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Abstract: Using nonstandard (NS) finite difference time 
domain (FDTD) scheme to perform 2D electromagnetic 
(EM) simulations, we investigate how the optical prop-
erties of 2D photonic crystals (PCs) are affected by vari-
ous different kinds of structural noises in the PC lattice. 
While the transmission spectrum is strongly affected 
by noises, the position and the depth of the band gap 
in the transmission spectrum are remarkably robust. It 
is shown that rather coarse numerical grids can be used 
to evaluate various PC structures in NS-FDTD EM simu-
lations. The combination of noises affects transmission 
spectrum in the same way as the most influential indi-
vidual noise. It is shown that reducing the most influen-
tial individual noise is a very efficient method to make 
PC more accurate.

Keywords: FDTD; noise; nonstandard finite difference 
time domain; photonic crystals; transmission spectrum.

1  Introduction
Photonic crystals (PCs) for visible and near-infra-red light 
contain sub-wavelength features in the order of hundreds 
of nanometers [1–5]. Therefore, some fabrication errors 
(structural noises) are inevitable [5–7]. The lower the fab-
rication tolerances, the higher the production costs; thus, 
it is of great interest to understand how the optical proper-
ties of a PC are affected by fabrication errors.

As one of the most important properties of a PC is its 
transmission spectrum, we will numerically investigate 
how it is affected by different kinds of fabrication errors.

The effects of the fabrication error on the photonic 
band gap were studied by plane-wave expansion and 
super-cell methods [6–11]. Although light transmission 
through infinitely periodic PC structures can be com-
puted analytically [12], for finite, aperiodic, and random 
PC structures, numerical methods are the only method to 
analyze them. PC with fabrication errors contains finite, 
aperiodic, and random structures. Therefore, we use the 
nonstandard-finite difference time domain (NS-FDTD) 
method to analyze them. Also, most papers mentioned 
above were based on uniformly distributed noise [7–11]. 
Some papers were based on Gaussian distribution but 
without experimental validation [6]. We use Gaussian-
distributed structural noises because fabrication errors in 
real 2D PC structures follow the Gaussian distribution, and 
the Gaussian-distributed fabrication error has a stronger 
effect than the uniformly distributed fabrication error to 
deteriorate the PC characteristics [13].

The FDTD algorithm has been well suited to compute 
light propagation [14]. It is simple to program and can 
be used for arbitrary structures. The major drawback of 
the conventional FDTD algorithm is its large errors (ε) 
unless a very fine computational grid is used. Its error is 
ε ~ (h/λ)2, where λ is the wavelength, and h = Δx = Δy = Δz is 
the numerical grid spacing [15, 16].

Using the so-called NS finite difference model [17], 
we have introduced a new high accuracy version of 
the FDTD algorithm [15, 18] that we call the NS-FDTD 
method. The error of the NS-FDTD algorithm is ε ~ (h/λ)6 
[15]. This improvement in accuracy can be achieved 
without resorting to higher-order finite difference 
approximations.

We used our NS-FDTD algorithm to compute trans-
mission spectrums of the PC with the Berenger’s perfectly 
matched layer (PML)-absorbing boundary condition [19] 
to terminate the computational domain. We verified our 
simulation program using a simulation of the whispering 
gallery modes in the Mie regime [20].
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2  �Light source and transmission 
calculation

In our simulation, we slowly turn on a source array at time 
step t = 0 and monitor the intensity averaged over the grid 
points in probe as a function of time I(t). When I(t) satu-
rates to a constant value, we record this constant I as a 
function of the incident wavelength (λ).

The source array is weighted to produce a Gaussian 
beam of width that is large enough to compare with the 
PC lattice constant, but small enough to compare with the 
total size of the PC.

To eliminate any spurious effects that might arise 
due to the finite computational space, we normalize 
the I(λ) data with respect to the spectrum of the empty 
computational space, i.e. without PC, I0(λ). Thus, 
I(λ) → I(λ)/I0(λ).

Then, we compute the band gap position (BGP), 
the band gap depth (BGD), and full width at half depth 
(FWHD) of the band gap from transmission spectrums. 
We take BGP, BGD, and FWHD as shown in Figure 1. The 
minimum value of transmitted intensity is BGD. The 
corresponding wavelength to BGD is BGP. The width of 
the band gap where the intensity is lower than 0.5 is 
FWHD. We use these values as properties of transmission 
spectrums.

Although it is possible to compute the transmission 
spectrum by inputting a pulse into the PC structure and 
Fourier analyzing the transmitted field, the accuracy is 
different for each wavelength component because the 
error of the FDTD algorithm depends on h/λ. In addition, 
the wavelength spacing is non-uniform. Instead, we ran 
separate FDTD simulation for each wavelength compo-
nent using a continuous wave source.
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Figure 1: Definition of BGD, BGP, and FWHD. The minimum value of 
transmitted intensity is BGD. The corresponding wavelength to BGD 
is BGP. The width of the band gap where the intensity is lower than 
0.5 is FWHD.
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Figure 2: A typical 4 × 5 square lattice PC. The cylinder (black) 
radius is r. The grid spacing is a. Here, electric permittivity of the 
cylinder relative to a substrate (gray) is ε.

3  �Photonic model and its grid 
representation

The overall accuracy of the FDTD calculation depends not 
only on the algorithm but also on the way we model PC on 
the computational grid.

A typical 2D PC is shown in Figure 2. The circular 
cylindrical regions of permittivity ε are embedded in a 
substrate of permittivity ε′. In this example, the cylin-
ders form a square lattice. Without loss of generality, we 
can take ε′ = 1 and take ε → ε/ε′ to be the permittivity of 
the cylinders relative to the substrate. If ε < 1, the sub-
strate has a higher permittivity than the cylinders; the 
FDTD algorithm can still compute the transmission so 
long as the algorithmic parameters are chosen to satisfy 
the stability condition of the FDTD algorithm at all grid 
points [16].

When the radius of the cylinder (r) is large com-
pared to the grid spacing (h) (r >> h), the staircase model 
is acceptable. In the staircase model, if grid point i lies 
inside the cylinder, its ‘inclusion value’ is si = 1, but if 
it lies outside, si = 0. The approximated cylinder area 

2
s i iA h s= ∑  in the staircase model is not only a bad 

approximation of cross-sectional area of the cylinder area 
A = πr2 but also As can vary with the position of the center 
of the cylinder on the grid. In what we call the ‘fuzzy 
model’ the value si takes values between 0 and 1. In the 
TM mode, where the electric field, E

�
 is polarized parallel 

to the cylinder axis, the value si is the fraction of the h × h 
pixel centered on grid point i that lies within the cylin-
der cross section. In the fuzzy model, the approximated 
cylinder area 2

f ii
A h s A= =∑  exactly and is independent 

of the cylinder center position. In the TE mode, where E
�

 
perpendicular to the cylinder axis, a different averaging 
process is used as described in Ref. [20]. The permittivity 
at i is εi = 1 + (ε – 1)si.

We investigate the optical properties of the PC con-
sisting of 15 × 10 circular cylinders of relative permittivity 
ε = 2.25, arranged in a square array with center-to-center 
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Figure 3: The experimental setup using the fuzzy model to compute the transmission spectrum. PC consists of 15 × 10 circular cylinders of 
relative permittivity ε = 2.25, arranged in a square array with center-to-center spacing a = 6h. The cylinder radius are r = 0.2a in TM mode (A) 
and r = 0.48a in TE mode (B). A continuous wave, spatial Gaussian beam is generated by the input source array, and the transmitted inten-
sity is averaged over the probe position.
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Figure 4: PC transmission spectrum in the (A) TM and (B) TE mode. Transmitted intensity of received wave on the probe (vertical y axis) vs. 
wavelength (horizontal x axis). We used the NS-FDTD algorithm, a/h = 6 (a/h = 12 for simulation with two times finer grid), wavelength step 
is given by a/Δλ = 24.

Table 1: Variations of BGP, BGD, and FWHD of the band gap when 
two times finer grid is used.

BGP BGD FWHD

TM mode 0% 0.3% 10%
TE mode 1.5% 1.1% 8.6%

spacing a on the wavelength range 5/3  ≤  λ/a  ≤  10/3. The 
cylinder radiuses are r = 0.2a in TM mode and r = 0.48a 
in TE mode. This wavelength range is in the Mie scatter-
ing regime (scatterer size ~ wavelength), and the overall 
accuracy of the calculation depends on the values of both 
λ/h and a/h. Figure 3 shows experimental setup using the 
fuzzy model.

There are band gaps in those models on this wave-
length range. Figure 4 shows a ‘reference’ transmission 
spectrum of the perfect PC (no noise) computed using our 
NS-FDTD algorithm using a/h = 6.

We verified that further refinement of the grid does 
not affect much on the band gap. Table 1 shows variations 
of BGP, BGD, and FWHD of the band gap when we use two-
times finer grid (a/h = 12).

4  �Various noise models
In this section, we investigate the effects of three basic 
kinds of structural noises, which could occur during fab-
rication on the transmission spectrum: (1) position (of the 
cylinder centers) noise, (2) size (cylinder radius) noise, 
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and (3) cylinder shape noise. Noises are applied to all cyl-
inders all individually and in combination.

Let a PC structure have N uniform circular cylinders 
centered at ci = (xi, yi), where i = 1, 2, ··· N. The position 
noise is produced by randomly perturbing the positions 
of the cylinder centers. We produce PC structures with 
cylinders centered at ci + (Δxi, Δyi). Here, Δxi and Δyi are 
independent Gaussian noises with mean = 0 and standard 
deviation = σp.

Size noise is produced as follows. Let the radius of cyl-
inder i be ri = r + Δri, where the Δri is the Gaussian noise of 
mean = 0 and standard deviation = σr.

Finally, the shape noise model is introduced. The 
shape noises are generated by distorting the cylin-
der shapes using the computer program described in 
Appendix.

5  �High-accuracy simulation results

We examine the effects of all the position noise, size 
noise, and shape noise that were applied both separately 
and in combination observing each transmission spec-
trum of the PC numerically. First, we compute the BGP, 
BGD, and FWHD of the band gap from the transmission 
spectrums.

All these values are represented as the ratio to the 
original values before noises are added. We took the value 
1.0 as 100% for BGD because the intensity of the incident 
wave in the empty space is set to 1.0. Here, Figures 5 and 6 
show variations of BGP, BGD, and FWHD of the band gap 
compared to the perfect PC with respect to the Gaussian 
noise of mean = 0 and standard deviation σp (0  ≤  σp  ≤  0.2a 
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Figure 5: Averages (with standard deviations) of variations of BGP, BGD, and FWHD of the band gap compared to the perfect PC with respect 
to Gaussian noise in TM mode. (A) Position noise (0  ≤  σp/a  ≤  0.2), (B) size noise (0  ≤  σr/r  ≤  0.2), (C) shape noise (0  ≤  σs/r  ≤  0.2), and (D) all 
noises in combination (σ0 = σp/a = σr/r = σs/r). Vertical bars indicate standard deviations.
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for position noise), σr (0  ≤  σr  ≤  0.2r for size noise), and σs 
(0  ≤  σs  ≤  0.2r for shape noise). We use a larger value for 
position noise than size and shape noises because posi-
tion noise is larger in real fabrication [13]. We also chose 
large-enough noise values compared to noise values in 
real fabrication. For each value of standard deviation, we 
calculated 10 different results for 10 different Gaussian 
noises and plotted the average of the variations with the 
standard deviation. Tables 2 and 3 show variations of the 
BGP, BGD, and FWHD of the band gap compared to the 
perfect PC with respect to Gaussian noise.

Here, both Figures 5 and 6 show that BGP and BGD are 
robust in both TM and TE mode, while FWHD is strongly 
affected by noise.

Absolute values of variations of FWHD are biggest 
for all noises except in the case of Figure 6D (all noises 

in combination in TE mode), and standard deviations 
of FWHD are a few times bigger than standard devia-
tions of BGP and BGD. Figure 6D shows that its standard 
deviation is almost 10 times bigger than the standard 
deviation of BGD and almost 40 times bigger than the 
standard deviation of BGP, although the average vari-
ation of FWHD is smaller than the average variation of 
BGD (Table 3). Therefore, we can consider that FWHD is 
affected by noise more than BGP and BGD in the case of 
Figure 6D.

BGP is remarkably robust in all noise cases in both TM 
and TE mode. The biggest absolute value of variations of 
BGP is only 2.88% in the case of the position noise in TE 
mode (Table 3). The biggest standard deviation of BGP is 
only 0.0263 in the case of all noises in combination in TE 
mode (Table 3).
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Figure 6: Averages (with standard deviations) of variations of BGP, BGD, and FWHD of the band gap compared to the perfect PC with respect 
to Gaussian noise in TE mode. (A) position noise (0  ≤  σp/a  ≤  0.2), (B) size noise (0  ≤  σr/r  ≤  0.2), (C) shape noise (0  ≤  σs/r  ≤  0.2), and (D) all 
noises in combination (σ0 = σp/a = σr/r = σs/r). Vertical bars indicate standard deviations.
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For individual noises, the position noise affected 
the transmission spectrum the most, and the size noise 
affected the transmission spectrum the least in TM mode 
(Table 2). In TE mode, different kinds of noises affect the 
transmission spectrum differently. The position noise 
affects the most on BGP and BGD. The size noise affects 
the most on FWHD (Table 3).

The combination of noises affects the transmission 
spectrum in the same way as the most influential individ-
ual noise. It affects all of BGP, BGD, and FWHD the same 
way as the position noise in TM mode (Figure 5A and D). In 
TE mode, it affects BGP and BGD the same way as the posi-
tion noise (Figure 6A and D). It affects FWHD the same 
way as size noise (Figure 6B and D).

The combination of noises affects less than some 
individual noises in some properties in both modes. It 
is because different kinds of noises affect the transmis-
sion spectrum differently. For example, FWHD becomes 
smaller compared to the perfect PC in the cases of position 
and shape noises but larger in the case of size noise in TE 
mode (Figure 6). Therefore, FWHD changed by a smaller 
amount in the case of the combination of noises compared 
to individual noises in TE mode (Table 3).

6  �Conclusion
We investigated the effect of the three basic kinds of 
structural noises on the transmission spectrum both in 
individual and in combination. The NS-FDTD method 
and PML-absorbing boundary condition are used for 
our simulation, and we used the fuzzy model for grid 
representation.

We conclude that the FWHD of the band gap is 
strongly affected by noise in both TM mode (up to 56.66%) 
and TE mode (up to 65%). BGD is slightly affected in TM 
mode (up to 19.56%) and in TE mode (up to 34.35%). BGP 
is remarkably robust in both TM and TE modes. It changed 
only 0.78% in TM mode and 2.88% in TE mode.

For individual noises, the position noise affects all of 
BGP, BGD, and FWHD the most in TM mode (Table 2). In 
TE mode, the position noise affects the most on BGP and 
BGD. The size noise affects the most on FWHD (Table 3).

The combination noise affects the transmission spec-
trum in the same way as the most influential individual 
noise. Therefore, we can conclude that we do not need 
to analyze the influence of a combination of noises to 
increase the accuracy of PC. We need to reduce the most 

Table 3: Averages (standard deviations) of variations of BGP, BGD, and FWHD of the band gap compared to perfect PC with respect to 
Gaussian noise in TE mode.

BGP BGD FWHD

Position noise σp/a = 0.1 – 1.52% (3.47 × 10− 18) 7.15% (0.0155) – 26.35% (0.0974)
Size noise σr/r = 0.1 – 0.45% (0.0069) 3.42% (0.0088) – 11.18% (0.1848)
Shape noise σs/r = 0.1 – 0.76% (0.0076) 2.89% (0.0083) – 10.90% (0.0973)
All noises in combination σ0 = σp/a = σr/r = σs/r = 0.1 – 1.67% (0.0045) 10.57% (0.0405) – 17.24% (0.2348)

Position noise σp/a = 0.2 – 2.88% (0.0082) 24.10% (0.0636) – 32.49% (0.2904)
Size noise σr/r = 0.2 – 1.06% (0.0069) 10.99% (0.0488) 65.88% (1.1228)
Shape noise σs/r = 0.2 – 1.52% (3.469 × 10− 18) 4.74% (0.0112) – 12.07% (0.0906)
All noises in combination σ0 = σp/a = σr/r = σs/r = 0.2 – 1.97% (0.0263) 34.35% (0.1060) 9.39% (1.0522)

Table 2: Averages (standard deviations) of variations of BGP, BGD, and FWHD of the band gap compared to perfect PC with respect to 
Gaussian noise in TM mode.

BGP BGD FWHD

Position noise σp/a = 0.1 0.00% (0.0000) 4.89% (0.0146) – 11.53% (0.0438)
Size noise σr/r = 0.1 0.00% (0.0000) 0.05% (0.0017) 2.12% (0.0255)
Shape noise σs/r = 0.1 0.00% (0.0000) 0.53% (0.0013) – 3.75% (0.0150)
All noises in combination σ0 = σp/a = σr/r = σs/r = 0.1 0.00% (0.0000) 4.47% (0.0203) – 6.17% (0.0999)

Position noise σp/a = 0.2 – 0.78% (0.0096) 19.56% (0.0693) 21.96% (0.4147)
Size noise σr/r = 0.2 0.00% (0.0000) 0.20% (0.0021) 6.95% (0.0632)
Shape noise σs/r = 0.2 0.00% (0.0000) 1.57% (0.0036) – 8.69% (0.0271)
All noises in combination σ0 = σp/a = σr/r = σs/r = 0.2 – 0.59% (0.0090) 16.77% (0.0831) 56.66% (0.3188)



N. Odontsengel et al.: Noise tolerance of photonic crystal      477

influential individual noise. In our case, we need to 
reduce the position noise to increase the accuracy of all of 
BGP, BGD, and FWHD in TM mode. In TE mode, we need to 
reduce the position noise to increase the accuracy of BGP 
and BGD,and we need to reduce the size noise to increase 
the accuracy of FWHD.

Variations (and standard deviations) of BGP, BGD, and 
FWHD have changed as follows by reducing position noise 
by 50% (from σp/a = 0.2 to σp/a = 0.1) in TM mode (Table 2). 
We calculate the change by dividing the value at σp/a = 0.2 
by the value at σp/a = 0.1. There is no variation in BGP (both 
average and standard deviation is zero) when σp/a = 0.1. 
Variation (and standard deviation) of BGD has became 
19.56%/4.89% = 4.0 (0.0693/0.0146 = 4.7) times smaller. 
Variation (and standard deviation) of FWHD has became 
21.96%/11.53% = 1.9 (0.4147/0.0438 = 9.5) times smaller.

Variations (and standard deviations) of BGP, BGD, 
and FWHD have changed as follows by reducing the most 
influential individual noise by 50% in TE mode (Table 3). 
Variation (and standard deviation) of BGP has became 
(dividing the value at σp/a = 0.2 by the value at σp/a = 0.1) 
2.88%/1.52% = 1.9 (0.0082/(3.47 × 10− 18) = 2.4 × 1015) times 
smaller by reducing position noise by 50% (from σp/a = 0.2 
to σp/a = 0.1). Variation (and standard deviation) of BGD 
has became (dividing the value at σp/a = 0.2 by the value 
at σp/a = 0.1) 24.10%/7.15% = 3.4 (0.0636/0.0155 = 4.1) times 
smaller by reducing position noise by 50% (from σp/a = 0.2 
to σp/a = 0.1). Variation (and standard deviation) of FWHD 
has become (dividing the value at σr/r = 0.2 by the value 
at σr/r = 0.1) 65.88%/11.18% = 5.9(1.1228/0.1848 = 6.1) times  
smaller by reducing size noise by 50% (σr/r = 0.2 to 
σr/r = 0.1).

In most cases, variation (and standard deviation) 
of BGP, BGD and FWHD have became two or more times 
smaller by reducing the most influential individual noise 
by 50% in both TM and TE modes. Therefore, we can con-
sider that reducing the most influential individual noise is 
a very efficient method to make PC more accurate.

Appendix – Shape noise
Let the unperturbed PC consist of N uniform dielectric 
cylinders of radius r and refractive index n on an (Nx × Ny) 
grid. Let the k-th cylinder be centered at (cx(k), cy(k)), 
where k = 1, 2, ··· N. The cylinder is formed by looping over 
all the grid points, (ix, iy). Each time the noise function is 
called, it outputs a random number drawn from a Gauss-
ian distribution of mean = 0 and standard deviation = σs; 
thus, during the looping, the cylinder center shifted. The 
k-th cylinder is defined by the pseudo-code,

Subroutine shape noise
 do ix = 1, Nx

  do iy = 1, Ny

   centx = cx(k) + noise(ix, iy)
   centy = cy(k) + noise(ix, iy)
   �if (ix – centx)2 + (iy – centy)2  ≤  (r + 0.5)2

    gridn(ix, iy) = fuzzy(ix, iy)
   end if
  end do
 end do

Here, gridn(ix, iy) is the refractive index at grid point 
(ix, iy), computed according to the fuzzy model, with the 
property that 2

,
grid ( , ) .

x y
n x yi i
i i n rπ=∑
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