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Abstract: Sensor resolution of 3D time-of-flight (ToF) 
outdoor-capable cameras is strongly limited because 
of its large pixel dimensions. Computational imaging 
permits enhancement of the optical system’s resolving 
power without changing physical sensor properties. 
Super-resolution (SR) algorithms superimpose several 
sub-pixel-shifted low-resolution (LR) images to over-
come the system’s limited spatial sampling rate. In this 
paper, we propose a novel opto-mechanical system to 
implement sub-pixel shifts by moving an optical lens. 
This method is more flexible in terms of implementing 
SR techniques than current sensor-shift approaches. 
In addition, we describe a SR observation model that 
has been optimized for the use of LR 3D ToF cameras. 
A state-of-the-art iteratively reweighted minimization 
algorithm executes the SR process. It is proven that our 
method achieves nearly the same resolution increase 
as if the pixel area would be halved physically. Resolu-
tion enhancement is measured objectively for amplitude 
images of a static object scene.

Keywords: 3D ToF photonic mixing device (PMD) camera; 
lens-shift design; multiframe image processing; super-
resolution; three-dimensional imaging.

1  Introduction
Fast and robust reconstruction of objects in three dimen-
sions is highly demanded. Not only autonomous systems 
like robots and vehicles but also production lines in 
industrial manufacturing or multimedia applications in 

consumer electronics require additional information in 
the third dimension. Time-of-flight (ToF) cameras benefit 
fast and robust three-dimensional (3D) data acquisition 
in real time by measuring the running time of an emitted 
signal for each pixel at the same time [1]. However, a 
considerable limitation is their low sensor resolution 
resulting in loss of detail at further distances. Reducing 
pixel size physically decreases its sensitivity and, conse-
quently, the accuracy and distance range of a ToF system. 
Computational imaging permits resolution-enhancing 
techniques without changing the physical sensor proper-
ties such as pixel and sensor size. Super-resolution (SR) 
superimposes several sub-pixel-shifted low-resolution 
(LR) images to increase spatial resolution significantly 
[2–4]. Shifting the image sensor is an intuitive way of 
implementing sub-pixel shifts [5]. Adversely, the room for 
actuators has to be considered from the very beginning of 
designing the camera. The major focus of this paper is the 
introduction of a new approach that allows subsequent 
implementation of SR for nearly every type of digital 
camera by redesigning the imaging optics. Our method 
shifts a lens to force a sub-pixel shift on the image plane 
of a large pixel photonic mixing device (PMD) sensor. We 
then use a state-of-the-art iteratively reweighted SR algo-
rithm [6] to reconstruct high-resolution amplitude and 
distance images. SR results are evaluated by the slanted 
edge method [7, 8] to determine the system’s real optical 
resolving power. Evaluation is focused on amplitude 
images as this image type can be used for classical object 
recognition applications and profits most of resolution 
enhancement. Our proposed lens-shift approach is com-
pared with a conventional sensor-shift method. Gradi-
ent edge descent method determines spatial resolution 
enhancement in both amplitude and distance image.

2  �Related work
PMD cameras belong to ToF systems as they measure the 
running time of an inherent signal by periodically emit-
ting amplitude-modulated near-infrared (NIR) radiation. 
This is reflected by the objects’ surface, and the distance 
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is determined by calculating the phase difference of both 
signals [9–12]. Besides the depth information, a PMD 
sensor generates intensity data using the measurement 
signal’s amplitude information. PMD sensors output a 
distance image and amplitude image at the same time. 
Lange describes the PMD’s working principle in his dis-
sertation in detail [12]. PMD cameras have to separate 
their measurement signal from surrounding light for 
each pixel to reconstruct their modulation frequency. 
A high amount of extraneous light saturates the pixels 
and leads to a decrease in accuracy or pixel failures [13]. 
Reducing the pixel size physically makes it more vulner-
able to saturation. To prevent this, the pixel size must 
be sufficiently large. In outdoor scenarios, it is difficult 
to reconstruct the inherent modulation signal. First, in 
the solar spectrum, there is a high amount of IR radia-
tion that saturates the pixels faster than in indoor envi-
ronments. Second, according to the inverse square law, 
intensity is inversely proportional to the square of the 
distance. At large object distances, the measurement 
signal becomes weaker.

Increasing the sensor’s spatial resolution without 
changing its physical properties is already well-known 
from 2D imaging [2–6, 14–17]. Computational imaging 
superimposes an image sequence of degraded LR images 
via SR algorithms. It addresses reconstruction of high 
spatial frequencies in continuous object scenes. There-
fore, several LR images are sampled in sub-pixel accuracy 
and registered on a virtual high-resolution sensor grid 
[3, 4, 15]. At the expense of temporal resolution, compu-
tational imaging enhances spatial resolution virtually. 
Various scientific surveys explain the principle of SR in 
more detail [2–4, 15].

Current scientific work addresses the resolution 
enhancement of ToF cameras in different ways. Fusion 
of two or more range and image acquisition systems [18, 
19] expands information density of the object scene. 
However, this significantly increases the camera’s size 
and cost. Single-frame SR like deconvolution removes 
optical lens blur [20] by solving a deconvolution problem. 
This method is strongly limited as no further object infor-
mation is captured especially for LR sensors when the 
optical resolving power overcomes the sensor’s pixel 
resolution. Multi-frame SR was adapted to ToF cameras 
in Refs. [21, 22]. They superimpose several depth images 
according to Farsiu’s fast and robust SR technique [23]. 
They capture images from slightly displaced viewpoints, 
by moving the whole camera. This requires large move-
ments of a heavy camera, which seems unsuitable for 
practical applications. Most of the papers describe spatial 
resolution enhancement of depth images.

3  �Methodology
In this paper, we apply SR on the mobile PMD sensor O3M151 from 
ifm electronic GmbH, Essen, Germany. Its sensor resolution is of 
64 × 16 PMD pixels, and its immunity to extraneous light reaches 
up to 120 klx [24]. This makes it suitable for outdoor applications, 
even in bright daylight. SR reconstruction superimposes a LR image 
sequence of four LR images according to Köhler’s SR algorithm [6], 
which is implemented in the Multi-Frame Super-Resolution Tool-
box (version 1.6.1, Erlangen, Germany) [25]. This SR algorithm over-
comes Farsiu’s robust SR algorithm [23] for 2D image acquisition as 
demonstrated in Ref. [6]. As we focus on amplitude images in this 
paper, we expect a corresponding behavior in the increase in lat-
eral resolution. For the reconstruction process, we assume a point 
spread function (PSF) with a standard deviation of 0.3 as it provides 
the best SR results. Image upscaling is set by a factor of two. Motion 
parameters between successive LR images are known as they are 
shifted about half a pixel size in horizontal and vertical direction 
relative to each another. Motorized actuators move a lens trans-
versally to the optical axis, while micrometer screws are used for 
the sensor-shift method. Each LR image is shifted about ± 0.25 pix-
els in the horizontal and vertical direction relative to the centered 
lens position. The LR image sequence encircles the centered lens 
position. A confined space of 2 m × 4 m was completely covered in 
light-absorbing Duvetyne fabric to minimize errors from multi-path 
interference [26, 27] and ensure constant measuring conditions for 
all measurements.

4  �Super-resolution observation 
model for low-resolution 3D ToF 
cameras

Digital imaging can be interpreted as discretizing 
continuous object scenes. The number of sampling 
points corresponds to the number of pixels. Although, 
approximation of continuous object scenes gets better 
with higher sampling rate, lens aberrations and noise 
degrade image quality. SR overcomes such limited dis-
cretization and degradations by superimposing mul-
tiple samples. According to the general observation 
model [3, 15, 28], one image is captured in full sensor 
resolution, which represents the ground truth image. 
It is assumed to be free of aliasing if optical resolving 
power is below the sensor’s Nyquist frequency. Assump-
tion models for motion, blur, down-sampling, and noise 
degrade and downscale the ground truth image to get 
a virtually degraded LR sequence. Aliasing occurs after 
down-sampling the images because optical resolution 
then exceeds the imager’s resolution. SR reconstructs a 
high-resolution image by inverting that imaging model. 
SR results are compared with the initial ground truth 
image [3, 4, 15].
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The classical SR observation model is unsuitable 
for image sensors with low spatial resolution as further 
down-sampling worsens the quantization. Our proposed 
SR observation model for LR ToF cameras contains two 
SR reconstruction branches (see Figure 1), the amplitude 
image, and the distance image. Optics transfer the con-
tinuous object scene on the image sensor and degrades 
the image by blurring effects, i.e. optical blurring, motion 
blurring, and sensor blurring. The sensor discretizes the 
continuous signal corresponding to the sensor resolution 
and degrades it according to its noise behavior, depicted 
as additive noise in Figure 1. In order to implement sub-
pixel shifts, motion has to be implemented. Motion must 
be available either in the object or image plane to realize 
sub-pixel shifts. Based on a sequence of n sub-pixel-
shifted LR images, SR algorithms reconstruct high-resolu-
tion estimations for both amplitude and distance image 
separately. SR results are of higher discretization and 
better quality. However, improvements are limited mostly 
due to the system’s blurring behavior.

5  �Measurement setup 
and evaluation

Generally, SR techniques are evaluated by comparing the 
SR result with the ground truth image. Quantitative eval-
uation is then performed by determining the peak signal-
to-noise ratio (PSNR) [2, 6, 14]. As we do not have a highly 

resolved ground truth image, this evaluation method is 
not feasible. Instead, we determine the system’s real 
optical resolving power by measuring the modulation 
transfer function (MTF) before and after applying SR. 
One common method is to use a slanted edge target as 
proposed in the ISO 12233 standard and described in Ref. 
[7]. Our measurement procedure is explained in more 
detail in Ref. [8]. For evaluation, we use Burns’ Matlab 
Toolbox sfrmat3 [29]. Spatial resolution is specified in 
line pairs per millimeter (LP/mm). Determining spatial 
frequency response requires a defined target. Two areas 
of different brightness are separated by a slanted edge. 
For PMD cameras, contrast transition can be achieved 
by varying the reflectance in the amplitude image or dis-
tance deviation in the distance image. In order to reduce 
measurement errors, contrast between both partial areas 
should be more than 20% [30]. This makes it less suitable 
to apply the slanted edge method on distance images, as 
a large measurement setup has to be implemented to 
obtain accurate results. Therefore, we use a flat surface 
consisting of two regions of different reflectance, real-
ized with black and white cardboards. Both areas are 
separated by a slanted edge at an angle of 10°. The tar-
get’s area is 600  mm × 600  mm; measurement distance 
is 3.5  m. Resolution enhancement is determined from 
amplitude images only for horizontal direction as the 
slanted edge is oriented in vertical direction. The result 
of our lens-shift approach is compared to a common sen-
sor-shift method.

Spatial resolution enhancement can be determined 
on the basis of amplitude data and distance data. The gra-
dient of contrast transition is a measure for the system’s 
lateral resolution. To determine the resolution enhance-
ment in both image types, the target needs varying reflec-
tance as well as distance differences at the same edge. 
Therefore, we have defined an object scene consisting 
of four cubes, which differ in size, reflectance, and ori-
entation. SR outputs consist of four LR images, whose 
sub-pixel shifts were realized according to the lens-shift 
method. Gradients are determined in both image types at 
the same position for each LR sample and the SR results. 
Maximum and minimum intensity values are determined 
to eliminate outliers. For amplitude images, it is 10% 
below the highest intensity value and 10% greater than 
the lowest value. For distance images, these limits are of 
5% below or beyond the highest or lowest intensity values. 
If there is an increase in resolution, contrast transition in 
the SR result occurs over smaller spatial length, and its 
gradient is steeper. Resolution enhancement or increase 
in the slope should be the same for both image types as 
their pixel size is reduced equally.

LR image acquisition

Sequence of n
sub-pixel shifted

LR images

SR reconstruction

Discrete SR
amplitude image

Discrete SR
distance image

SR reconstruction

Scene motions

Blur
Continuous
object scene

Additive
noise

SR result

Figure 1: Super-resolution observation model for low-resolution 
3D Time-of-Flight sensors. An optical system discretizes continuous 
object scenes due to a limited number of pixels and degrades it by 
blurring, noise and motion. Multi-frame super-resolution recon-
structs higher spatial frequencies limited by the system’s blurring 
behavior. For ToF cameras, this procedure has to be applied to both, 
the amplitude and distance images.
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6  �Opto-mechanical design
To obtain sub-pixel-shifted images, active or passive 
motion can be used. Active sensor motion via motor actu-
ators needs additional space inside the camera housing. 
Its advantage is that the travel distance is known, and 
sub-pixel offset can be predicted precisely. The quality 
of SR results depends on how well the sub-pixel posi-
tion is known [17]. For passive motion, like global and 
local motion in the object scene or vibration and tremors 
in the sensor’s environment, sub-pixel offsets have to 
be estimated by an additional algorithm. Our suggested 
lens-shift design provides predictable sub-pixel shifts 
by transversal movements of an optical lens. There is 
no need for additional space around the image sensor 
and further shift-estimating algorithms. Therefore, each 
type of camera can be extended by SR techniques. Our 

lens-shift approach significantly increases flexibility, 
as it does not affect the sensor housing. Furthermore, 
it can be integrated, even after the camera has been 
manufactured. In summary, it can be imagined as an 
inverted optical image stabilization (OIS). As OIS shifts a 
lens in order to counteract camera movements, we redi-
rect the beam path in a defined manner. This is done 
to force a beam deflection causing a shift on the image 
plane similar to moving the sensor. Nevertheless, some 
properties must be considered. Moving the lens affects 
aberrations of the optical system. If there is distortion, 
sub-pixel shifts are not consistent over the entire sensor 
area. Optical resolving power must overcome the sensor’s 
Nyquist frequency to achieve aliasing, which is important 
for SR reconstruction [5].

For ifm’s O3M151 PMD sensor, we have designed a 
cost-efficient Petzval lens by using stock lenses. It con-
sists of two plano-convex aspheric lenses of 50 mm focal 
length each and one plano-concave lens of − 25 mm focal 
length (depicted in Figure 2). The first of the three lenses is 
transversally movable by motorized actuators Z806 from 
Thorlabs Inc, Newton, New Jersey, USA. The optical sys-
tem’s focal length is 42.7  mm, the maximum field angle 
reaches 6.5°, the paraxial magnification is − 0.01246, the 
entrance pupil diameter is of 20.0  mm, and the wave-
length is 850 nm.

Moving the entrance lens has a smaller effect on aber-
rations than when shifting the other lenses. As the inci-
dent light is distributed over almost the complete lens’ 
aperture, small lens shifts do not affect aberrations sig-
nificantly. Contrarily, when light covers only a small part 
of the lens’ surface, aberration behavior is more sensitive 

20 mm

Figure 2: Simulation of the lens-shift design. Our Petzval lens 
consists of three lenses, two plano-convex aspheres and one plano-
concave sphere. First of the three lenses is designed transversely 
moveable. Blue-coloured beam path represents a field angle of 0°, 
the green one the maximum horizontal field angle of 6.5°.
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to lens movements. In addition, the motorized actuator’s 
travel range and resolution are most suited at this posi-
tion. As mentioned before, optical resolving power must 
overcome the sensor’s limiting resolution. This is proven 
by our simulations, which are shown in Figure  3. We 
compare modulation transfer functions (MTFs) for cen-
tered and decentered lens positions. Decentered lens posi-
tion causes a 0.25-pixel offset on the image plane from the 
centered position. For both positions, MTFs for two border-
line cases are shown: one for an incident angle of 0° and 
another for a maximum incident angle of 6.5° in horizon-
tal and 1.6° in vertical direction. The sensor’s theoretical 

limiting resolution is drawn as a sinc² [31] function for full 
pixel width. The optical system’s theoretical diffraction 
limit is shown for a wavelength of 850 nm, which is the 
camera’s emitting wavelength. Only tangential fields are 
considered for simulations of the MTF curves as the target 
used for our experiments has a vertical edge only.

7  �Measurements and results
The first measurement determines resolving power 
before and after applying SR. Figure 4A shows the origi-
nal object scene consisting of the slanted edge target. 
Figure 4B depicts the LR output image and Figure 4C its 
bicubic interpolation. In Figure 4D and E, the SR results 
are depicted for conventional sensor-shift method and our 
lens-shift approach, respectively.

In Figure 4B, a stair step artifact is clearly visible as a 
result of large pixel dimensions. Its bicubic interpolation 
in Figure 4C reduces this artifact at the cost of sharpness 
and results in a blurry image. In both SR results (Figure 4D 
and E), the stair step artifacts are reduced as sharpness is 
maintained.

For an objective comparison, MTF curves are shown 
in Figure 5. The black dotted line represents the sensor’s 
theoretical resolution limit at full pixel width. The initial 
LR represented by the black solid line shows the real 
spatial frequency response of the LR image. It can be seen 
that the initial LR result is close to the theoretical resolu-
tion limit. The lines start to diverge at around 4 LP/mm 
as a result of low quantization. The bicubic interpolation 

A

B C

D E

Figure 4: (A) Photo of the slanted edge target, wherein a red box 
represents the camera’s field of view. (B) PMD camera’s LR output 
image, (C) its bicubic interpolation, (D) SR result when shifting the 
sensor and (E) SR result when shifting the lens.
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represented by the red dashed line shows worse resolution 
than the initial LR image. This can also be seen in Figure 
4 by comparing Figure 4B and C. This is because missing 
pixel values are interpolated from real pixel values, and 
no further object information is acquired. This spreads 
the contrast transition, which results in a blurry image. 

Figure 5 shows significant increase in resolution for the 
sensor-shift and lens-shift SR. Both solid and dash-dotted 
red lines are nearly the same. Deviations can be reduced 
to quantization errors due to the small amount of pixel 
values. The theoretical resolution limit for half of the 
initial pixel size is represented as a black dashed line. This 
overcomes the SR’s resolution for higher spatial frequen-
cies as redundant information is acquired during the SR 
process when shifting the sensor about half a pixel size. 
This especially affects high spatial frequencies. The SR 
results resolve spatial frequencies from about 2 LP/mm to 
7 LP/mm at higher contrast than theoretically calculated. 
This can be traced back to computational image restora-
tion, which is part of the SR process. It can be seen that 
overlapping four LR images is nearly the same as halving 
the initial pixel size physically.

The second measurement evaluates the resolution 
enhancement in amplitude and distance image. Figure 6A 
shows the object scene consisting of four boxes. The red 
box depicts the camera’s field of view. Figure 6B and 
C represents the LR outputs for the amplitude and dis-
tance image, respectively. Their SR results are shown in 
Figure 6D and E. The red lines in the amplitude and dis-
tance images represent the position of the corresponding 
line profiles in Figure 7.

The resolution of both LR images, amplitude and 
distance image, is significantly increased after apply-
ing our lens-shift method. High spatial frequencies are 

A

B C

D E

Figure 6: (A) Photo of the measurement scene of four boxes. The red 
box depicts the camera’s field of view. (B) and (C) are the camera’s 
low-resolution (LR) amplitude and distance image outputs. Their 
associated super-resolution results in (D) and (E) consist of four LR 
images. Red lines in the camera outputs (B) through (E) mark the 
position of the corresponding line profiles in Figure 7.
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reconstructed, which can be seen especially at the sharp-
ened edges in Figure 6D and E.

The resolution enhancement is determined via the 
gradient of contrast transition for the LR image and SR 
result in both image types. Figure 7 shows the line profiles 
marked as red solid lines in Figures 6B through E.

The gradient in the amplitude image is nearly doubled 
after applying SR. This confirms our results from the MTF 
measurements, shown in Figure 5, where resolution is also 
increased by about a factor of two. Contrary to our expecta-
tions, the SR distance image’s gradient is more than three 
times higher than for the initial LR image. This discrep-
ancy is most likely due to the lack of calibration for our 
lens design. Nonetheless, the resolution enhancement for 
both image types stays in comparable order of magnitude.

8  �Conclusions
In this paper, we described an opto-mechanical lens-
shift approach that enables us to record sub-pixel-shifted 
image sequences without moving the image sensor. It 
outperforms state-of-the-art sensor-shift approaches in 
regard to its flexibility as it is even applicable for camera 
housings that have been manufactured already.

It has been shown that resolution enhancement for 
the SR result generated by our lens-shift method is close 
to the theoretical resolution limit if the sensor’s pixel 
size is halved. Future work will focus on further investi-
gation of the discrepancy between resolution enhance-
ment in amplitude and distance images by calibrating 
the lens.
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