
resentations (all with biconic basic shape), (B) impact of different 
basic shapes for the performance of polar descriptions, (C) compari-
son of Cartesian descriptions (all with biconic basic shape).
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Table 3: Averaged rms spot radius over all fields (ASRF), peak-valley of sag contribution by basic shape (PVBS), and sag contribution by the 
deformation terms for freeform surface of each system by each description with biconic basic shape (sag values given in mm).

A) Yolo B) TMA C) HMD D) Anamorphic system

Improvent factor 25 8 45 4
Airy radius 0.88 μm 4.22 μm 7.14 μm 1.29 μm

Monomials

 PVBS 0.42 mm 1.34 mm 24.1 mm 0.79 mm
 ASRF 3.28 μm 7.26 μm 10.60 μm 20.79 μm

Chebyshev 1st 
kind

 PVBS 0.45 mm 1.28 mm 1.95 mm 0.81 mm
 PVBS 2.24 μm 8.68 μm 4.70 μm 24.47 μm

Chebyshev 2nd 
kind

 PVBS 0.45 mm 1.15 mm 2.69 mm 2.01 mm
 ASRF 1.92 μm 16.37 μm 5.24 μm 21.16 μm

Legendre

 PVBS 0.45 mm 1.22 mm 2.00 mm 0.67 mm
 ASRF 2.02 μm 12.75 μm 4.91 μm 22.33 μm

Zernike Fringe

 PVBS 0.23 mm 1.08 mm 2.85 mm 3.59 mm
 ASRF 3.28 μm 12.48 μm 4.27 μm 15.36 μm

Q-polynomial

 PVBS 0.22 mm 1.04 mm 3.92 mm 3.86 mm
 ASRF 3.39 μm 11.23 μm 3.63 μm 17.69 μm

A-polynomials 
1st kind

 PVBS 0.28 mm 1.01 mm 2.76 mm 3.21 mm
 ASRF 2.30 μm 10.23 μm 4.31 μm 11.69 μm
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5   Conclusion
We investigated in this paper four different reflective, 
refractive, and catadioptric systems representing typical 
applications for freeform surfaces with different symme-
try, FOVs, F-numbers, and separation of field bundles, as 
well as different domains for the freeform surfaces. Out of 
the broad range of freeform descriptions we presented in 
part I of the publication [1], we chose seven to represent 
the possible combinations of domain and orthogonality, 
as well as different weightings over the domain.

Generally, it can be said that freeform surfaces can 
improve the system tremendously with only one sophis-
ticated surface. Crucial for the correction of the aberra-
tion in this system and final performance is how good 
the description is able to represent the needed correction 
and how to establish the initial system. In reality, ques-
tions regarding sensitivity and manufacturability are also 
important and must be considered.

The investigated systems, diverse as they were, 
showed a very similar behavior: the outer boundary was 
comparable for all descriptions, and it has a sufficient 
correction impact. For a better correction, the center part 
of the surface was of more importance. Generally spoken, 
the effect of the domain on the results is minimal. On 
the other hand, the effect of the defining grid for the 
description is of much higher influence. Additionally, 
the higher-order contributions by the individual repre-
sentations made the final difference. Nevertheless, the 
variation of the different descriptions was not as strong 
as might be expected. Except for the Monomials in one 
case, the worst result was less than a factor of 2 than the 
best. Additionally, the aperture of the freeform surface 
and description did not influence the results at all. The 
impact of the orthogonality was only partly seen in the 
result with faster convergence over the orders by some of 
the sets. The greater impact, nevertheless, can be seen in 
the convergence over the 300 cycles within one order. The 
convergence speed is much higher for orthogonal polyno-
mial sets than for non-orthogonal (Monomials), as shown 
in a previous publication [8]. Another important aspect 
is the basic shape, which to some extent has an even 
greater impact on the final performance than the choice 
of description itself. With systems suffering from astig-
matism, a more sophisticated basic shape like a biconic 
can reduce the number of additional needed freeform 
parameters to a third to represent the same system or 
improve the system by a factor of 2 with the same number 
of freeform terms.

This leads to the question, ‘How many representa-
tions do I really need?’

This question is not easy to answer. Thinking simply 
on the final result from each of the descriptions we pre-
sented should be sufficient. Nevertheless, there are more 
detailed aspects to consider. The Chebyshev 1st/2nd kind 
and Legendre have only about half of the parameter 
number of the Zernike Fringe set, for example, and can 
reach, in most cases, a similar result. Contrary to this, 
when it comes to higher-order correction, the Zernike 
Fringe, Q-polynomial, or A-polynomial 1st kind are more 
beneficial.

For data exchange and manufacturing, descriptions 
with a polynomial structure are preferred. However, as the 
projection factor for Q-polynomial and A-polynomials 1st 
kind causes these descriptions to not be real polynomials 
any more, this can be a disadvantage for later processes. 
On the other hand, the projection factor offers the oppor-
tunity of tolerance directly with the coefficients, which is 
a huge advantage.

Deciding on a sufficient description is, therefore, 
highly dependent on the further process with the system, 
but to cope with a high number of possibilities, the follow-
ing descriptions are highly recommended:

 – Zernike Fringe with biconic basic shape: spatial 
orthogonal description with fast convergence, simple 
data transfer for manufacturing, easy access to aber-
rations (implemented in most of the commercial opti-
cal design software).

 – Q-polynomial or A-polynomials 1st kind with biconic 
basic shape: gradient orthogonal description with 
fast convergence, for tolerancing: easy access to 
 tolerancing with the coefficients (not yet imple-
mented  in most of the commercial optical design 
software).

 – Chebyshev 1st kind with biconic basic shape: spatial 
orthogonal description with small number of para-
meters, easy data transfer for manufacturing (not 
broadly implemented in most of the commercial opti-
cal design software).

We could reduce the number of necessary descriptions to 
these three representations. Nevertheless, a prediction of 
the ‘best shape’ of correction in the form of the optimal 
number, position, and even the order of correction of 
the freeform surfaces is still not known and needs to be 
investigated. With the extension of the existing aberration 
theory above the sixth order, it may be possible to solve 
this problem in the future.
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