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in wide-field telescopes

Abstract: In wide-field survey telescopes, the patterns of 
spot sizes and ellipticities can be used to determine wave-
front aberrations generated by the telescope. The calcula-
tion of spot sizes and ellipticities generated by telescope 
aberrations is most conveniently done if the aberrations 
are expressed in terms of Zernike-type polynomials whose 
derivatives are orthonormal. The field dependence of the 
spot sizes and ellipticities generated by the telescope can 
conveniently be expressed by low-order Zernike polyno-
mials. Because the exposure times in astronomical sur-
vey work are typically rather short, this information may 
be used for a quasi-closed loop control of the telescope 
optics. The ability to accurately subtract ellipticities gen-
erated by telescope errors could also be useful for obser-
vations such as gravitational lensing surveys.
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1  Introduction
The focal plane of a wide-field telescope is often nearly 
completely covered by the detector, usually an array of 
CCD chips. This precludes the option to pick up the light 

of sufficiently bright stars for wavefront sensors in arbi-
trary locations in the field during astronomical exposures. 
Instead, the image quality is often measured using wave-
front sensors at the edge of the field outside the science 
field. One option is to use additional, axially displaced 
chips in this area. The telescope aberrations are then 
deduced from characteristics of defocused star images [1].

However, information about the telescope aberra-
tions may also be obtained by analyzing the variations 
of the diameters and ellipticities of the images of point 
sources across the field. The large amount of data given 
by the large number of stars in the field reduces the noise 
that is due to the measurements of the characteristics of 
individual spots. Together with the wavefront information 
derived from a wavefront sensor at the edge of the field, 
the image quality of a wide-field telescope can then be 
monitored and, possibly, also be controlled in closed loop 
between the rather short exposures typical of astronomi-
cal survey work. This task should be simplified by the fact 
that, most of the time, the pointing and, therefore, also 
the optical aberrations generated by the telescope do not 
change significantly between exposures.

The effect of telescope aberrations on spot sizes and 
ellipticities has been studied by several authors, often in 
the context of weak lensing investigations [2–8]. All these 
papers describe methods and attempts to extract tele-
scope errors from the spot characteristics across the field. 
In addition, they also contain several references to earlier 
work in this field.

This paper deals primarily with two issues. First, 
a classification of telescope aberrations that affect the 
spot sizes and generate ellipticities is more easily done 
in terms of Zernike-type polynomials, whose derivatives 
are orthonormal across the pupil, than in terms of the 
standard Zernike polynomials. The use of these polynomi-
als, which will be called slope Zernike polynomials, also  
simplifies the calculation of the spot parameters. 

Second, all spot size and ellipticity patterns across the 
field that are generated by telescope errors can readily be 
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expanded in terms of standard Zernike polynomials. Such 
information can reduce and constrain the set of functions 
fitted to the measured spot sizes and ellipticities.

Section 2 describes the definition of spot sizes and 
ellipticities, how they are, for a given field location, related 
to the derivatives of slope Zernike polynomials, and how 
their dependence on the field locations can be character-
ized by Zernike polynomials. Section 3 describes the aber-
rations that are expected in wide-field telescopes and that 
affect the spot sizes and ellipticities. Section 4 describes 
the expected field patterns of spot sizes and ellipticities 
and shows that all of them can be well represented by 
Zernike polynomials. Finally, Section 5 describes possible 
procedures to extract telescope errors from the field pat-
terns of spot sizes and ellipticities.

2   Relationship between ellipticities 
and wavefront aberrations

2.1  Definition of spots sizes and ellipticities

For ground-based telescopes, two factors preclude 
 diffraction-limited imaging: atmospheric turbulence and 
telescope errors. For exposures of at least a few seconds, 
the aberrations generated by the atmosphere lead to 
approximately circular seeing discs with root mean square 
(rms) values of the order of 0.5 arcsec under average 
conditions.

In large telescopes, the size of the seeing disc is much 
larger than the size of the Airy disc created under diffrac-
tion-limited conditions. Therefore, the additional effects 
due to telescope aberrations are best described by geomet-
rical rather than diffraction optics, or, in other words, by 
wavefront slope errors rather than wavefront errors. The 
shape of an image of a point source can then be modeled 
as the sum of the point spread functions generated by the 
atmosphere on the one hand and the telescope errors on 
the other hand.

Let σl and σs denote the measured rms values along 
the long and short axes of a possibly elliptical spot, and 
αm the measured orientation of the ellipse, defined as the 
angle of the long axis of the ellipse with the x-axis. These 
are the only measurable spot parameters that will be used 
in this study. A common definition η of the modulus of a 
relative ellipticity is:

 

l

s

1.
σ

η
σ

= −
 

(1)

For several reasons given below, a different definition of 
the modulus m of the measured ellipticities is used in this 
study:

 
2 2

m l s .σ σ= −e
 (2)

A problem, for both definitions, is the ambiguity of the ori-
entation, because the true, measured angles αm and αm+π 
are equivalent. This ambiguity can be resolved by defining 
the angle of the ellipticity as 2αm rather than αm. Together 
with the modulus 2 2

l s ,σ σ−  this defines a unique ellipticity 
vector m.�e

The next task is to relate this ellipticity vector m
�
e  to 

calculable second moments of point spread functions 
generated by aberrations w(r, ϕ), where r is the normal-
ized radial and ϕ the azimuth pupil coordinate. Let rp be 
the half-diameter of the pupil and u, v∈{x, y}, where x and 
y are normalized coordinates. The second moments μuv of 
point spread functions due to wavefront aberrations w(r, 
ϕ) without tilt components are then given by:
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(3)

The mean square 2
spotd  of the spot diameter is defined by:

 
2
spot xx yy .d µ µ= +

 
(4)

The ellipticity  and the angle α of its long axis with the 
x-axis are defined by:

 
2 2

xx yy xy( ) 4 ,µ µ µ= − +e
 

(5)
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(6)

This expression for  has the dimension rad2.
The definition can be compared with the definition 

of the polarization using the Stokes parameters. The first 
term under the square root in Eq. (5) is equivalent to the 
square of the Stokes Parameter S1, whereas the second 
term is equivalent to 2 2

2 3 .S S+
A similar definition of the ellipticity is used in [4], 

where the expression in Eq. (5) has been normalized by a 
division by the square of the spot size. Because the latter 
is equivalent to the Stokes parameter S0, the definition of 
the ellipticity in [4] is equivalent to the usual definition of 
the polarization.

In this paper, expressions for  and α will be calculated 
analytically. By definition, always the positive square root 
will be taken in Eq. (5). However, because the expressions 
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will be analytical functions of the field coordinates, often 
including trigonometric functions of the field angle,  may 
still be positive or negative.

The angle α derived from Eq. (6) is ambiguous. 
Because of the ambiguity of the arctan function, the two 
angles α and α-π/2 could both be used to characterize the 
orientation.

The true angle will be defined as the principal value 
of the arctan function if  is positive and as the principle 
value plus 90° if  is negative. Therefore, a change of the 
sign of  rotates the true orientation of the ellipticity by 90°.

In line with the definition of the measured ellipticity 
vector m,�ε  where the angle αm has been doubled, a calcu-
lated ellipticity vector �ε  is defined with the double angle 
2α. Its x- and y-components are defined by:

 x cos 2 ,α=e e
 (7)

 y sin2 .α=e e
 (8)

Therefore, a change of the sign of  rotates the ellipticity 
vector �e  by 180°. This definition of ,�e  calculated from the 
moments, is consistent with the definition of the compo-
nents of the ellipticity vector m

�
e  derived from the meas-

ured parameters 2 2
l sσ σ−  and the unambiguous angle 2αm:

 
2 2

x l s mcos 2 ( ) cos 2 ,α σ σ α= = −e e
 (9)

 
2 2

y l s msin2 ( ) sin2 .α σ σ α= = −e e
 

(10)

The definition of the ellipticity as a difference between 2
lσ  

and 2
sσ  has another major advantage. As long as the point 

spread function of the seeing disc is symmetrical, the 
contributions of the seeing to 2

lσ  or 2
sσ  are independent 

of the contributions from other aberrations [9]. The rms 
σseeing due to seeing is then an independent and identical 
term in each of the quadratic sums leading to 2

lσ  and  2
s .σ  

Therefore, the definition of the ellipticity as the differ-
ence between 2

lσ  and 2
sσ  is independent of the seeing. 

However, this statement should be tested empirically.
The visual impression of the ellipticity of a spot is 

better described by Eq. (1). Usually, the spot sizes are dom-
inated by the seeing rather than by the telescope aberra-
tions. Assuming that 2 2 2

l s seeing ,σ σ σ− �  η is approximately 
given by:

 

2 2
l s
2
seeing

1 .
2

σ σ
η

σ

−
≈

 
(11)

Therefore, for small ellipticities, also the visual impres-
sion of the ellipticity is proportional to 2 2

l s .σ σ−

The lower limit for detecting ellipticities is η≈7 × 10-5 (see 
Section 4.8.1). Assuming a seeing with σseeing≈0.5 arcsec, a 
corresponding ellipticity 0, expressed in terms of the dif-
ference between 2

lσ  and 2
s ,σ  is defined as:

 
2 2 -10 2 2

0 l s 0( ) 8.2 10 mrad (0.006 ) .σ σ= − ≈ ⋅ ≈ ′′e
 (12)

This ellipticity 0 could be used as a reference. However, 
weak lensing surveys require maximum noise levels of 
η≈10-3 [4], which is approximately equivalent to 140. 
Therefore, a reference ellipticity WL≈140≈1.2 × 10-14 will be 
used for comparisons of values for  occurring in real tel-
escopes with the requirements for weak lensing surveys.

The measured mean square 2
spot , md  of the spot size is 

defined as:

 
2 2 2
spot, m l s

1= ( ),
2

d σ σ+
 

(13)

which does strongly depend on the seeing.
In cases where the seeing is the dominant contributor 

to the degraded image quality, the seeing can be removed 
by defining the variations of the spot size due to the tel-
escope errors as:

 
2 2 2 2
tel, m l s s, min

1 ( 2 ).
2

d σ σ σ= + −
 

(14)

However, although this definition certainly removes the 
largely constant contribution due to the seeing, it also 
removes some contributions from telescope errors that are 
constant across the field.

2.2   Ellipticities generated by single or sums 
of two Zernike polynomials

The standard orthonormalized Zernike polynomials are 
denoted by Zm, j, a(r, ϕ), where m is the rotational symmetry, 
j is the order within the rotational symmetry, starting with 
j = 1, and a∈{c, s}, where the suffixes c and s stand for the 
cosine and sine components, respectively. The radial parts 

, ( )m jR r�  of the standard Zernike polynomials are defined by:

 , , c ,( , ) ( ) cos ,m j m jZ r R r mϕ ϕ= �
 

(15)

 , , s ,( , ) ( ) sin .m j m jZ r R r mϕ ϕ= �
 

(16)

The abbreviated notation Zm, j(r, ϕ) will stand for either 
 Zm, j, c(r, ϕ) or Zm, j, s(r, ϕ). For example, the Zernike poly-
nomial corresponding to defocus is denoted by Z0, 2(r, ϕ). 
Other common names and notations for some low-order 
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Zernike polynomials Zm, j(r, ϕ) are given in Table 4 in 
Appendix 7.1.

However, ellipticities are parameters of the shape of 
point spread functions. Therefore, for the description of 
the wavefront errors generating the point spread func-
tions, it should be appropriate to use Zernike-type poly-
nomials, whose derivatives are orthogonal over the unit 
circle [10, 11]. These functions, in this paper called slope 
Zernike polynomials, will be denoted by Sm, j, a (r, ϕ).

The radial parts , ( )m jB r�  of the polynomials 
, ,a( , )m jS r ϕ  are defined by:

 , , c ,( , ) ( ) cos ,m j m jS r B r mϕ ϕ= �
 

(17)

 , , s ,( , ) ( ) sin .m j m jS r B r mϕ ϕ= �
 

(18)

The abbreviated notation Sm, j(r, ϕ) will stand for either 
Sm, j, c(r, ϕ) or Sm, j, s(r, ϕ). Formulae for the conversion of 
the Zernike polynomials to slope Zernike polynomials are 
given in  Appendix 7.2.

In survey telescopes with large fields, the central 
obstructions are rather large. A description of the pupil 
aberrations would then profit from the use of slope 
Zernike polynomials that are orthogonal over an annular 
pupil. However, for simplicity, all examples given in this 
paper are using slope Zernike polynomials for a full cir-
cular pupil.

If the letter C at the bottom of the integral symbol 
denotes the integration over a circular, possibly annular 
pupil with an outer normalized radius r = 1, the slope 
Zernike polynomials are normalized such that:
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where δ denotes the Kronecker delta.
For a coefficient c of Sm, j, a(r, ϕ), the root mean square 

of the point spread function measured in radians is c/rp. 
Ellipticities for c/rp = 1 will be denoted by n.

The derivative of a slope Zernike polynomial Sm, j, a(r, ϕ) 
with respect to x and y can be expressed as a single Zernike 
polynomial Z1, j–1, a(r, ϕ) for m = 0 or as a sum of two Zernike 
polynomials Zm–1, j, b(r, ϕ) and Zm+1, j–1, b(r, ϕ) for m > 0, with a, 
b∈{c, s}. Explicit formulae are given in Eqs. (66) to (71) in 
Appendix 7.3.

A wavefront error w(r, ϕ) will be described as a sum 
of slope Zernike polynomials Sm, j, a(r, ϕ). Therefore, the 

second moments defined in Eq. (3) can contain terms with 
two identical or two different slope Zernike polynomials:
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assuming c/rp = 1. As a consequence of the Eqs. (66) to 
(71) and the orthonormality of the Zernike polynomials, 
the second moments are different from zero only if either 
m2 = m1 or m2 = m1-2.

 – 1 2m m=
 This case also requires j1 = j2. It describes the effects 
due to a single slope Zernike polynomial. For m  ≥  2 
one obtains:

 
xx yy

1 ,
2

µ µ= =
 

(21)

 xy 0,µ =
 (22)

 and thus n = 0. Therefore, aberrations expressible 
by single slope Zernike polynomials with m  ≥  2 and, 
clearly, also m = 0 do not generate ellipticities.

For m = 1, with the angle of the symmetry axis of 
the wavefront with respect to the x-axis of the field 
denoted by ϑ,

 
xx

1 1 cos 2 ,
2 4

µ ϑ= +
 

(23)

 
yy

1 1 cos 2 ,
2 4

µ ϑ= −
 

(24)

 
xy

1 sin2 .
4

µ ϑ=
 

(25)

 Therefore, according to Eqs. (5) and (6),

 
n

1 , .
2

α ϑ= =ε
 

(26)

 This result for m = 1 is independent of the order j of the 
slope Zernike polynomial. In other words, all coma-
like aberrations with identical coefficients of the 
slope Zernike polynomials S1, j(r, ϕ) generate the same 
ellipticities.

 – 2 1 2m m= −
 This case describes ellipticities that are generated by 
combinations of two slope Zernike polynomials with 
rotational symmetries differing by 2. The ellipticities 
are different from zero only if, in addition, j2 = j1+1. In 
other words, only combinations of slope Zernike poly-
nomials with m2 = m1-2 and the same highest radial 
powers generate ellipticities.
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In summary, for c/rp = 1, Table 1 shows the values for the 
ellipticities βm, j, m′, j = n for all possible single terms and 
combinations that can give rise to ellipticities. A square 
bracket denotes that the value of βm, j, m′, j′ is only due to the 
combined effect of two terms and not to any of the two 
individual terms. Ellipticities due to individual terms can 
only be generated by coma-type slope Zernike polynomi-
als S1, j(r, ϕ), which will only appear in the combinations 
{(3, j), (1, j+1)}.

2.3   Characterization of field dependencies 
by Zernike polynomials

For the understanding of the field dependencies of the spot 
sizes and ellipticities, it would be helpful to express the field 
dependencies in terms of simple functions. For a circular 
field, a convenient set of functions are the Zernike polynomi-
als. These now depend on the normalized radial field variable 
s and the field azimuth angle ϑ, instead of on the normalized 
radial aperture variable r and the aperture azimuth angle ϕ 
as the Zernike or, as in this study, slope Zernike polynomi-
als used for the aperture dependence of aberrations. This 
type of expansion has been discussed in [12], using standard 
Zernike polynomials both for the pupil and the field.

Table 1 Ellipticities generated by single or combinations of slope 
Zernike polynomials.

Modes   βm, j, m′, j′

(1, j)  j > 1   1/2
[(2, 1), (0, 2)]   2
(2, j), (0, j+1)  j > 1   2
(m, 1), (m-2, 2) m  ≥  3   2
(m, j), (m-2, j) m  ≥  3  j > 1  1

Nominal astigmatism
defocus positive1.0

0.5

-0.5

-1.0

-1.0 0-0.5

A B

0.5 1.0 -1.0 0-0.5 0.5 1.0

0

1.0

0.5

-0.5

-1.0

0

Nominal astigmatism
defocus negative

Figure 1 Measured angles of the ellipticities (red) and corresponding angles of the ellipticity vectors �e  (green) for rotationally symmetric 
astigmatism in combination with (A) positive and (B) negative constant defocus.

In many telescopes, the detector fields are square 
instead of circular. To guarantee the linear independence of 
the coefficients of the field dependencies, one should use 
polynomials that are orthogonal over a square. However, 
these are not easily classifiable in terms of rotational sym-
metries and would complicate the expressions consider-
ably. Therefore, in this paper the field dependencies are 
described in terms of standard circular Zernike polynomials.

If the measured ellipticities were described by the 
modulus 2 2

l sσ σ−  and the angle αm, their field  dependencies 
could not always be easily expanded in terms of Zernike 
polynomials. As an example, one can take the combina-
tion of constant defocus and rotationally symmetric field 
astigmatism and calculate the dependencies of the gener-
ated ellipticities on the radial field coordinate s and the 
azimuth field coordinate ϑ.

For symmetry reasons, the dependence of the rota-
tionally symmetric astigmatism on the field radius can 
only contain even powers of s.

The angles of the ellipticities depend, on the one 
hand, on the angles of the maxima of the astigmatism 
in the pupil, and, on the other hand, on the sign of the 
defocus. With a defocus that is constant across the field, 
the directions of the ellipticities then rotate with ϑ and 
their x- and y-components are proportional to cos ϑ or sin 
ϑ, as shown in Figure 1 by the red bars.

Combining the radial and angular dependencies, the 
expressions contain even powers of s and the functions 
cos ϑ or sin ϑ with an odd rotational symmetry. Such 
expressions cannot naturally and easily be expressed by 
standard Zernike polynomials.

However, this problem can be solved by multiplying 
the measured angles αm of the ellipticities by a factor of 2, 
as already discussed in Section 2.1. Then, the angles of the 
ellipticities �e  rotate with 2ϑ, as shown in Figure 1 by the 
green arrows. The components x and y of the ellipticity 
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patterns can then be expressed by low-order Zernike poly-
nomials Z2, j(s, ϑ).

Another example is a misaligned system with linear 
field astigmatism (see Section 3.3.2), whose modulus is 
proportional to the radial field coordinate s and whose 
orientation changes with half the field angle ϑ/2. The 
ellipticities, generated in combination with a constant 
defocus, will have the same field dependencies, as shown 
in Figures 2 and 3 by the red bars. After doubling the angle, 
the field dependence of the components x and y of the 
ellipticities patterns are proportional to s cos ϑ and s sin ϑ, 
as shown in Figures 2 and 3 by the green arrows. Therefore, 
they can be expressed by the Zernike polynomials Z1, 1(s, ϑ).

Figures 1–3 also show that a change of the sign of the 
defocus rotates the measured, true angles of the ellipticities 
by 90°, whereas the corresponding ellipticity vectors �e  are 
converted to −�e . This is another reason why the ellipticity 
vectors �e  are more suitable for relating ellipticities to aberra-
tions than the ellipticities defined with the measured angles.

3   Aberrations affecting ellipticities 
and spot sizes

3.1  Assumed wavefront error

Any wavefront error anywhere in the field can be expanded 
in terms of slope Zernike polynomials across the aperture:

, , , , c
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where θm, j(ϑ) is the offset angle of the slope Zernike poly-
nomial expressed as , ,cos ( ( )).m j m jB m ϕ θ ϑ−�  The angle θm, j 
is assumed to depend only on the field angle ϑ and not on 
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Figure 2 Measured angles of the ellipticities (red) and corresponding angles of the ellipticity vectors 
�
ε  (green) for linear astigmatism 

along x in combination with (A) positive and (B) negative constant defocus.
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Figure 3 Measured angles of the ellipticities (red) and corresponding angles of the ellipticity vectors �e  (green) for linear astigmatism 
along y in combination with (A) positive and (B) negative constant defocus.
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the field radius s. Fm, j(s, ϑ) describes the field dependence 
of (Sm, j, c(r, ϕ)2+Sm, j, s(r, ϕ)2)1/2 and the functions Gm, j, c(s, ϑ) 
and Gm, j, s(s, ϑ) describe the field dependencies of the slope 
Zernike polynomials Sm, j, c(r, ϕ) and Sm, j, s(r, ϕ), respectively. 
Products of pairs of these functions G will appear in the 
expressions for the spot sizes and the ellipticities.

Because the r and ϕ dependencies drop out after the 
integrations leading to the μxx, μyy and μxy terms, the field 
dependencies of the spot sizes and ellipticities are entirely 
determined by the field dependencies Fm, j(s, ϑ) of the coef-
ficients of the slope Zernike polynomials and by the sym-
metry m and the offset angles θm, j(ϑ) in the slope Zernike 
polynomials. It will be shown that all field dependencies 
of the spot sizes and ellipticities can, in a simple way, be 
expanded across the field in Zernike polynomials that 
depend on the field variables s and ϑ.

3.2  Aberrations of the unperturbed system

Every real optical system contains field aberrations. The 
system may either be the one defined by its prescription 
or by the as-built status. In the following, either system, 
as long as it is rotationally symmetric, will be called the 
nominal system.

The ESO VLT Survey Telescope (VST) [13], a survey tel-
escope with an outer diameter of 2.6 m, an inner diameter of 
1.2 m and a diagonal field diameter of 1.5°, will serve as an 
example of a wide-field telescope. In addition to two powered 
mirrors, the VST also contains a three-element lens corrector, 
which causes a strong dependence of some of the nominal 
telescope aberrations on the wavelength of the light. This is 
discussed in more detail in Section 4.8.3. All curves in the 
figures in this section are based on a wavelength of 625 nm, 
which is roughly the center of the R-band filter in the VST.

In a telescope perfectly matching its optical prescrip-
tion, the strongest field aberrations are, naturally, the low-
est-order ones. Figure 4 shows the coefficients cz, m, j(s) of the 
strongest Zernike aberrations Zm, j(r, ϕ) as functions of the 
radial field coordinate s. Of the remaining coefficients, the 
largest one is the coefficient of Z3, 1(r, ϕ) with a maximum of 
only approximately 1.5 nm, whereas the coefficients of all 
other Zernike polynomials are well below 1 nm.

Instead of the coefficients of the Zernike poly nomials, 
the coefficients that express more directly the influence 
on the spot sizes and ellipticities are the coefficients 
cs, m, j(s) of the slope Zernike polynomials Sm, j(r, ϕ), which 
are shown in Figure 5.

Because of the rotational symmetry, the dependence of 
the coefficients cz, m, j(s) and cs, m, j(s) on the field radius can be 
described by polynomials in s with only even powers if m is 
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Figure 4 Dependence of the VST coefficients cz, m, j(s) of the Zernike 
polynomials Zm, j(r, ϕ) on the field radius in degrees.

500

0

-500

0 0.2 0.4

cs,m,j (s)/nm m,j

0.2

0.3

1.3
2.2

1.2

2.1

0.6 0.8

s (°)

Figure 5 Dependence of the VST coefficients cs, m, j(s) of the slope 
Zernike polynomials Sm, j(r, ϕ) on the field radius in degrees.

even, and odd powers if m is odd. Table 2 shows the highest 
powers nhp, m, j in the expansions of the nominal radial field 
dependencies Fm, j(s) = cs, m, j(s), which are required to describe 
the field dependencies with a precision better than 1%.

Table 2 Highest significant powers of s in the expansions of cs, m, j(s).

(m, j)   (0, 2)  (0, 3)  (1, 2)  (1, 3)  (2, 1)  (2, 2)

nhp, m, j   4  2  3  1  4  2
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3.3  Telescope errors

3.3.1  Deformations of a mirror

Apart from polishing errors, the most significant aber-
rations generated by a mirror are low-order aberrations 
with coefficients that decline rapidly with the order of the 
mode. If the mirror is at a pupil, all of these aberrations 
are constant across the field. If the mirror is not at a pupil, 
the shifts of the footprints in wide-field telescopes are 
only small fractions of the diameter of the mirror. The field 
aberrations generated by the deformations of the mirror 
are then negligible.

The low-order pupil aberration can best be described 
by elastic modes [14]. However, for the lowest orders the 
elastic modes are very similar to Zernike polynomials and 
can, therefore, also be expressed rather accurately by 
sums of slope Zernike polynomials.

For the low-order coefficients cz, m, j and cs, m, j, Table 3 
shows the approximate differences between the coef-
ficients measured at the VST pointing to the zenith and 
close to the horizon, without any corrective actions of the 
active optics system. The row in the middle shows the con-
version factors.

The contributions to the coefficients of defocus S0, 2(r) 
and third-order coma S1, 2(r, ϕ) due to a deformation of a 
mirror cannot be disentangled from the contributions due 
a misalignment of mirrors. The comparatively large coef-
ficients of defocus S0, 2(r) and third-order coma S1, 2(r, ϕ) are 
probably mainly due to misalignments rather than mirror 
deformations.

Without active optics corrections, third-order coma 
then generates ellipticities of the order of 200WL and the 
combination of third-order astigmatism with defocus 
ellipticities of approximately 120WL.

3.3.2  Misalignments of telescope mirrors

Misalignments of the telescope primary mirror (M1) or 
secondary mirror (M2) may be due to axial or lateral 
movements or tilts, with five degrees of freedom for the 

Table 3 Variations of the coefficients cz, m, j of the Zernike polynomi-
als and cs, m, j of the slope Zernike polynomials without active optics 
corrections.

  0, 2  0, 3  1, 2  2, 1  3, 1

cz, m, j/nm   500  60  400  200  80
  2 6  4 5  4 3  2 3  2 6

cs, m, j/nm   2500  500  2800  700  400

misalignment of each mirror. Such misalignments will 
shift the center of the field, which is defined here as the 
image formed by rays initially parallel to the M1 axis. In 
the VST, misalignments of the mirrors within the expected 
range will lead to shifts of the center of the field in the 
focal plane that are insignificant compared with the field 
diameter.

However, misalignments also generate field aberra-
tions. Axial displacements will predominantly generate 
defocus. The smaller amounts of spherical aberration will 
be neglected. The other degrees of freedom will generate 
three types of aberrations.

 – Coma S1, 2(r, ϕ), which is constant across the field.
 – Astigmatism S2, 1(r, ϕ) with a linear radial field depen-

dence, called linear astigmatism:

 

2, 1, lin 2, 1, lin 2, 1

2, 1

( , , , ) ( )
1cos 2( ( )),
2

w r s c sB rϕ ϑ

ϕ ϑ ϑ

=

− −

�

 
(28)

 where the offset angle ϑ2, 1 is the field angle, where the 
line through the maxima of the astigmatism in the 
pupil is parallel to the field angle.

 – Defocus S0, 2(r) in the focal plane, generated by a tilt of 
the focal plane. It has a linear field dependence along 
a direction ϑ0, 2 and is expressible as:

 0, 2, lin 0, 2, lin 0, 2 0, 2( , , ) cos( ) ( ).w r s c s S rϑ ϑ ϑ= −
 

(29)

3.3.3  Tilt of the adaptor or detector

Similar to a tilt of the focal plane, a tilt of the adaptor or 
the detector with respect to the nominal optical axis will 
introduce defocus with a linear field dependence, as 
described in Eq. (29).

3.3.4  Tracking

Normal tracking errors will generate spot movements that 
are constant across the field. An incorrect derotation will 
generate spot movements in azimuthal direction, which are 
rotationally symmetric and proportional to the modulus 
s of the field angle. For typical integration times of 1 min, 
both tracking errors should be small fractions of 1 arcsec.

3.4  Atmospheric dispersion

The field dependence of the atmospheric dispersion can 
be split into two parts. First, an average component, 
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which is constant across the field and, second, a com-
ponent, which varies linearly across the field along the 
altitude direction. The average part is the dominant 
one.

4   Field patterns of spot sizes and 
ellipticities

4.1   Spot sizes and ellipticities in a rotationally 
symmetric system

4.1.1  Wavefront error

In a rotationally symmetric system, the moduli of the field 
aberrations are rotationally symmetric and, therefore, 
independent of ϑ. In addition, θm, j(ϑ) in Eq. (27) is given 
by  θm, j(ϑ) = ϑ. The general wavefront error can then be 
written as:

 
, ,

0 1
( , ) ( ) ( ) cos ( ).m j m j

m j
w r F s B r mϕ ϕ ϑ

∞ ∞

= =

= −∑∑ �

 
(30)

where Fm, j(s) is a polynomial in s.

4.1.2  Spot sizes

Using Eq. (4) and the orthonormality of the derivatives of 
the slope Zernike polynomials expressed in Eq. (19), the 
contributions of the wavefront error to the mean square of 
the spot size is given by:

 

2 2
spot ,2

0 1p

1( ) ( )m j
m j

d s F s
r

∞ ∞
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(31)

4.1.3  Ellipticities

Ellipticities are generated either by coma S1, j(r, ϕ) alone or 
by combinations of two terms.

Coma
In the case of coma, with

 

1, 1, , c
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the quantities  and α(ϑ) are, using the factor β1, j, 1, j = 1/2 
from Table 1, given by:

 

2
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1 ( ) ,
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j
F s
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∞
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(33)

 .α ϑ=  (34)

As expected, in a rotationally symmetric system the 
elongation patterns generated by coma always follow a 
onefold rotational symmetry. After doubling the angle 
ϑ, the x- and y-components of the ellipticities are given 
by:
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Because the rotational symmetry of these expressions 
is equal to 2 and the powers of s in 2

1, ( )jF s  are even and 
equal or larger than 2, these expressions can easily be 
expanded in terms of Zernike polynomials Z2, j(s, ϑ).

Combinations of two aberrations
In the case of combinations of two terms, one can restrict 
the calculation of ellipticities to combinations with m1 = m, 
m2 = m-2, j1 = j, j2 = j+1:
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Using the factors βm, j, m-2, j+1 defined in Table 1, the quanti-
ties  and α(ϑ) are given by:

 
, , 2, 1 , 2, 12

p

1 ( ) ( ),m j m j m j m jF s F s
r

β − + − +=e

 
(38)

 .α ϑ=  (39)

Similar to the case of coma, in a rotationally symmetric 
system the elongation patterns generated by combina-
tions of aberrations always follow a onefold rotational 
symmetry. After doubling the angle ϑ, the x- and y-compo-
nents of the ellipticities are given by:

 
x , , 2, 1 , 2, 12

p

1 ( ) ( ) cos2 ,m j m j m j m jF s F s
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β ϑ− + − +=e

 
(40)
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y , , 2, 1 , 2, 12

p

1 ( ) ( ) sin2 .m j m j m j m jF s F s
r

β ϑ− + − +=e

 

(41)

The powers of s in the expansions of Fm, j(s) and Fm-2, j+1(s) 
are either both even or both odd. Therefore, the powers in 
an expansion of the product Fm, j(s)Fm-2, j+1(s) are all even. 
Given that, in addition, the rotational symmetries in the 
expressions in Eqs. (40) and (41) are equal to 2, these 
expressions can be expanded in terms of Zernike polyno-
mials Z2, j(s, ϑ).

4.1.4  Nominal ellipticities in the VST

According to Table 2, the maximum significant powers of 
s are 8 for F2, 1(s)F0,2(s), 6 for 2

1, 2 ( ),F s  4 for F2, 2(s)F0,3(s) and 
2 for 2

1, 3( ).F s  Therefore, a description of the nominal ellip-
ticity pattern in the VST requires the Zernike polynomials 
Z2, j(s, ϑ), with j = 1, 2, 3, 4.

Figure 6 shows the normalized ellipticities /WL, 
gene rated by S1, 2(r, ϕ), S1, 3(r, ϕ) and by the combinations 
of S2, 1(r, ϕ) with S0, 2(r) and S2, 2(r, ϕ) with S0, 3(r). Because 
the coefficients of the slope Zernike polynomials do not 
decline as fast with the order of the polynomials as the 
coefficients of the Zernike polynomials, also the last pair 
{S2, 2, S0, 3} significantly contri butes to the ellipticities.

Figure 6 also demonstrates that the ellipticities gener-
ated by the nominal aberrations are well above the weak 
lensing threshold WL.
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Figure 6 Ellipticities  generated by nominal low-order aberrations 
and the sum of these ellipticities (red) in an optically perfect VST.

Figure 7 shows the expected rotationally symmetric 
ellipticity pattern for the optically perfect VST with the 
true angles α and Figure 8 shows the ellipticity vectors �e  
with the angles 2α. The length of the red horizontal bars at 
the top of Figures 7 and 8 corresponds to 10WL.

4.2   Spot sizes and ellipticities due to single 
aberrations

Some low-order aberrations contain terms that are due 
to more than one error source and have different field 
dependencies. This section shows that also in this case 
the field dependencies of the sum of these terms can be 
expressed by Zernike polynomials.

4.2.1  Defocus

Let c0, 2(s) be the field coefficient of the S0, 2(r) representing 
nominal, rotationally symmetric defocus, c0, 2, co the coeffi-
cient of an S0, 2(r) that is constant across the field, and c0, 2, lin 
the coefficient of an S0, 2(r) with a linear field dependence as 
defined in Eq. (29), setting ϑ0,2 = 0. The contribution to the 
spot size is given by:

 

2 2
spot ,0, 2 0, 2 0, 2, 0, 2,co2

p

1( , ) ( ( ) cos )d s c s c s c
r

ϑ ϑ= + +lin

 
(42)

Because c0, 2(s) is a polynomial with even powers of s, the 
field dependence of 2

spot ,0, 2d  can be expressed in terms of 
Zernike polynomials Z0, j(s), Z1, j(s) and Z2, 1(s, ϑ).

4.2.2  Third-order coma

Let c1,2(s) be the field coefficient of S1, 2(r, ϕ) represent-
ing nominal, rotationally symmetric third-order coma, 
and c1, 2, co, c and c1, 2, co, s the coefficients of S1, 2, c(r, ϕ) and 
S1, 2, s(r, ϕ), respectively, that are constant across the field. 
The contribution to the spot size is given by:
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Coma alone also generates ellipticities. The contributions to 
the x- and y-components of the ellipticity 1, 2

�
e  are given by:
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Because c1,2(s) is a polynomial with odd powers of s and, 
therefore, 2

1, 2 ( )c s  a polynomial with even powers of s, 
the expression for 2

spot , 1, 2 ( , )d s ϑ  can be written in terms 
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Figure 7 Pattern of the ellipticities  with the true angles α of the 
perfect VST.
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Figure 8 Pattern of the ellipticity vectors �e  with doubled angles 2α 
of the perfect VST.

of Zernike polynomials Z0, j(s) and Z1, j(s, ϑ) and the ones 
for x (s, ϑ) and y (s, ϑ) in terms of Z0, j (s, ϑ), Z1, j (s, ϑ) and  
Z2, j (s, ϑ).

4.2.3  Astigmatism

Let c2, 1(s) be the field coefficient of the S2, 1(r, ϕ) represent-
ing nominal, rotationally symmetric third-order astig-
matism, c2,  1, c and c1, 2, s the coefficients of S2, 1, c(r, ϕ) and 
S2, 1, s(r, ϕ), respectively, that are constant across the field, 
and c2, 1, lin the coefficient of linear astigmatism defined in 
Eq. (28). The contribution to the spot size is given by:
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Because c2, 1(s) and therefore also 2
2,1( )c s  are polynomials 

with even powers of s, the expression for 2
spot ,1,2 ( , )d s ϑ  can 

be written in terms of Zernike polynomials Z0, j(s), Z1, j(s, ϑ) 
and Z2, j(s, ϑ).

4.3  Tracking and field rotation

Normal tracking errors generate a constant ellipticity, 
which has to be added vectorially to other ellipticities. 
A particular tracking error is an incorrect field rotation. 
With the length of the arc being proportional to the field 
radius s, the moduli  of the generated ellipticities are pro-
portional to s2. In addition, after doubling the angle, the 
orientation changes with 2ϑ. Therefore, the field depend-
ence of the x- and y-dependence of these ellipticities can 
be expressed by Z2, 1(s, ϑ).

With s = 0.7° at the corner of the field, a seeing with an 
rms of 0.5 arcsec and a field rotation error of ϕfr = 0.1 arcsec, 
one would get ≈20WL.

4.4  Lateral shift of the field center

A lateral shift of the field center would shift the centers of 
the contributions due to the rotationally symmetric field 
errors. It is assumed that the shift is identical for all contri-
butions. If Zernike polynomials are fitted using the shifted 
field center as the center of the polynomials, the fit should 
only contain Zernike polynomials that appear in a system 
where the true field center is in the center of the detector.
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The shift of any other aberration can always be 
expressed by a sum of the aberration and lower-order 
aberrations, all expressed in terms of slope Zernike poly-
nomials. For example, shifted linear astigmatism can be 
written as a sum of centered linear astigmatism and con-
stant astigmatism. However, in wide-field telescopes, the 
shift of the field center is expected to be insignificant com-
pared with the field diameter.

4.5  Atmospheric dispersion

The part of the atmospheric dispersion that is constant 
across the field generates field-constant ellipticities, 
whereas the variable part generates ellipticities that can 
be described by Z1, 1(s, ϑ). Over a wavelength band from 
562  nm to 696 nm, typically used in survey telescopes, 
and at a zenith distance of 45°, the average ellipticity from 
atmospheric dispersion is of the order of 40WL, whereas 
the variation of the ellipticities over a field of 1.5° is only 
of the order of 2WL.

4.6  Degeneracies

Degeneracies in the ellipticities �e  are due to several 
effects.

 – The moduli of the ellipticities are proportional to 
the squares of the coefficients of aberrations with 
rotational symmetry 1 and to the products of the 
coefficients of two different aberrations. Therefore, 
they remain unchanged under the inversion of the 
signs of the aberrations.

 – Different aberrations and combinations of aberrations 
can generate the same ellipticities. One example is any 
coma S1, j(r, ϕ) on the one hand, and a combination of 
astigmatism S2, 1(r, ϕ) and defocus S0, 2(r) on the other 
hand, all of them constant across the field.

 – The average part of the atmospheric dispersion 
can generate constant ellipticities similar to the 
aberrations in the previous item. The variable part 
of the atmospheric dispersion can, like several other 
combinations of telescope aberrations, generate 
ellipticities with a Z1, 1(s, ϑ) dependence.

Therefore, in a hypothetical perfect optical system 
without any field aberrations, it would not be possible to 
unambiguously determine all optical errors due to mis-
alignments and mirror deformations. However, in real 
systems such as wide-field telescopes, the already exist-
ing nominal field aberrations lift at least some of these 
degeneracies.

For example, for defocus S0, 2(r), third-order coma  
S1, 2(r, ϕ) and third-order astigmatism S2, 1(r, ϕ), a field-con-
stant term will be added to the nominal term. The modi-
fications of the patterns due to telescope errors will then 
depend on the nominal field aberration and will, there-
fore, be different from the merely field-constant elliptici-
ties as in the case without nominal field aberrations.

4.7   Example of an ellipticity pattern due to 
telescope aberrations

Consider the ellipticity pattern that is generated by a rota-
tionally symmetric third-order astigmatism S2, 1(r, ϕ) and 
a defocus S0, 2(r) due to a tilt of the focal plane about the 
y-axis. The wavefront error is then described by the sum of:
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and

 def 0, 2,lin 0, 2( , , )  cos ( ).w s r c s S rϑ ϑ=
 

(48)

Using Eqs. (3), (5), (6) and (66) to (71) and the factor 
β2, 1, 0, 2 = 2 from Table 1, one obtains for the dependence of  
and the true angle α on the field coordinates
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The field dependence of  with the true angle α is shown 
in Figure 9. The angle is only in agreement with Eq. (50) if 
the sudden rotation of the orientation by 90° on the y-axis 
of the field is interpreted as a change of the sign in the 
expression for . After doubling the angle α, the angle of 
the vector �e  changes by 180° along the x-axis, as shown 
in Figure 10. Again, these considerations justify the defini-
tion of the angles in Section 2.1.

The field dependencies of the x- and y-components of 
�
e  are given by:
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According to Table 2, for the VST the highest power 
of s in the polynomials F2, 1(s) is 4. Consequently, the 
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dependencies of the expressions in Eqs. (51) and (52) 
on the field radius s can be expressed as polynomials 
with odd powers of s and a minimum power of 3 and a 
maximum power of 5. Therefore, the field dependencies 
of the x- and y-components of �e  contain the Zernike poly-
nomials Z1, 1(s, ϑ), Z1, 2(s, ϑ), Z1, 3(s, ϑ), Z3, 1(s, ϑ) and Z3, 2(s, ϑ).

Further examples for ellipticity patterns generated by 
specific telescope aberrations are given in Appendix 7.4.
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Figure 9 Ellipticities with true angles α generated by defocus 
S0, 2(r), due to a tilt of the focal plane, with c0,2, lin = 1000 nm and 
nominal third-order astigmatism S2, 1(r, ϕ) of the VST.

0.4

0.2

0

-0.2

-0.4

-0.4 -0.2 0.2 0.40

Length of horizontal line equivalent to 10�WL

Figure 10 Ellipticities vectors �e  with angles 2α generated by 
defocus S0, 2(r), due to a tilt of the focal plane, with c0, 2, lin = 1000 nm 
and nominal third-order astigmatism S2, 1(r, ϕ) of the VST.

4.8  Noise

Three sources of noise will affect the measurement of the 
effects of telescope errors on the spot sizes and elliptici-
ties. One is the noise in the measurement of the spot sizes 
and ellipticities of individual spots (shot noise, read-out 
noise, finite pixel size, etc.), the second one is due to aber-
rations generated by atmospheric turbulence, and the 
third one is caused by the dependence of the nominal tel-
escope aberrations on the wavelength of the light.

4.8.1  Photon noise

For a single star the measurement noise is expected to be 
Gaussian. The ultimate precision with which the elliptici-
ties can be measured is related to the precision with which 
the rms values of the spot sizes in the direction of the long 
and short axes can be measured. The precision limit or 
Cramér-Rao bound can be estimated by calculating the 
related Fisher information.

Assuming an elliptical Gaussian profile for the spots, 
the probability distribution for the intensities of a spot 
centered at the origin is given by:
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(53)

The integral over the x-y-plane is equal to 1, which corre-
sponds to the case of a single photon. The Fisher informa-
tion for σx can be defined as:
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The ultimate measuring precision of the mean square of 
the spot in x-direction is then given by:

 
x
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F

1 .
Iσ

σ =
 

(55)

Introducing Eq. (53) into Eqs. (54) and (55) one obtains for 
one photon:

 x x .
σ

σ σ=
 

(56)

Therefore, the ultimate precision for the measurement 
of the second moments of a spot is the same as for the 
measurement of its centroid. With an expected number of 
approximately 104 photo electrons per spot, the ultimate 
precision limit for measuring the rms of the spot size in 
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any direction is of the order of 0.01σx. Therefore, the errors 
in the measurement of the ellipticities  are of the order of 

4 2
seeing2 10 ,σ−⋅  which, according to Eq. (11), is equivalent 

to η≈7·10-5. This noise can be reduced by averaging over 
several stars in a given subfield.

4.8.2  Atmospheric noise

Atmospheric turbulence generates wavefront aberrations, 
especially in the low-order modes. For very short expo-
sures the aberrations are decorrelated already for field 
angles of a few arcseconds. For longer exposure times, the 
isoplanatic angles increase. Because they decrease with 
the order of the modes, the correlation of the coefficients 
of the modes across the field will also decrease with the 
order of the modes.

The effect of the atmosphere can possibly be 
measured by comparing the patterns of the spot sizes 
and ellipticities taken in close succession with similar 
 inclinations of the telescope tube. In telescopes such 
as the ESO VLT, even for exposure times of the order 
of 30  s, the noise due to the atmosphere is signifi-
cantly larger than the noise due to the centroiding of 
the Shack- Hartmann spots [14]. The same may be the 
case here, that is, the atmospheric noise may be larger 
than the noise due to the measurements of the second 
moments. As a consequence, if the patterns of spot sizes 
and ellipticities across the field are expanded in Zernike 
polynomials, the coefficients of the polynomials should 
decrease in a characteristic way with the order of the 
polynomials.

As measured at the VLT [14], under average seeing 
conditions of σseeing≈0.5 arcsec and integration times of 
approximately 30 s, the coefficients of Z0, 2(r), Z1, 2(r, ϕ) 
and Z2, 1(r, ϕ) vary by approximately 120 nm, 85 nm and 
140 nm rms, respectively. Scaled down to the diameter of 
the VST, the coefficients of S0, 2(r), S1, 2(r, ϕ) and S2, 1(r, ϕ) 
all vary by approximately 200  nm rms. Then, S1, 2(r, ϕ) 
would generate ellipticities of approximately WL and 
the combination of S2, 1(r, ϕ) with S0, 2(r) ellipticities of 
approximately 3WL.

4.8.3   Errors due to the dependence of aberrations on 
wavelength

For the VST, Figure 11 shows the strong dependence of the 
radial field dependence of the coefficient cs, 2, 1(s) of third-
order astigmatism S2, 1(r, ϕ) on the wavelength over a range 
of 354 nm–880 nm. This strong wavelength dependence 
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Figure 11 Dependence of the coefficient of S2, 1(r, ϕ) of third-order 
astigmatism on the radial field coordinate s in degrees and on the 
wavelength λ of the light.

also occurs for the coefficients cs, 2, 1(s) of defocus S0, 2(r) 
and cs, 1, 2(s) of third-order coma S1, 2(r, ϕ).

Consequently, a random distribution of the star colors 
would considerably increase the noise in the spot size and 
ellipticity measurements.

However, in wide-field telescopes, exposures are 
usually taken with filters like the R-band filter in the VST 
with bandwidth of the order of 130 nm, for which the 
variations of the coefficients with wavelength are more 
constrained.

Nevertheless, Figure 12 shows that, towards the 
corners of the field, even over such ranges the nominal 
ellipticities can vary by 10WL.

4.9   Comparison with Shack-Hartmann 
measurements

A comparison with the precision of a Shack-Hart-
mann measurement will be done under the following 
assumptions.

 – The method introduced here uses nsf subfields with 
one star in each subaperture.

 – All stars deliver the same number nph of photons.
 – The only noise is the photon noise.
 – The only aberrations are a constant defocus and the 

ones generated by the atmosphere.
 – For one photon, the rms of the centroiding error in the 

x-direction is then given by seeing / 2 .σ
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On the one hand, in the case of the Shack-Hartmann meas-
urement, the rms σ0, 2, sz of the error of the measurement of 
the coefficient of defocus S0, 2(r) is given by:

 

p seeing p
0, 2, sh seeing

ph ph2 2 2

r r

n n

σ
σ σ= =

 
(57)

This result is independent of the number of sub apertures.
On the other hand, the rms σsz of the spot size derived 

from measurements of second moments is given by:
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Regarding σseeing as a fixed parameter, one obtains for 
the rms of the variations on both sides of the equation:
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Finally, setting 
sz seeingσ

σ σ=  from Eq. (56), one obtains for 
the rms σ0, 2, sz of the coefficient of defocus from measure-
ments of the spot size with nph photons:
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Figure 12 Dependence of the total normalized nominal ellipticity 
on the radial field coordinate s in degrees and on the wavelength λ 
of the light.

A comparison with Eq. (57) shows that the precision of the 
measurement of the coefficient of defocus from the size of 
the spot of one star is approximately the same as the one 
from a Shack-Hartmann measurement. With nsf subfields 
the precision limit is given by:
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0, 2, sz seeing

sf ph

.
r

n n
σ σ=

 
(61)

It is, therefore, much lower than the precision limit for a 
Shack-Hartmann measurement with a single star.

Similar considerations apply for the use of ellipticities 
to measure, for example, the precision of the product of 
the coefficients of defocus S0, 2(r) and third-order astigma-
tism S2, 1(r, ϕ).

5  Processing of the ellipticity data

5.1   Elimination of outliers and averaging 
across subfields

First, the data are filtered by eliminating spots that are 
too dim or too bright or yield measured values of the spot 
sizes and of the moduli of the ellipticities �e  outside rea-
sonable ranges.

Then, the field is divided into typically 16 by 16 
subfields. Within each subfield the extreme data are 
eliminated by a median filter and the remaining data 
are averaged over the subfields. Figure 13 shows such a 
pattern of ellipticities �e  based on a 30-s exposure with 
the VST after an active optics correction under average 
seeing conditions [15]. Obviously, the pattern is differ-
ent from the one of the perfect system shown in Figure 8. 
Hence, aberrations have a strong impact on the patterns 
and should be deducible from the patterns.

5.2   Fitting of telescope errors to spot sizes 
and ellipticities

The averaged ellipticities are further processed by a fitting 
program. A straightforward, direct approach would be to 
fit the nominal telescope parameters and the telescope 
errors to the spot sizes and ellipticities, as shown by the 
path on the left hand side of Figure 14. The major problem 
is that the spot sizes and ellipticities depend in a non-
linear way on the wavefront aberrations generated by the 
telescope. Therefore, the fit requires some kind of trial and 
error procedure, which may yield solutions that do not 
correspond to the global minimum.
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Figure 13 Smoothed and averaged ellipticities �e  with doubled 
angles, measured at the VST.
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Figure 14 Procedures for fitting telescope errors to field patterns of 
ellipticities and spot sizes.

5.3   Fitting of Zernike polynomials, telescope 
aberrations and telescope errors

To gain more insight into the dependencies between 
the spot sizes and the ellipticities on the one hand and 
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Figure 15 Ellipticities �e  described as a sum of 12 Zernike polyno-
mials fitted to the measured pattern shown in Figure 13.

telescope errors on the other hand, one may break up the 
fitting procedure into three steps, as shown by the path on 
the right hand side of Figure 14.
1. Zernike polynomials are fitted to the field 

dependencies of the spot sizes and ellipticities, which 
is a linear process. Figure 15 shows the fitted pattern 
of ellipticities using the Zernike polynomials Z0, 1, Z0, 2, 
Z0, 3, Z1, 1, Z1, 2, Z1, 3, Z2, 1, Z2, 2, Z2, 3, Z2, 4, Z3, 1 and Z3, 2; all 
of them functions of s and ϑ. Collecting the Zernike 
polynomials derived in Section 4 and Appendix 7.4, 
this is the full set of Zernike polynomials in the field 
patterns of the spot sizes and ellipticities that can be 
generated by telescope aberrations.
 The fitted pattern looks very similar to the pattern in 
Figure 13. Figure  16 shows the residual ellipticities, 
which do not exhibit any regular features. The resid-
ual noise is of the order of 7WL, which is of the same 
order of magnitude as the noise estimated in Sections 
4.8.2 and 4.8.3.

2. Pupil aberrations with specific field dependencies, which 
are generated by the perfect telescope and by telescope 
errors, are fitted to the coefficients of the Zernike 
polynomials. As discussed in Section 3, for a telescope 
such as the VST these would be nominal defocus, third-
order coma and third-order astigmatism, field-constant 
defocus, third-order coma, third-order astigmatism and 
trefoil, and linear defocus and astigmatism, defined in 
Eqs. (28) and (29), respectively. In addition, one has to 
take into account tracking errors and the largely known 
contributions from atmospheric dispersion.
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 The relationships between the aberrations and the 
Zernike polynomials, discussed in Section 4, show 
that this is a non-linear fit, where degeneracies are not 
easily identified and which may run into false minima.

3. The telescope errors are fitted to the field aberrations. 
For the VST, the telescope errors would be the ones 
discussed in Section 3.3, which are misalignments 
and mirror deformations. This fit is, similar to the first 
one, a linear fit (projection), where degeneracies can 
be detected by singular value decomposition.

A similar analysis can be done for the patterns of the spot 
sizes. Because the telescope errors can only generate field 
dependencies with a maximum rotational symmetry of 2, 
only the first 10 of the 12 Zernike polynomials mentioned 
under point 1 above need to be fitted to the patterns of the 
spot sizes.

Because of the degeneracies mentioned above, the 
non-linear fit may lead to different solutions, which, nev-
ertheless, all lead to similar residual errors. Additional 
information, as for example from sensors at the edge of 
the field, may be useful for disentangling the errors and 
finding the true solutions. The application of the method 
introduced here to control the image quality of the VST 
will be presented in a forthcoming paper.

6  Conclusions
Telescope aberrations generate variations in the spot 
size and in the ellipticities across the field that are often 
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Figure 16 Residual ellipticities �e  after subtracting a sum of 12 
Zernike polynomials fitted to the measured pattern shown in Figure 13.

significantly larger than the ones due to centroiding or 
atmospheric noise. Using a large number of stars across 
the field, all of these patterns can be accurately described 
in terms of Zernike polynomials depending on field coor-
dinates. The residual ellipticities after fitting a few low-
order Zernike polynomials are of the order of the expected 
noise. The telescope errors can be deduced from a fit of 
telescope parameters to either the spot size and ellipticity 
patterns directly or to the coefficient of the best-fit Zernike 
polynomials describing the field pattern.

The removal of all features in the patterns that are 
generated by telescope aberrations should simplify the 
task of detecting systematic patterns that are generated by 
other sources.

7  Appendix

7.1   Notations used for Zernike polynomials 
Zm, j and slope Zernike polynomials Sm, j

Table 4 Correspondence between indices m, j, the Noll notation 
and commonly used names for Zernike polynomials.

m  j  Noll notation  Name

0  1  Z1   Piston
0  2  Z4   Defocus
0  3  Z11   Spherical aberration
1  1  Z2, Z3   Tilt
2  2  Z7, Z8   Third-order coma
3  3  Z16, Z17   Fifth-order coma
2  1  Z5, Z6   Third-order astigmatism
2  2  Z12, Z13   Fifth-order astigmatism
3  1  Z9, Z10   Trefoil

7.2   Relationships between normalized 
and non-normalized Zernike and slope 
Zernike polynomials

If modified radial components Rm, j(r) and Bm, j(r) are 
defined by:
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the relationships between Zernike and slope Zernike poly-
nomials are given by:
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(65)

With n = m+2(j–1), the functions Rm, j(r) and Bm, j(r) are iden-
tical to the functions ( )m

nR r  and ( )n
mB r  in [11].

7.3   Expression of the derivatives of slope 
Zernike polynomials in terms of Zernike 
polynomials

The derivative of a slope Zernike polynomial Sm, j, a(r, ϕ) with 
respect to x and y can be expressed as a single Zernike poly-
nomial Z1, j, a(r, ϕ) for m = 0 or as a sum of two Zernike polyno-
mials Zm, j, b(r, ϕ) and Zm+1, j-1, b(r, ϕ) for m > 0, with a, b∈{c, s}.

 
0, 0, 1, 1, c( ) ( , ),j j jS r a Z r

x
ϕ−

∂ =+
∂  

(66)

 
0, 0, 1, 1, s( ) ( , )j j jS r a Z r

y
ϕ−

∂ =+
∂  

(67)

 
, ,c , 1, 1,c , 1, ,c( , ) ( , ) ( , ),m j m j m j m j m jS r a Z r b Z r

x
ϕ ϕ ϕ+ − −

∂ =+ +
∂  

(68)

 
, ,c , 1, 1, s , 1, , s( , ) ( , ) ( , ),m j m j m j m j m jS r a Z r b Z r

y
ϕ ϕ ϕ+ − −

∂ =+ −
∂  

(69)

 
, , s , 1, 1, s , 1, , s( , ) ( , ) ( , ),m j m j m j m j m jS r a Z r b Z r

x
ϕ ϕ ϕ+ − −

∂ =+ +
∂  

(70)

 
, , s , 1, 1,c , 1, ,c( , ) ( , ) ( , ).m j m j m j m j m jS r a Z r b Z r

y
ϕ ϕ ϕ+ − −

∂ =− +
∂  

(71)

The values for the coefficients am, j and bm, j are shown in 
Table 5.

Table 5 Coefficients used in Eqs. (66) to (71).

m  c, s  j  ∂/∂x, ∂/∂y   am, j  bm, j

0  c, s   > 1  ∂/∂x, ∂/∂y   1/ 2  0
1  c   1  ∂/∂x   0  1

    1  ∂/∂y   0  0
     > 1  ∂/∂x   1/2  1/ 2
     > 1  ∂/∂x   1/2  0

1  s   1  ∂/∂x   0  0
    1  ∂/∂y   0  1
     > 1  ∂/∂x   1/2  0
     > 1  ∂/∂y   1/2  1/ 2

 > 1  c, s  1  ∂/∂x, ∂/∂y   0  1/ 2
     > 1  ∂/∂x, ∂/∂y   1/2  1/2

7.4   Examples of ellipticity patterns due to 
telescope aberrations

7.4.1   Linear astigmatism and defocus due to tilt of focal 
plane

A linear astigmatism that is symmetric to the x-axis and a 
linear defocus generated by a tilt of the focal plane around 
the y-axis are described by:
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and by Eq. (29) with ϑ0, 2 = 0, respectively. Similarly to 
Section 4.7 one obtains the following expressions:
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Because the dependence on the radial field variable 
s is proportional to s2, the field dependencies can be 
expressed in terms of Zernike polynomials Z0, 1, c(s), Z0, 2, c(s) 
and Z2, 1, c(s, ϑ) for x and Z2, 1, s(s, ϑ) for y.

7.4.2  Linear astigmatism and nominal defocus

A linear astigmatism that is symmetric to the x-axis is 
described in Eq. (72) and a rotationally symmetric nominal 
defocus by:
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The dependencies of the expressions on the field radius 
s can be expressed as polynomials with odd powers 
of s. Therefore, the field dependencies of the x- and 
 y-components of �e  contain the Zernike polynomials 
Z1, j(s, ϑ) with j  ≥  1.

7.4.3  Trefoil and coma

In the VST, nominal trefoil is negligible. However, the coef-
ficient c3, 1, c of field-constant S3, 1, c(r, ϕ) in the VST may be 
of the order of 300 nm. Together with nominal third-order 
coma S1, 2(r, ϕ), it may generate ellipticities of the order of 
8WL with the field dependencies:
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Because F1, 2(s) is a polynomial in s with only odd powers, 
x can be expressed by Zernike polynomials Z1, j, c(s, ϑ) and 
y by Zernike polynomials Z1, j, s(s, ϑ).
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