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Abstract: Optical systems can benefit strongly from free-
form surfaces; however, the choice of the right surface 
representation is not trivial and many aspects must be 
considered. In this work, we discuss the general approach 
classical globally defined representations, as well as the 
basic mathematics and properties of the most commonly 
used descriptions and present a new description devel-
oped by us for describing freeform surfaces.
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1   Introduction
In recent years, great efforts can be observed in the com-
munity of optical design to use the additional degrees of 
freedom afforded by freeform surfaces in optical systems. In 
particular, there are several benefits of using these currently 
available technologies for mirror systems without central 
obscuration and with multifunctional approaches for more 
compact systems. If commercial software tools are consid-
ered, only very limited support of freeform surface systems 
is currently found. In particular, one important question 
at the beginning of the concept and design of a freeform 
system is the decision how to mathematically describe the 
surface itself. If the development of an optical system with 

freeform surfaces is considered, not only the optical design, 
but also the mechanical design, the manufacturing, and 
the assembly of the component inside the whole system are 
important. Experience in practical work shows that a fab-
ricated surface with special local structures on it and the 
characteristic often periodic perturbation due to the tooling 
needs for a separate description supporting these proper-
ties [1]. Furthermore, some proposals in literature are using 
locally described mathematical functions like wavelets [2], 
splines [3], or radial basis functions [4, 5] for the layout of 
the surface. In this work, we focus on the design phase. 
Therefore, only functions that are globally defined on the 
computational area inside the boundary are considered.

From the viewpoint of practical work and efficiency, 
there are several criteria for this selection. The surface 
representation should allow for a fast raytrace, the par-
ametrization should be flexible with a small number 
of parameters, and the optimization of the parameters 
should converge quickly with a good result in the design 
process. Additionally, the availability in the commercial 
software and the access to tolerancing and manufactur-
ability is of importance.

Two possibilities that are easy to implement are a 
simple two-dimensional (2D) Taylor expansion into mono-
mials in the transverse coordinates x and y. This simple 
approach suffers from some drawbacks, namely, that 
these representations are non-orthogonal, and there is 
no easy link to the classical definitions of primary aber-
rations. Another opportunity, which is often found, is the 
use of Zernike polynomials [6]. These functions are in 
widespread use in optics for the characterization of wave-
front aberrations for circular pupils [7] and also for very 
special pupil shapes like hexagonal, rectangular, circular, 
and ring sections and ellipses [8–11].

The Zernike polynomials have the advantage of a 
direct link to the aberration-correcting impact of the free-
form surfaces. A drawback of this approach is the restric-
tion onto circular symmetric boundaries. In contrast to 
the monomial representation, Zernike functions have the 
great benefit to be orthogonal on the area of definition. 
This improves the numerical algorithms and the perfor-
mance of optimization in the design process [12].
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As the fundamental work of Forbes [13], it is known 
that there are two different possibilities to construct 
orthogonal surfaces. The classical property of orthogonal-
ity in the spatial domain is comfortable if wave aberra-
tions are the criterion to optimize the system. On the other 
hand, the expansion functions can be made orthogonal 
in slope. This is more adapted to a correction of the trans-
verse aberrations as they are linear relative to the gradient 
of the wavefront. Furthermore, in gradient orthogonal pol-
ynomials, the expansion coefficients are directly related 
to the slope of the surface and, therefore, can be used for 
the tolerancing of freeform surfaces with great success. 
Until now, the Forbes approach is found in literature only 
for a circular symmetric geometry of the surface boundary 
and circular symmetric basic shapes. If the shape of the 
light footprint has a pronounced elongated geometry, it 
is, therefore, an advantage to reconstruct the basic Forbes 
polynomials to fit a rectangular shape of the boundary. 
Moreover, Forbes introduced the concept of the ‘best-fit’ 
shape, which gives direct access to the departure from the 
basic shape. This approach is specifically beneficial for 
tolerancing and manufacturing aspects.

In the mathematical theory of orthogonal functions, 
one important aspect is the selection of the weight-
ing function in the overlap integral of two functional 
terms. The influence of the weighting function governs 
the accentuation of the regions inside the area of defi-
nition. Typically freeform surfaces are used to correct 
higher-order aberrations. These higher orders are mostly 
observed far from the optical axis or central ray. There-
fore, it is logical to implement a weighting function that 
emphasizes the outer regions of the surface. From a 
physical optical point of view, the impact of correcting 
deviations of a surface on the point spread function have 
to be weighted with the intensity of the light distribution 
[1]. The best choice of a weighting function, therefore, 
is the exact analytical footprint of light on the surface 
under consideration.

As the surfaces are 2D, one more option to consider 
in selecting the correct expansion function is the ques-
tion of the decomposition of the functions. They can be 
constructed as a full 2D function, orthogonal over the area 
of definition, or they can be built as a Cartesian product 
of two 1D functional systems in x and y separately. The 
special properties of the functional products in the second 
case are sometimes critical, due to the zero lines paral-
lel to the x- and y-axis, which leads to a failure of every 
second order in case of double-plane symmetry and is not 
able to represent most of the lower-order aberrations like 
both coma terms and one of the two astigmatism terms. 
Therefore, the former method is preferred.

Another aspect is the normalization of the basic area 
according to the maximum dimensions. This creates 
expansion coefficients without changing units, and the 
convergence of the series can be observed directly in the 
descending absolute values of the coefficients. Further-
more, all algorithmic computations are more robust if this 
normalization is used.

In the present work, the main approaches of describ-
ing freeform surfaces are discussed from a more mathemat-
ical point of view. The possibilities known from literature 
are discussed as well as some new definitions according 
to the aforementioned opportunities. In Section  2, the 
fundamental approach to describe freeform surfaces in 
optics is explained, and the various options considering 
the basic shape, the boundary of the supported domain, 
and the projection direction are discussed. In the third 
section, the development and properties of the classical 
polynomial description are described. Section 4 gives a 
detailed overview of the specific description which is, in 
particular, used in optical system freeform surfaces with 
great benefit and introduces the newly defined A-polyno-
mials. Finally, a conclusion summarizes the main findings 
and recommendations.

The consequences and recommendations for practi-
cal design work are discussed in a forthcoming paper by 
comparing the properties of the possible surface represen-
tations in a benchmark, applying the surfaces for different 
system types under various conditions.

2   General approach for freeform 
descriptions

A simple way to describe a freeform surface is a modular 
decomposition into two major parts: The so called basic 
shape, e.g. sphere, conic, or biconic incorporates mainly 
the quadratic contributions around the axis and are fixing 
the parabasal behavior of the surface. This part is com-
plemented by a higher-order term, which describes addi-
tional deformations and is responsible for the aberration 
correction. The second term is typically much smaller 
than the basic shape and contains the freeform contribu-
tions (see Figure 1 for illustration).

The deformation terms can generally be described as 
a sum over a polynomial expansion set with a prefactor. 
The prefactor is defined as the boundary function ( , )A x y  
and a projection factor P(x, y). The function ( , )A x y  con-
trols the values of the deformation terms on the bound-
ary line of the surface. The prefactor allows, in particular, 
for steep surfaces to orient the additional sag correction 
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along the local normal of the surface and not simply along 
the z-axis. This decomposition is formally expressed

 
basic

( , )( , ) F( , ).
( , )

A x yz x y Z x y
P x y

= + ∑
 

(1)

Here, the boundary function is formulated with the 
normalized coordinates according to

max max/  and / .x x x y y y= =

2.1   Basic shape

The basic shape contains the second-order contribution 
of the freeform surface and is the dominating part in 
the neighborhood of the z-axis. The simplest option is a 
sphere, with only one degree of freedom (radius):
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In the case of the Q-polynomials of Forbes [14], the 
sphere is modified to a so-called ‘best-fit-sphere’. Here, 
the basic shape is defined as a sphere by the center and 
the circular boundary of the surface
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Later, this concept was further developed for a ‘best-
fit-conic’ [15].

Most descriptions are used with a circular symmetric 
conic
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where c describes the curvature of the conic section in the 
vertex point and κ is the conical constant of the surface. 
In particular, in the case of mirror systems, one of the 
real problems is the occurrence of a large astigmatism for 
larger incidence angles of the axis ray. This can be taken 
into account in the second-order approximation by a non-
spherical surface, and the corresponding large terms in 

the deviation expansion can be avoided. This is an advan-
tage for the design and the convergence of the correction 
part of the freeform surface, from the viewpoint of manu-
facturing, where the non-circular contribution plays a 
major role. In the case of a biconic as a basic shape, an 
astigmatic behavior can be included. This is, in particular, 
an advantage if mirror systems are considered with large 
incidence angles of the axis ray
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2.2   Boundary function

As already mentioned, the boundary function has the task 
to define or restrict the values of the additional deforma-
tion terms on the boundary of the surface. This is not a 
necessary condition, but in many practical cases, the 
behavior at the edge is then quite better controlled. In 
reality, the footprint of light on the surface is mostly not 
perfectly matching the ideal geometrical boundary. An 
additional overflow can help to get some flexibility for 
the mechanical design and the mountings. Furthermore, 
a clearly defined boundary value simplifies the task to 
relate the surface to the necessary marks and fiducials to 
locate and orient the surface inside the system. Extrapo-
lating the polynomial expansions beyond the optically 
used diameter is an underestimated problem in practice. 
For simplicity, the boundary curve is selected by simple 
geometrical shapes. Table  1 gives some examples for 
boundary functions ( , )A x y  to fix the deformation values 
on the boundary and in the center, respectively.

Figure 1: Decomposition of sag of a freeform surface (left) into the 
basic shape (middle) and higher-order deformations (right).

Table 1: Typical boundary functions ( , )A x y  or ( )A r  in freeform 
surface descriptions.

Boundary function

1   Uniform, no special constraints 
(unit circle/square)

 

− 2 2(1 ) r r   Center and boundary forced to 
be zero (unit circle)

 

+2 2( )x y   Center forced to be zero (unit 
square)
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2.3   Projection factor

The projection factor P(x,  y) has the task to define the 
direction of the additional correction of the deviation term 
onto the basic shape. Usually, the intention is to have a 
small correction contribution of higher orders. When the 
freeform surface is strongly bended, and the slope of the 
surface against the z-axis is large, the projection of a small 
change in the surface profile onto the axis direction gener-
ates a large difference. This is not really comfortable, and 
therefore, a second opportunity measures the deviation 
along the local surface normal vector of the basic shape 
surface. These two geometries are depicted in Figure  2. 
The same consideration is already well known in the case 
of aspheres [16]. If this additional prefactor is included in 
the representation of the surface, as is seen in equation 
(1), the expression is no longer a polynomial. In particu-
lar, this has the consequence that an exact conversion 
between different representations is no longer possible, 
and any conversion should take into account the desired 
accuracy and the necessary number of terms.

For surface descriptions without a projection factor, 
the deformation is independent of the basic shape. When 
a projection factor is included, it links the basic shape and 
the deformation.

If α is the angle between the local normal and the 
z-axis, the projection factor is given by cos(α). It is now a 
question of the selected basic shape to formulate the cor-
responding projection functions in Cartesian coordinates. 
The general expression is given by equation (6), and the 

formulas for a sphere and a circular symmetric conic are 
given in equations (7) and (8), respectively:
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This is only valid for slowly varying departures (i.e. 
slopes).

3   Structure of the polynomial set

3.1   Development

According to the discussion in the Introduction, there are 
several aspects, possibilities, and criteria to select and 
generate a function system for the deformation correction 
term. Mathematically, the geometry of the supported area, 
the weighting function, the selected orthogonality, as well 
as the choice of the initial shapes as a starting point of 
the set are of importance. As experience shows that an 

Freeform
surface

Spoly(r)
Correction

perpendicular
to basic shape

surface

Zpoly(r)
ZBS(r)ZBS(r)

rrA B

zz

Basic
shape

Basic
shape

Zpoly(r)=Spoly(r)/COSα

Freeform
surface

Correction
along z

Figure 2: Direction of the correction term: (A) parallel to the z-axis, (B) perpendicular to the local surface orientation.
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orthogonal set of function is quite an advantage[8], the 
algorithm for generating the series of functions is after the 
selection of the criteria above the most important step. The 
classical Gram-Schmidt method is usually used to guaran-
tee the orthogonality of functions with a different index. 
For the detailed algorithm, the reader is referred to corre-
sponding textbooks [6]. A special question is the selection 
of the basis function f1 and f2, which define the functional 
shape of the polynomial set. A second point that should 
be noticed is the special case of a slope orthogonality. In 
this case in the classical method, the calculation of the 
scalar product between two functions fn and fm must be 
replaced by

 

,
w( , ) [A( , ) ( , )] [A( , ) ( , )]  .

n m

n m

f f
x y x y f x y x y f x y dx dy

< > =
⋅∇ ⋅∇∫∫

 

 (9)

Here, w( , )x y  describes the weighting function, and 
the integration is performed over the area of support.

3.2   Properties

In this work, several approaches for the polynomial set 
are investigated. If a circular symmetric support area is 
selected, the Zernike approach is the most frequently used 
representation. Thus, it is included in the Fringe conven-
tion in this study. The famous Q-polynomials of Forbes are 
also defined on a circular area, but have the advantage of 
a slope orthogonality.

For Cartesian support areas, monomials are a very 
simple non-orthogonal opportunity. Another option is 
the selection of spatial orthogonal Chebyshev polynomi-
als. The Chebyshev polynomials of the first kind have a 
weighting function, which grows toward the boundary. 
The second-kind Chebyshev polynomials instead have a 
weighting growing toward the center. Also, an option is 
the Legendre polynomials with a uniform weighting. The 
newly developed A-polynomials use a rectangular bound-
ary, but follow the basic idea of the Q-polynomials.

3.3   Sorting

By definition, the functional systems have two ordering 
indices, describing their order and variation in x and y, 
respectively. Very often, a 2D matrix scheme is cumber-
some, and therefore, a 1D vectorial scheme is preferred 
and easier from the viewpoint of the handling. If this 
mapping of the indices is done, a definition of the rule of 

conversion is necessary. From the optical point of view, it 
is most beneficial if with increasing index value the cor-
responding order or spatial frequency of the correcting 
function is growing. In this case, the decision of fixing 
the maximum index makes sense and fixes the needed 
largest order of correction. This scheme is realized in the 
Fringe convention of the Zernike polynomials. If the series 
is truncated at square numbers for Zernikes in Fringe con-
vention (e.g. 1, 4, 9, 16, ...) and triangle numbers (e.g., 1, 
3, 6, 10, 15, …) for monomials, Chebyshev, and Legendre 
polynomials, exactly a full higher order is included in the 
description. For Zernike and A-polynomials with nine 
terms, the primary aberrations of the third order in lateral 
deviations are covered; with 16 terms, the fifth order is 
included, and so on. Unfortunately, this rule is not easy 
to follow in the case of Cartesian polynomial sets. Table 2 
shows as an example the mapping matrix between the 1D 
running index j between four different sets of polynomi-
als with the 2D indices n and m. In the case of Cartesian 
representations, n and m are responsible for the x and y 
directions, respectively; in the case of the polar descrip-
tions, n describes the radial and m the azimuthal behav-
ior. Tables 3 and 4 visualized the corresponding shapes of 
the functions.

4   Surface descriptions
In this section, the explicit mathematical terms as well 
as some examples and properties are summarized for the 

Table 2: Conversion of 2D sorting (m, n) to 1D (j) ‘Fringe’ sorting.

j

 
 

Monomials/
Chebyshev/Legendre 

 
 

Zernike 

m  n m  n

1   0  0  0  0
2   1  0  1  1
3   0  1  −1  1
4   2  0  0  2
5   1  1  2  2
6   0  2  −2  2
7   3  0  1  3
8   2  1  −1  3
9   1  2  0  4
10   0  3  3  3
11   4  0  −3  3
12   3  1  2  4
13   2  2  −2  4
14   1  3  1  5
15   0  4  −1  5
16   5  0  0  6



332      A. Broemel et al.: Freeform surface descriptions. Part I

most important sets of polynomials. The descriptions can 
be divided into the Cartesian- and polar-defined descrip-
tions. For all of the following descriptions, the coordi-
nates of the polynomial set are normalized to the maximal 
dimensions.

First, the Cartesian-defined descriptions are 
described. The properties and lower-order terms can be 
found in Table 3.

4.1   Monomials

Monomials, as mentioned in the introduction, are a simple 
Taylor expansion in x and y with no orthogonolity at all 
and a simple uniform weighting [6]:

 

basic
,

( , ) ( , )

with ,  0, 1 .

m n
mn

m n
z x y Z x y a x y

m n N=

= +

…

∑
 (10)

Table 3: Overview of important properties of Cartesian-defined freeform surface representations.

Surface representation Domain Orthogonality Boundary function Weight function Polynomial set

Monomials Arbitrary None None None

Chebyhshev 2D (first kind) Unit square Spatial 1
− −2 2

1
[1 ][1 ]x y

Chebyhshev 2D ( second kind) Unit square Spatial 1 − −2 2[1 ][1 ]x y

Legendre 2D Unit square Spatial 1 1
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4.2   Chebyshev 2D

The Chebyshev 2D polynomials are Cartesian products of 
1D function Chebyshev polynomials. The resulting set is 
spatially orthogonal on a unit square [6].

The Chebyshev 2D are presented here in the first 
kind:
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wit
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The initial terms of the 1D functions are
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Moreover, the Chebyshev polynomials of the second 
kind are defined similarly as
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Table 4: Overview of important properties of the polar-defined freeform surface representations.

Surface representation  Domain   Orthogonality   Boundary function   Weight function   Polynomial set

Zernike Fringe   Unit circle   Spatial   1   1  

Q-polynomials   Unit circle   Gradient   − 2 2(1 ) r r  
− 2

1
1r r

 

A-polynomials 
(first kind)

  Unit square   Gradient   1   1  

A-polynomials 
(second kind)

  Unit square   Gradient   +2 2(x )y  
− −2 2

1
1 1x y
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The difference between these two is the weighting 
(Table 3), and therefore, the initial terms are
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1

1 1

( ) 1
( ) 2
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U x
U x x
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4.3   Legendre 2D

The Legendre polynomials are similar to the Chebyshev 
polynomials defined as Cartesian products of 1D func-
tions. In contrary to the Chebyshev polynomials, the 
weighting function is uniform over the domain [6].
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The initial terms of the 1D functions are
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Another option is to define the polynomial set in polar 
coordinates. The descriptions using this approach are 
described in the following, and the properties and lower-
order terms can be found in Table 4.

4.4   Zernike

The Zernike polyomials are a spatially orthogonal set, 
which is well known for describing wavefront errors and 
aberrations. The terms are defined in polar coordinates 
and have a constant weighting function [6]. The Standard 
convention is:
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In Table 2, the conversion from the 2D Standard con-
vention to the more convenient 1D Fringe convention can 
be found. The properties and lower-order Fringe terms are 
shown in Table 4.

4.5   Q-polynomials

The previously mentioned Q-polynomials developed by 
Forbes are based on his ‘Mild-Asphere’ approach [13, 14]. 
The gradient orthogonal description, defined for circular 
boundaries, incorporates the concept of the ‘best fit’ basic 
shape, an individual boundary function for the aspheric 
terms and freeform terms, as well as the projection factor 
and a weighting function, which emphasize the center 
and the boundary of the domain.

The Mild-Asphere set (m = 0) is restricted at the center 
and the boundary by the boundary function to achieve the 
‘best fit’ basic shape where the surface sag is only defined 
by the basic shape in these two points. The further devel-
opment of the freeform set (m > 0), called Q-polynomials, 
is only restricted at the center of the domain. Therefore, 
the surface sag at the center of the freeform is still only 
defined by the basic shape, but the boundary incorporates 
freeform contributions. The first terms and additional 
properties can be found in Table 4. The goal of this specific 
boundary function, the projection factor, and the weight-
ing, is the limitation of the slopes, specifically on the 
boundary, to generate a manufacturing-friendly surface.

(bestfitsphere)
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∑
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 1 ,M N… (21)

The representations presented, so far, are showing a 
broad range of defined domain, geometry, orthogonality, 
and weighting. Nevertheless, a description incorporating 
the projection factor, as well as the gradient orthogonal-
ity on a rectangular domain for elongated geometry, is 
missing. Therefore, a new set is developed, called the 
A-polynomials with two versions: the first kind and the 
second kind, only differing in the weighting over the aper-
ture and boundary function.

4.6   A-polynomials

The A-polynomials are a new set, specifically developed 
for rectangular domains. The surface description is based 
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The resulting A-polynomials kept the main structure 
of the Zernike-Fringe set, as well as the polar character. 
Moreover, the order and sorting of the A-polynomials are 
equivalent to the Zernike Fringe set. The similarities can 
be seen in Tables 4 and 5, with the first nine terms of the 
A-polynomial first and second kind in polar expression. 
The advantages by initially using Zernikes, like the direct 
link to the aberrations are still given, but now defined on 
a unit square with the possibility of direct tolerancing. 
Because of the use of a projection factor, the direct conver-
sion into a polynomial is no longer possible.

5   Conclusion
A comprehensive investigation of possible freeform surface 
representations is presented. The criteria of selection are 

on the approach by Forbes, combining a projection factor 
and a gradient orthogonal set for better access to manufac-
turing and tolerancing. Additionally, the basic shape was 
extended to a biconic, to include lower-order astigmatism. 
Because of the adjustment to a rectangular domain and a 
biconic basic shape, a ‘best-fit-shape’ is no longer mean-
ingful. In general, the A-polynomials are described by:
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The previous polynomial sets for rectangular domains, 
like monomials or Chebyshev polynomials or the Q-Leg-
endre [17], are based on Cartesian products of 1D functions 
depending on x and y. As discussed earlier, these descrip-
tions have some drawbacks for design. Therefore, we 
followed the approach of Bray [18] and used the Zernike 
Fringe set. The polar description, defined on a unit circle, 
was hereby converted for a Cartesian grid, and the original 
domain is circumscribed by the definition area of the new 
set, a unit square. The Zernikes will be extrapolated to the 
corners of the unit square.

We developed two sets of A-polynomials: the first 
kind, with no restrictions for the boundary and uniform 
weighting and the second kind, emphasizing the bound-
ary with the weighting function and restricting the center 
with the boundary function.

Both polynomial sets were developed with the Gram-
Schmidt process and the modified relation to ensure slope 
orthogonality:
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The functions fn and fm are hereby the basis function 
of the Zernike Fringe set in Cartesian coordinates.

For the A-polynomials of the first kind, equation (23) 
turns into:
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In contrast, the second kind A-polynomials are devel-
oped with:

Table 5: First terms of the A-polynomials (in polar coordinates).

  First kind   Second kind

1   1  
π

1
2

2   θ
1  cos( )
2
r   θ

π

2  cos( )
5

r

3   θ
1  sin( )
2
r   θ

π

2  sin( )
5

r

4  
−21 3(2 1)

8 2
r  

π
−21 (2 5)

2 3
r

5  
θ21 3  cos(2 )

4 2
r   θ

π

21  cos(2 )
10

r

6  
θ21 3  sin(2 )

4 2
r   θ

π

21  sin(2 )
5

r

7  
θ−31 1 (3 4 )cos( )

4 3
r r  

θ
π

−38 (25 56 )cos( )
5 4749

r r

8  
θ−31 1 (3 4 )sin( )

4 3
r r   θ

π
−38 (25 56 )sin( )

5 4749
r r

9  
− +4 21 21(15 28 9)

32 31
r r  

π
− +4 21 (16 58 61)

2 105
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discussed, and the meaning of the basic shape term is 
explained. In particular, the description of the second-
order astigmatic effects in the case of mirror systems is 
preferred to be included in this extra term. The meaning of 
the corresponding differences considering the basic shape, 
the projection factor, and a function controlling the bound-
ary behavior as well as the various opportunities in the 
selection of the polynomial set is described. In particular, 
the spatial or slope orthogonality as well as the geometry 
of the supporting domain and the coordinate basis is dis-
tinguished. Moreover, a new set – the A-polynomials – is 
introduced.

In a forthcoming publication, the corresponding 
cases and opportunities are evaluated and compared from 
a practical viewpoint within a benchmark of different 
optical system types. Corresponding recommendations 
and experiences for the practical tasks of a designer are 
given there.
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