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Active optics with a minimum number of actuators

Abstract: Optics for astronomy implies powerful develop-
ments of active and adaptive optics methods applied to 
instrumentation from X-rays to the near infrared for the 
design of telescopes, spectrographs, and coronagraph 
planet finders. This presentation particularly emphasizes 
the development of active optics methods. Highly accurate 
and remarkably smooth surfaces from active optics meth-
ods allow new optical systems that use highly aspheric 
and non-axisymmetric – freeform – surfaces. Depend-
ing on the goal and performance required for a deform-
able optical surface, elasticity theory analysis is carried 
out either with small deformation thin plate theory, large 
deformation thin plate theory, shallow spherical shell the-
ory, or the weakly conical shell theory. A mirror thickness 
distribution is then determined as a function of associated 
bending actuators and boundary conditions. For a given 
optical shape to generate, one searches for optical solu-
tions with a minimum number of actuators.
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1  Introduction
Active optics methods are reviewed using various con-
cepts of deformable astronomical optics, which have 
been elaborated in our optical laboratory of the Marseille 
Observatory – LOOM – since the 1970s, and also at other 

astronomical institutes around the world. Elasticity anal-
yses and optical designs allow the optimization of sub-
strate geometry with appropriate boundary conditions 
for applying bending forces. For materials having a linear 
stress-strain relationship, such as glass and some metal 
alloys, these methods provide accurate optical deforma-
tion modes, which fully satisfy diffraction-limited criteria.

2   Elasticity methods and active 
optics

Among various field applications of active optics methods, 
are the following:

 – stress figuring processes of optical surfaces with large 
aspherization capability,

 – in situ shaping processes of telescope mirrors with 
large aspherization capability,

 – in situ reshaping and alignment of large telescope 
optics with closed-loop wavefront sensors,

 – variable curvature – or zoom – mirrors for field 
cophasing of telescope arrays and two-arm 
interferometers,

 – aberration-corrected diffraction gratings made by 
replication from actively aspherized submasters,

 – deformable compensators for photosynthesis 
holographic recording of corrected gratings.

Optimal elasticity designs led us to consider various 
substrate classes: constant thickness, quasi-constant 
thickness, variable thickness, and hybrid thickness. The 
elasticity theory of thin plates provides accurate results 
when the curvature of the middle surface of the substrate 
is small, whereas the theory of shallow shells is required 
for more curved substrates, say for mirrors faster than f/3. 
The large deformation theory allows accurate designs 
for variable curvature mirrors with large zoom ranges. 
Results from the new theory of weakly conical shells are 
presented for X-ray telescope using tubular mirrors.

A book on Active Optics Methods including analytic 
developments of elasticity theory and results from optical 
testing has been recently published by the author [1].

*Corresponding author: Gerard R. Lemaitre, Laboratoire 
d’Astrophysique de Marseille, LOOM, Aix Marseille Université and 
CNRS, 38 rue Fréderic Joliot-Curie, F-13388 Marseille CX 13, France, 
EU, e-mail: gerard.lemaitre@lam.fr

© 2014 THOSS Media and De Gruyter

www.degruyter.com/aot

mailto:gerard.lemaitre@lam.fr


224      G.R. Lemaitre: Active optics with actuators

Figure 1 Schmidt wide-field telescope design.

3   Origins of Active Optics – the 
Schmidt telescope

To avoid surface discontinuities or ripple errors caused 
by local retouching with small figuring laps, B. Schmidt, 
inventor of the wide-field telescope (Figures 1 and 2), 
suggested around 1932 that an aspheric surface could be 
obtained by elastic relaxation after spherical figuring with 
a full aperture lap. Schmidt’s idea of obtaining smooth 
aspheric surfaces – i.e., free from high spatial frequency 
errors – remained of great potential interest and was 
also advocated by H. Chrétien in his book Combinaisons 
Optiques.

3.1  Single-zone loading method

Although B. Schmidt partly experimented its single-vac-
uum-zone method (Figure 3) when making his f/1.75 tel-
escope in 1931, he finished the 36-cm-corrector plate with 
the local-retouch method for which he was a renowned 
expert who aspherized many telescope mirrors for Euro-
pean observatories. The origin of aspherizing a corrector 
plate via complete active optics goes back to E. Everhart 

Figure 2 Kerber profile of Schmidt corrector plate. Balance of 
slopes minimizes spherochromatism.

Figure 3 Corrector plate aspherization by single-zone loading 
method with spherical full-size lap.

[2] in 1965 who applied the method in making a 29-cm cor-
rector plate for a Wright-type telescope at f/5. He solved 
for and published the design elasticity parameters derived 
from the fourth-derivative Poisson equation of thin plate 
theory for constant thickness. The flexure z(r) is a biquad-
ratic polynomial solution of

 2 2 ( ) / 0,z r q D∆ ∆ + =   (1)

where Δ2 is the Laplacian operator, r is the current 
radius, q the uniform load applied over the cylindrical 
plate when supported at its edge, and D the rigidity – 
a constant proportional to the third power of the plate 
thickness t [1].

3.2  Double-zone loading method

Kerber’s law (1886) [1] for achromatic doublet lenses also 
applies to an aspheric singlet plate. It states that resid-
ual sphero-chromatism is minimal when the aspheric 
profile of a refractive corrector plate provides an algebraic 
balance of the slopes [1], i.e., an aspheric surface of the 
form
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Figure 4 Corrector plate aspherization by double-zone loading 
method with flat full-size lap.

where z0 is a constant and ρ∈[0,  1] the dimensionless 
aperture radius r/rmax. Hence, from Eq. (2), the null-power 
zone – no deviation of a ray – is located at the optical plate 
height = √3/2 = 0.866.

The above single-zone loading method does not 
provide a flexure expressed in Eq. (2). When the flexural 
ρ4 term is conveniently set to compensate for third-order 
aberration, it generates a ρ2-term much larger than that in 

Figure 5 He-Ne interferograms of equal-thickness fringes of plates aspherized by the double-zone method. Left: 10-cm clear aperture plate 
at f/2. Right: 10-cm clear aperture plate at f/1.2.

Eq. (2). This requires use of a spherical lap of convenient 
curvature to obtain a Kerber profile. This method presents 
technical difficulties caused by the lack of control of the 
lap radius of curvature during polishing and thus control 
of the null-power zone location.

Because of these difficulties, Lemaitre proposed the 
double-zone loading method [3] with full-size plane fig-
uring laps (Figure 4). Solving Eq. (1) with two concentric 
uniform loads allows this method to directly provide a 
flexure of opposite sign to that of Eq. (2). Developments 
at LOOM have led to about a hundred corrector plates 
from f/3:5 up to f/1:1 for telescopes, spectrographs, 
and embarked cameras up to 62-cm clear aperture [1] 
(Figures 5 and 6). A Schott BK7 62-cm clear aperture cor-
rector plate for the Franco-Belgium Schmidt telescope 
(Figure 7) at the Haute Provence Observatory (OHP) 
was aspherized with this method to replace the original 
plate.

4   Variable curvature mirrors (VCMs) 
for telescope arrays and Fourier 
interferometers z = A20r2

Telescope array interferometers and infrared Fourier 
transform interferometers require use of variable curva-
ture mirrors (VCM). These mirrors are located at the focal 
surface of retro-reflective devices called cat’s eye systems 
(Figure 8). Such optical systems are mounted on carriage 
translators to provide the optical path compensation due 
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Figure 6 Intra-focus patterns of a star obtained with 62-cm aperture plates, aspherized (A) by zonal retouch and (B) by stress figuring, of 
the 62/90-cm Franco-Belgium Schmidt telescope (LOOM).

Figure 7 Franco-Belgium 62/90-cm Schmidt telescope at f/3.3 
(Haute Provence Observatory and LOOM).

Figure 8 Optical design of a retro-reflective cat’s eye system. The VCM is mounted at the focal surface of M1 mirror and provides the optical 
path compensation of the field-of-view or field cophasing. This allows control of the location p3′ of the output pupil with respect to the input 
pupil at p1. This active pupil transfer is aplanatic if M1 and M3 are Mersenne confocal paraboloids.

to the Earth rotation during observations. While trans-
lation of the cat’s eye system maintains equality of the 
on-axis optical path – on-axis cophasing – the off-axis 
optical path compensation – field-of-view compensation or 
field cophasing – is achieved by a VCM. This mirror main-
tains the output pupil conjugation of the delay line at a 
fixed location before the recombination laboratory of the 
telescope array.

These active mirrors generate a first-order pure cur-
vature mode – here called Cv1 mode – of the simple form 
z = A20r2, where A20 is a constant of length dimension.

Elasticity theory can provide highly deformable 
mirrors satisfying diffraction-limited quarterwave crite-
rion by use of metal alloys having linear stress-strain rela-
tionships and a single actuator as presented hereafter.

Load configurations with constant thickness distribu-
tions – CTD class – of the substrate are generated with 
accuracy from a bending moment uniformly distributed 
along the circular mirror edge (Figure 9). Because of the 
practical complexity to generate the bending moments 
distributed at the mirror edge, these configurations have 
not yet been developed.
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Three more practicable loading configurations 
designed with variable thickness distributions – VTD class 
– have been found by Lemaitre [1, 4] and developed at 
LOOM. The first configuration, a cycloid-like form VCM, is 
associated with a uniform load. The other two, called tulip 
form VCMs, are associated with a central force (Figure 10).

Thin plate elasticity theory provides CTD or VTD con-
figurations that generate Cv1 modes of diffraction-limited 
quality for zoom ranges extending, say, from f/∞ to f/5. 
For obtaining larger zoom ranges, the elasticity theory of 
large deformations has been applied by Ferrari [6, 7] to the 
design of cycloid-like-form and tulip-form VCMs. The two 
forms shown at the top of Figure 10, with load reaction 
at the edge, were built in a stainless steel metal substrate 
by selecting the quenched alloy FeCr13, which exhibits a 
highly linear stress-strain relationship. The mirror design 
parameters are 16  mm aperture, 300 μm central thick-
ness, and 400 μm maximum flexural sag typically at 7 
bars loading. The reflective zone is simply supported by 

Figure 9 VCM configurations with constant-thickness distributions 
– CTD class.

Figure 10 VCM configurations with variable thickness distributions 
– VTD class. Thicknesses: Up-left: t/t0 = (1-ρ2)1/3 uniform loading and 
reaction at edge. Up-right: t/t0 = (-lnρ2)1/3 central force and reaction 
at edge. Down: t/t0 = (ρ2-lnρ2 -1)1/3 uniform loading and central force 
[4, 5]. Because the two latter configurations show an infinite thick-
ness at the center, one can define the central thickness t0 as that 
corresponding to a very small radius, e.g., ρ = 10-3, in agreement with 
Rayleigh’s quarter wave criterion.

Figure 11 Holosteric design of cycloid-like form (full line) and tulip 
form (dotted line) VCMs. The outer thin collar link ensures equiva-
lent boundaries to a simply-supported edge.

a 25-μm thin outer cylinder linked to a rigid ring. These 
three parts – reflective zone, outer cylinder, and rigid ring 
– are made in a single or holosteric piece. Interferometric 
tests were carried out with respect to spherical calibers of 
incremented curvatures (Figures 11–13).

The on-axis path cophasing of the VLTI array uses 
translating delay lines by Derie et al. [8] that compensate 
for the path variation caused by diurnal rotation. Each 
delay line is equipped with a VCM at the focal plane of 
a Ritchey-Chretien cat’s eye system for the off-axis path 
cophasing or field cophasing (Figures 14 and 15). The 
implementation of VCMs on ESO VLTI is eight VCMs on 
eight delay lines (four UTs, 8 m+four ATs, 2 m) and eight 
VCMs on four ATs for the phase reference imaging com-
biner PRIMA.

5   Mirrors generating single 
 aberration modes with 
a minimum number  
of actuators

We investigated four thickness class distributions for 
mirror substrates and load distributions able to separately 
generate the primary aberration modes Sphe3, Coma3, 
and Astm3 (Lemaitre [1, 9]) and using a maximum of two 
or three actuators. These thickness classes are the follow-
ing: constant thickness distribution (CTD), quasi-constant 
thickness distribution (q-CTD), variable thickness distribu-
tion (VTD), and a combination of them: the hybrid thick-
ness distribution (HTD).
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Figure 12 He-Ne interferometric null tests with respect to spherical calibers of a tulip form VCM actuated at its center by control motorized 
push drive and ball pad. Aperture diameter 16 mm, central thickness t0 = 320 μm, maximum flexural sag 227 μm, mirror zoom range f/∞ to 
f/4.4. The peak-to-valley wavefront error is lower than 600 nm for all the zoom range (LOOM).

Figure 13 He-Ne interferometric null tests with respect to spherical calibers of one of 20 cycloid-like form VCMs made for the ESO VLTI Array. 
 Aperture diameter 16 mm, central thickness t0 = 300 μm, maximum flexural sag 381 μm, maximum load 7 bars, mirror zoom range f/∞ to f/2.6 
(LOOM).

Figure 14 Four of the eight delay lines and cat’s eye systems with VCMs at the Very Large Telescope Interferometer tunnel (ESO).

5.1  Primary spherical aberration mode z = A40r4

From these classes, several configurations were found for 
mirrors generating a spherical aberration mode Sphe3, 

i.e., a flexure of the form z = A40r4. It can be shown [4] 
that a uniform load applied over the mirrors’ entire clear 
aperture is necessary to obtain an r4 flexure, but for con-
stant thickness plates, a uniform bending moment must 
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be applied over the outer contour to cancel the curvature 
term – i.e., the r2 flexure. However, similarly to the case 
of the Cv1 mode, the CTD class provides possible theoreti-
cal configurations (Figure 16), but these lead to some dif-
ficulty for applying the bending moments. Hence, designs 
in the VTD class are much easier to make. Three variable 
thickness distributions belonging to the VTD class were 
found by Lemaitre in 1976 [1, 4]. All of them are of tulip 
form – i.e., with infinite thickness at center – and asso-
ciated with a central force, a uniform load, or a uniform 
reaction at the circular edge (Figure 17).

A tulip form r4-deformable mirror was developed at 
LOOM for making the first Sphe3 aberration-corrected 
grating, in 1976, from a plane diffraction grating, using 
double-replication technique. A plane grating is first 

deposited on the intermediate plane-deformable tulip-
form submaster [1]. The final grating replica is obtained 
during controlled stress of the metal submaster in a FeCr13 
alloy (Figure 18). Another possibility for generating a 
Sphe3 mode is to combine the CTD and VTD classes, thus 
forming a hybrid thickness distribution (HTD) [1] class 
(Figure 19).

5.2   Balanced primary spherical aberration 
z = A20r2+A40r4

A combination of Cv1 and Sphe3 modes with A20A40 < 0 
allows reduction of the stress level in the deformable sub-
strate. These combined modes are of particular interest for 

Figure 15 Left: View of the 70-m length VLTI delay lines. Right: View of the translation carriage with a cat’s eye system made of an f/2 
Ritchey-Chrétien telescope with a VCM is located at its focus (LOOM and ESO).

Figure 16 Configurations derived from CTD class mirrors generating Sphe3 mode. (The schematic representation of the four-force set near 
the center of the mirrors means a uniform load applied all over its rear surface.)
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Figure 17 Thickness distributions derived from VTD class mirrors that generate Sphe3-mode. Up-left: t/t0 = [ρ-8/(3+ν)-1]1/3. Up-right: t/t0 = [ρ-8/(3+ν)-
ρ-2]1/3. Down: t/t0 = [((3+ν)/(1-ν))ρ-8/(3+ν)-(4/(1-ν))ρ-2+1]1/3, where ν is Poisson’s ratio.

Figure 18 Making the first Sphe3 corrected grating on a Zerodur substrate using two-stage replication. Left: Active optics submaster. 
Right: He-Ne interferogram of final replica grating (LOOM and Jobin Yvon Horiba).

Figure 19 Two solutions for generating an r4-flexure for a Sphe3 aberration-corrected mode derived from the HTD class mirrors.

any reflective systems such as high-throughput Schmidt 
cameras of spectrographs equipped with aspheric reflec-
tive gratings. Balancing Cv1 and Sphe3 modes also sub-
stantially improve the optical performance by minimizing 
residual field aberrations. Several applications and results 
are presented below.

5.2.1   Reflective Schmidt systems: telescopes and 
spectrographs

Without considering the tilt angle of the first mirror or 
grating (i.e., assuming a 100% obstruction fictive tele-
scope), a reflective Schmidt is an anastigmat, i.e., free from 
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third-order spherical aberration, coma, and astigmatism. 
An important law for the design of the first element of any 
reflective Schmidt system was found by Lemaitre [1, 10]:

⇒ A pupil reflective surface with balanced radial variation 
of its local curvatures minimizes the field aberrations of any 
reflective Schmidt system.

This law minimizes dominating residual fifth-order 
astigmatism and applies to a Schmidt primary mirror – 
such as the giant Schmidt LAMOST – as well as to imager-
spectrograph camera optics using a reflective corrector or 
an aspherized diffraction grating.

Aspherized reflective gratings provide a very compact 
optical design of the camera optics (Figure 20). Deform-
able submasters with a built-in boundary at the edge and a 
quasi-constant thickness distribution (q-CTD) were devel-
oped at LOOM to generate aspherized gratings through the 
double replication technique (Figure 21). For central wave-
lengths diffracted perpendicular to the grating surface 

(β = 0), one can show that its best surface is axisymmetric. 
In this later case, from the above law on the balance of 
curvatures, the equation of the aspheric surface must be

 
ρ ρ= 2 4

0 ( 3 - ),z z
 (3)

where z0 is a constant and ρ∈[0,  1] the dimensionless 
aperture radius r/rmax. One can check from Eq. (3) that the  
d2z/dρ2 values are balanced for ρ = 0 and 1 and that the 
optics null-power zone – no deviation of a ray – is then 
located at the dimensionless radius ρ = √(3/2) = 1.225, i.e., 
outside the maximum optical aperture 2rmax.

The q-CTD design leads to small decrease of the thick-
ness toward the submaster edge for also correcting the 
next-order aberration Sphe5. Many spectrographs have 
benefited from these gratings (CFHT Mauna Kea, Pic du 
Midi, Haute Provence and Purple Mountain Observatories, 
Space Mission Odin-Osiris, etc). These gratings were built 
either for on- or off-axis mountings [1] (Figure 22).
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Figure 20 Left: Spectrograph design: comparison of four camera optics with reflective gratings, the same f ratios and pupil at the grating. 
Design (A) uses an aspheric refractive plate and plane grating. Design (B) is with a null-power doublet lens with spherical surfaces and a 
plane grating. Design (C) is with a twice-through corrector plate at the plane grating. Design (D) with an aspheric grating is very compact 
and then drastically minimizes the asphericity to achieve. Right: Optical design of the aspherized grating UV Prime Focus Spectrograph 
(CFHT). The grating and camera optics make a centered system [1].
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5.2.2  Aspherization of a thin shell secondary mirror

The hybrid class (HTD) has allowed stress  figuring 
for the hyperbolization of a secondary mirror, 1.2  m 

in diameter, as a thin shell adaptive secondary  
mirror for one of the ESO-VLT 8-m units (Figure 23). The 
process was proposed and developed by Hugot et  al. 
[1, 11].

Figure 21 Left: Deformable submasters of quasi-constant thickness distribution (q-CTD) for on-axis – center – and off-axis grating aspheri-
zations by double replicas. Right: View of an intermediate grating replica on an active submaster (LOOM).

Figure 22 He-Ne fringes with respect to a flat of on- and off-axis reflective grating replicas aspherized on Zerodur substrates. Left: Grating-
2, 600 l/mm, 84 × 84 mm, of the f/2.8 Marly-I and -II spectrographs at OHP and Purple Mountain Observatory. Center: One the five gratings, 
1200 l/mm, 102–128 mm, of f/2.3 CARELEC faint object spectrograph at the 2-m telescope of OHP. Right: Off-axis mirror and two gratings, 
300 and 600 l/mm, 50 × 60 mm of the f/5 ISARD faint object imager-spectrograph at the 2-m telescope at Pic du Midi (LOOM).

Figure 23 Left: Thin shell aspherization process for the adaptive version of the 1.2-m Cassegrain mirror of the ESO-VLT. Top to bottom: 
The first three stages for obtaining the thickness geometry of the mirror by diamond turning. Stage 4 shows the loading by partial vacuum 
over two concentric zones. Stage 5 is the spherical grinding and polishing during the stressing. Stage 6 showed that a smooth aspherical 
surface was obtained after elastic relaxation of the mirror. Right: View of the thin shell mirror after aspherization and polishing at LOOM.
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5.3  Primary coma mode z = A31r3cosθ

Analysis with the circular thin plate theory shows that 
primary coma, Coma3, can be generated from either, in 
the CTD class, by use of a bending moment whose distri-
bution along the substrate contour is of the form cosθ or, 
in the VTD class, by a tulip form on which a net shear-
ing force at the contour varies as cosθ in reaction to a 
bending moment at the substrate center (Figure 24). An 
easily practicable configuration is a tulip form where a 
one-directional bridge is built-in at the central zone, and 
opposite forces are applied to the bridge ends on a simply 
supported outer cylinder. A hybrid form (HTD) is an equiv-
alent alternative solution [1] (Figure 24).

Applications were developed for obtaining a low 
dispersion coma-corrected transmission grating. This 
design was used for slitless spectroscopy with filters in 
a convergent beam at the f/8 Cassegrain focus of CFHT 

(Figure 25). A plane grating of 75 l/mm was first depos-
ited on a CTD deformable submaster (Figure 26) and then 
replicated during stressing onto a transmission BK7 sub-
strate [1].

5.4  Primary astigmatism mode z = A22r2cos2θ

The primary astigmatism mode, Astm3, can be generated 
either from the CTD class or the VTD class. The flexure to 
be achieved is a saddle-like surface, i.e., with opposite 
curvatures in the main orthogonal directions. In the CTD 
class, a basic solution is with bending moments distrib-
uted in cos2θ along the circular contour. With the VTD 
class, the basic solution is a cycloid-like thickness on 
which a net shearing force of the form cos2θ is applied 
along the mirror contour (Figure 27). Practicable config-
urations were developed at LOOM by use of either four 

Figure 24 Configurations generating a Coma3 aberration mode. (A) Theoretical configuration of the CTD class applying a bending moment 
uniformly distributed all along its contour. (B) Theoretical configuration in the VTD class is easily obtained from a perimeter-prismatic forces 
reacting to a central torque. (C) Practicable configuration in the VTD class derived from the previous one and using two opposite force sets. 
(D) Practicable configuration in the HTD class using two opposite force sets.

Figure 25 Optical design for objective- or slitless-spectroscopy with Coma3-corrected transmission gratings located in front of the 
telescope focus. The grating parameters are FN = 75 g/mm and diffraction order FK = 1. The coefficients for aspherization of the grating are 
A(3,1) = -0.105 × 10-5 for Coma3 and A(2,2) = 0 for Astm3. The Coma3 deformation over 100 mm diameter of the active matrix is  ± 131 μm 
peak-to-valley.
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outer bending bridges for CTDs or opposite force pairs on 
a simply supported outer ring of VTDs [1].

Applications were developed for the optical concept 
of the CDS and UVCS single-surface spectrographs in 
extreme ultraviolet of the Soho Mission – still continu-
ing solar observations at the Lagrangian point L1 in 2013. 
These designs by Huber et al. [12] use toroid reflective grat-
ings, which provide two stigmatic points in the dispersed 
field of the spectra (Figure 28). The process for obtaining 
the gratings uses a first replication of a spherical grating 

onto a deformable submaster [1]. Stainless steel submas-
ters, designed in the VTD class, were designed with the 
cycloid-like form and four azimuthal bridges (Figure 29). 
A second stage uses a four-force stressing for the final rep-
lication on rigid Zerodur substrates.

Other applications have been found useful for the 
off-axis optics of the planet finder coronagraph SPHERE, 
a second generation of ESO-VLT instrumentation. Three 
mirrors differing in size were designed by Hugot et  al. 
[13] as CTD vase form mirrors where the outer rings have 

Figure 26 Left and center: View and cut of a stainless steel active matrix for obtaining Coma3-correcting gratings in the CTD class with only 
two opposite force sets. Right: He-Ne interferogram with respect to a plane surface. Such transmission gratings were used in the conver-
gent beam in front of the Cassegrain focus f/8 of the Canada France Hawaii Telescope (LOOM, Hyperfine Corp. and CFHT).

Figure 27 Four elasticity designs generating the Astm3 aberration mode. (A) Theoretical configuration in CTD class requires both perime-
ter-modulated bending moments and net shearing forces. (B) Theoretical configuration in VTD class mirrors of thicknesses t/t0 = constant 
and t/t0 = (1-ρ2)1/3. This only requires a perimeter-modulated net shearing force. (C) Practicable solution in CTD class using four bridges and 
inner arms with two sets of opposite forces. (D) Practicable solution in VTD class using a thin cylindrical collar simply supporting a more 
rigid outer ring.
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gratingRowland

circle

Stigmatic points
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Figure 28 Single surface CDS and UVCS spectrographs of the ESA NASA Soho Mission. The optical design with a toroidal grating provides 
two stigmatic points (ETH-Zurich).
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azimuthal modulated axial thicknesses in between the 
four bending forces (Figure 30). Results show that all 
mirrors have a deviation error with respect to the theoreti-
cal toroid shape smaller than 15 nm rms.

6   Aspherization of axisymmetric 
mirrors with fast f-ratios: stress 
figuring and in situ stressing

If the mirror curvature is faster than, say, f/3, then active 
optics aspherization requires taking into account the 
stresses induced at the middle surface of the substrate. The 

shallow shell theory takes these stresses into account for 
the axisymmetric case (Figure 31) and allows analytically 
solving the problem of determining the radial thickness 
distribution for generating the required asphericity – e.g., 
a conicoid or a spheroid optical shape – from a spherical 
figure bent by uniform loading. This theory accounts for 
the strong dependence of the flexure with respect to edge 
boundary.

The three basic configurations studied are a vase form 
– which implicitly contains a meniscus form by removing 
the outer ring – and a closed form (Figure 32). The use of the 
shallow shell theory on N successive ring segments linked 
together allows us to determine, via iteration process, the 
radial thickness distribution set {tn} of the mirror [1].

Figure 29 Left: Cycloid-like design in VTD class, i.e., t/t0 = (1-ρ2)1/3, of a 14-cm deformable matrix generating an Astm3 mode from two oppo-
site force pairs. The one-piece design in stainless steel AISI420 is made of the active mirror with simply supported boundary at its contour 
realized by a thin cylindrical collar itself linked to a thicker ring including four bridges where each force is applied. This provides an accu-
rate angular modulation in cos2θ. Right: He-Ne fringes of a first replica grating on an active matrix before second replications on Zerodur 
substrates. The process provided all the toroid gratings of the Soho Mission (LOOM, ETH-Zurich, Bach Research Corp.-Boulder).

Figure 30 Left and center: Elasticity design in CTD class, i.e., t/t0 = constant, of a 40-cm mirror in Zerodur vitroceram bent by four forces 
during stress figuring. Its contour realizes a built-in boundary to a ring whose axial thickness tR(θ) shows four azimuth thickness narrow-
ings, tR-Max/tR-Min = 1.16, to ensure an accurate modulation in cos2θ. Right: He-Ne interferogram with respect to a mean curvature sphere of one 
of the three Astm3-correcting mirrors made for SPHERE. This instrument is a next-generation planet finder of the ESO-VLT (LOOM, Thales 
SESO Corp.).
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6.1  In situ parabolization of concave mirrors

The parabolization of a concave mirror by stress figuring is 
a very difficult task because the uniform load to be exerted 
is not a partial vacuum – which would naturally flatten 
the mirror against the table of the machine – but an inner 
air pressure, which then requires use of a continuous and 
accurate reaction system along the mirror contour. Depict-
ing this tremendous difficulty for large telescope mirrors, 
a more natural alternative for smaller-size mirrors, say up 

Figure 32 Geometries of a vase form mirror and closed form mirror for analytical determination of the VTD.

Figure 31 Shallow shell theory and finite element in cylindrical 
coordinates. Equilibrium of the elementary forces. These include 
forces lying at the middle surface of the shell.

Figure 33 Elasticity design and view of a holed f/1.75 vase form mirror parabolized by in situ stressing via air pressure (LOOM).

to 4 m in diameter, is to make a spherical figuring without 
stress and then to practice in situ partial vacuum at the tel-
escope by closing the rear side of the mirror.

Experience gained with a holed mirror aspherized by 
in situ stressing led us to retain a vase shell design with 
an optimized radial thickness distribution {tn} for an 
f/1.75, 20-cm clear aperture paraboloid mirror in Zerodur. 
The back side of the outer ring is given a folded L-shape 
to increase the perimeter rigidity without overweighting 
(Figure 33). The central hole is closed with a paste on a 
soft sliding tube. Another inner tube applies, via a conical 
spring, a shearing force, which provides an equivalent 
force distribution to that of the plain mirror [1].

6.2   Mirror hyperbolizations of a modified-
Rumsey three-reflection telescope

Starting from the three-mirror anastigmatic telescope pro-
posed by Rumsey in 1969 [14] and an extensive study by 
Rakish on three- and four-mirror telescopes [15], a very 
interesting optical system for wide-field sky surveys in 
astronomy – typically 1° or 2° FoV – is a three reflection 
modified-Rumsey telescope (Figure 34). This flat field 
anastigmatic system avoids the use of three- or four-lens 
correctors of single-primary-mirror systems, or two-lens 
correctors for flat-fielded Ritchey-Chrétien systems, and 
then is completely free from chromatic aberrations except 
that it is due to the spectral band filter and the detector 



G.R. Lemaitre: Active optics with actuators      237

window plate, as for all usual optical systems. In a mod-
ified-Rumsey form, elasticity analysis shows that both 
primary and tertiary mirrors can be simultaneously hyper-
bolized by in situ stressing at the telescope – by partial 
vacuum – after spherical figuring with a lap acting over 
the whole substrate surface of a double-vase form [1, 16]. 
This form is made of a vase form included at the central 
part of a larger vase form.

Two 50-cm aperture, 2° FoV, modified-Rumsey tel-
escope demonstrators, MiniTrust I and II, were built at 
LOOM. All three mirrors were given a spherical figure with 
only two rigid laps. The double vase substrate of M1–M3 
mirrors allowed their simultaneous hyperbolization by 
in situ stressing. Hyperbolization of the tulip form M2 
was achieved by stress figuring (Figure 35). Results from 
a whole-telescope autocollimation test show a deviation 
error smaller than 280 nm PtV, i.e., 48-nm RMS for a sin-
gle-pass wavefront (Figure 36).

6.3   Aspherization of convex mirrors by 
stress figuring

The aspherization of telescope secondary mirrors into a 
paraboloid or hyperboloid by uniform loading and stress 
figuring is straightforward. This is because a partial 
vacuum is applied to the rear face of the mirror, which then 
naturally flattens it on the table of the figuring machine. 
A typical value of the uniform load applied by partial 
vacuum corresponds to 75 kPa, i.e., 3/4 Atm, allowing to 
make under- or overcorrection for the stress polishing. 
We developed the parabolization of vase form Cassegrain 
mirrors made of ultralow expansion titanium-silica (ULE) 
for 1.5-m afocal telescopes. These mirrors were designed 
and built for Labeyrie [17] at GI2T-CERGA to provide a 
beam compression ratio of 20 (Figure 37).

Two 25-cm aperture vase form convex mirrors 
in Zerodur were hyperbolized by stress figuring. For 

Figure 34 Left: Comparison of five wide-field telescope designs: (A) Catadiotric Schmidt. (B) Mersenne Schmidt. (C) Prime focus with 
three or four-lens corrector. (D) Cassegrain R-C with two-lens corrector. (E) Modified Rumsey. Right: Three-reflection telescope MINITRUST: 
modified-Rumsey flat-field anastigmat design (E) with surface, slope, and curvature continuities between M1 and M3 mirrors.

Figure 35 MINITRUST mirrors. Left: Double-vase form M1–M3 mirrors hyperbolized by in situ stressing. Right: Tulip-form M2 mirror hyper-
bolized by stress figuring (LOOM).
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compactness, their design used an inner folded outer ring 
(Figure 38). The thinness of the reflective aperture allows 
the efficient implementation of a backside cooling system 
[1]. These are Cassegrain mirrors of the 1-m RC THEMIS 
Solar Telescope at Tenerife, in the Canary Islands.

7   Multimode deformable mirrors 
(MDMs): vase form and meniscus 
form

Except for very special cases – such as the Astm3 and Cv1 
modes, which can be generated by the same cycloid-like 

Figure 36 View of MINITRUST during optical testing with wavefront 
sensor. This used a double pass via a plane reference mirror (LOOM).

Figure 37 Left: Convex vase form mirrors parabolized by stress figuring. Right: View of a fused-silica ULE mirror for the GI2T (LOOM).

Figure 38 Left: Vase form secondary mirror of the THEMIS Ritchey-Chrétien telescope hyperbolized by stress figuring. Zerodur substrate. 
Right: He-Ne interferogram with respect to a spherical concave caliber. Clear aperture 25 cm. Mirror surface error 40 nm peak-to-valley (LOOM).

thickness t/t0 = (1-ρ2)1/3 in the VTD class with very few actua-
tors – the superposition of various optical modes requires 
an elasticity design, which belongs to the CTD class. Vase-
form or meniscus-form multimode deformable mirrors 
(MDMs) can be bent by forces applied to outer radial arms 
and by optional uniform load over the whole mirror surface 
[1, 18]. For large telescope mirrors, it is preferable to use 
force actuators uniformly distributed over their rear surface.

7.1   MDMs with outer arms and Clebsch- 
Seidel modes

Because of the similar form of Seidel optical modes and 
the Clebsch flexural mode that are general solutions 
of Poisson’s bilaplacian equation Δ2Δ2z+q/D = 0, where 
q is the uniform load and D the constant rigidity, one 
can show that from the thin plate theory, there exists a 
common subset of modes similar to Seidel modes. We call 
them Clebsch-Seidel modes [1].

Denoting a mode as z = An,mcosmθ, this subset is gener-
ated by terms m = 0 for q = constant, and m = n and m = n-2 for 
q = 0. These terms are the Sphe3 mode and all modes of the 
two lower diagonal lines D1, D2 of the optics triangle matrix 
modes (Figure 39). Shown interferograms were obtained 
from a 20-cm MDM with K = 12 arms for which axial forces 
Fa,k and Fc,k are applied to the inner and outer end of arm-k, 
respectively (Figure 40).
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Figure 39 Up: Triangle matrix of Seidel optical modes. The Clebsch-Seidel modes are shown in boxes. Down: Some Clebsh-Seidel modes 
obtained with a 12-arm MDM (Figure 40). The last row displays the flat MDM at rest on the left and two composite modes on the right (LOOM).

Figure 40 Elasticity design and view of a 12-arm vase form multimode deformable mirror – MDM (LOOM).

7.2   Degenerate configurations: monomode 
mirrors

Generating a single mode with an MDM equipped with 
K radial arms generally requires use of 2K forces. One 

can show from thin plate theory that some configura-
tions, called degenerate, require a maximum of K forces 
only. A family of them is for m = n. Experimental results 
have provided confirmations for m = n = 2 and m = n = 3, i.e., 
Astm3 and Tri5 modes [1, 18]. For instance, a vase form, 
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made of quenched stainless steel FeCr13, provided a pure 
Astm3 mode with four folded arms and four forces only 
(Figure 41).

7.3   Meniscus MDMs: Keck telescope 
segments

MDMs originated from a theoretical study by Lubliner and 
Nelson [19] for the segmented 10 m, f/1.7, Keck telescope, 
the largest optical-infrared telescope. Nelson et  al. [20] 
applied the method to the construction of 36 segments 
of the primary mirror. The stress figuring aspherization 
process of 1.8-m segments was applied to circular Zerodur 
meniscuses. K = 24 radial arms – acting on the edge 
through stuck plates – distributed the bending moments 
and net shearing forces to generate the superposition of 
the Cv1, Coma3, and Astm3 modes (Figure 42).

7.4   Meniscus in situ reshaping and 
telescope alignment control

With the construction of the 3.5-m ESO-NTT, Wilson et al. 
[21, 22] pioneered new concepts to achieve the best pos-
sible image quality during observations with large tel-
escopes. The thickness of the primary mirror is much 
thinner than usual, with an aspect-ratio t/D = 1/15, thus 
allowing in situ reshaping by a set of support actuators. 
The secondary mirror is actively set up to optimal posi-
tion, avoiding decenter, and tip-tilt. Wavefront sensors 
tracking natural stars provide the necessary information 
for analysis. Closed loop systems provide efficient control 
drives whatever the position is on the sky. The concept 

was then applied successfully to the four ESO 8.2-m units, 
t/D = 1/47, of the ESO-VLT (Figure 43).

7.5   Meniscus MDM: giant reflective Schmidt 
LAMOST

The giant reflective Schmidt LAMOST – also called Guo-
shoujing telescope – is a meridian telescope dedicated 
entirely to multi-object spectroscopy. A 4.2-m clear aper-
ture and 5° field of view give this telescope an unprec-
edented optical etendue [1]. Four thousand optical fibers 
are remotely positioned over a focal surface of 1.75 m in 
diameter. The fiber outputs feed 16 double spectrographs.

The concept by Wang, Su et al. [23] provides today’s 
highest spectrum-acquiring rate in the world (Figure 44). 
The active optics in LAMOST is the most extensive devel-
opment ever carried out, with the 24 flat segments of 
the primary mirror aspherized in situ as a function of the 
deviation angle and transit angle from the meridian ( ± 15° 
for a 2-h exposure time). The elliptic contour of mirror M1 
(Figure 45) was designed for a maximum deviation from 
the sky corresponding to a declination angle δ = +90°. The 
shape and position of each M1 segment is generated by 
37 force actuators and three displacement actuators. The 
LAMOST active optics systems were conceived and devel-
oped by Su et al. [24, 25] and Cui et al. [26, 27].

7.6   Universal aberration compensator for 
holographic grating recording – vase 
form MDMs

Universal MDM compensators for low- and high-order 
aberrations have been proposed and developed for 

Figure 41 Degenerate vase form CTD quenched stainless steel mirror – Cr13Fe alloy – for m = n = 2 generating Astm3 with only four forces 
instead of eight forces (LOOM).
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Figure 42 Actual and theoretical shapes of an outermost segment aspherized by stress figuring of the 10-m Keck telescopes (Univ. of California).

Figure 43 Principle of close-loop control for a two-mirror telescope. The active process includes reshaping of a large meniscus primary 
mirror and decenter plus tip-tilt of the secondary mirror.

Figure 44 Left: Optical design of giant reflective Schmidt LAMOST. Right: View at Xinglong Station Observatory (NAOC/CAS).

holographic recording of concave gratings. Adopting a 
vase form, this was applied to the Cosmic Origins Spectro-
graph – COS – of the Hubble Space Telescope. Depicting 

of nominal results (Figures 46 and 47), our proposal was 
not finalized for COS. However, this would have led to a 
gain of 1.5 in magnitude and four in spectral resolution. 
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The recording compensator was a six-arm vase form MDM 
in stainless steel quenched alloy [1, 28, 29].

7.7   Aspherization process for the E-ELT 
segments

We are presently developing a new industrialization 
procedure based on the vase form MDM concept [1] for 
aspherizing the outermost M1 segments of the European 

Extremely Large Telescope (E-ELT) project by the Euro-
pean Southern Observatory. This 39-m design is a five-mir-
ror train, which includes a pupil transfer for ground layer 
corrections on adaptive mirror M4 and field stabilization 
mirror M5 (Figure 48).

Mirror M1 will be made of ∼900 hexagonal segments, 
1.35 m in diagonal, which form an f/0.9 slightly elongated 
ellipsoid – i.e., with a conic constant slightly lower than 
unity. The aspherization process was developed by Ferrari 
et  al. [30], Laslandes et  al. [31], and Hugot and Floriot. 

Figure 45 Left: View of LAMOST active optics primary mirror. Right: The ellipticity of iso-level lines of the primary mirror M1 to be actively 
aspherized is a function of the incidence angle from the sky.

Figure 46 Left: Elasticity design and view of a six-arm vase form MDM. Center: View of the MDM during stressing. Right: Optical mounting 
for the holographic recording of aberration corrected gratings (LOOM).

Figure 47 Left: Cv1, Coma3, Astm3, Tri5, and Squa7 modes (cf. triangle matrix in Figure 40) generated by a six-arm MDM. Right: Mode 
superposition: experimental and theoretical shape for the COS/HST holographic grating recording (LOOM).
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It will use a 12-arm MDM stressing harness [1] where a 
Zerodur segment is linked to an active ring during aspheri-
zation (Figure 49).

8   Minimum number of actuators 
and shape control of large 
telescope mirrors

Considering large ground-based telescopes, the main 
mirrors supported by pads in their cells are submitted to 
two flexural modes caused by the effect of gravity: i) the 
axial deformation mode (ADM) which is maximum at the 
zenith, and ii) the lateral deformation mode (LDM) when 
off-zenith. Concerning the ADM, the required pad density 
supporting the mirror per unit surface area, to maintain a 
correct optical figure, is well determined as a function of 
any peak-to-valley tolerance criterion, mirror material and 
thickness, spacing of the pads, and the size of the pads 
(Figure 50) [1].

8.1  Large monolithic mirrors

For large monolithic mirrors, such as the existing VLT 
8.2 m-diameter and 175 mm-thick thin meniscuses in vit-
roceram, the peak-to-valley flexural sag of the ADM was 
partly reduced by using, during the grinding and polishing, 
a pad geometry quite similar to that of the final telescope 
cell. The pads supporting the mirror were made of 150 
axial force-actuators distributed over 6 concentric circles, 
thus providing a quasi-uniform pad density of 2.9/m2.  
Not taking into account the fact that the pad-print of the 
ADM is diminished by ∼50% during grinding and polish-
ing would lead to adopt a greater pad density of 3.8/m2 
for 70 nm ptv pad-print flexures at the mirror surface ([1], 
pad density law given by eq. 8.25). The particularly good 
concept of the VLT mirror lateral force actuators, which 
minimize the LDM, allows the small cylinder-like devia-
tion modes to be fully corrected by the axial force actua-
tors with the adopted pad density of 2.9/m2 whatever the 
zenith distance.

If one notices that the ratio of the pad radius over the 
distance between each pad is small (ratio ∼1/6 for the VLT 

Figure 48 Artist’s view of the E-ELT Project is a 39-m five-mirror design including pupil transfer on the adaptive mirror M4 and tip-tilt mirror 
M5 (ESO).

Figure 49 Vase form MDM assembly with active deformable harness for the active optics aspherization of E-ELT segments. View of the 
2.5-m platform at LOOM.
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mirror), then for the monolithic meniscus the selected 
density of actuators and the pad density adopted to mini-
mize the ADM and LDM are identical.

8.2  Segments of large telescope mirrors

The segments of current extremely large telescope 
projects, such as the TMT and E-ELT of 30 and 39 m 
in aperture respectively, will be mounted on tripod 
frames providing active optics corrections of the tip-tilt 
and piston modes by displacements of three pad actua-
tors of the tripod. The segments are hexagons in zero 
expansion vitroceram, 1.4–1.5 m in diagonal length, 
and 50 mm thickness.

The E-ELT project is a three mirror anastigmat includ-
ing addition of a pupil transfer between a pair of flat 
mirrors, adaptive mirror M4 and field stabilization mirror 
M5, which fold the beams along the elevation axis to the 
Nasmyth foci (Delabre [32], Vernet et al. [33]). The ADM of 
a segment is minimized by an axial support system called 
a whiffletree – a superimposition of pivot triangles –  

mounted on the tripod frames. A hollow cylindrical 
imprint made at the back center of the segment allows 
the lateral support system to provide, via a membrane 
plate link, negligible sag of the LDM. Maintaining the 
accurate optical surface of a segment mainly resumes to 
a simple passive design with the whiffletrees. Three nine-
point two-level whiffletrees provide a support system of 
27 axial pads for the segment which is mounted on 3 axial 
displacement actuators. Thus, the density of the pads is 9 
times that of the actuators.  The 39 m mirror M1 is made of 
798 segments which leads to a pad density of 36/m2 and an 
actuator density of 3.9/m2.

For the E-ELT project, one notices that the actuator 
density of 3.9-units/m2 does not really differ from that of 
the VLT monolithic mirror. Because of the lower thickness 
of a segment (5 cm instead of 17.5 cm for the VLT), and 
then by the flexure due to gravity increasing as the second 
power of the thickness ratio, i.e., a ratio of ∼12, the pad 
density is substantially higher than that of the VLT.

At present optomechanical investigations of the E-ELT 
segment supports by Cayrel [34] lead to the introduction 
of a pair of actuators applying orthogonal moments at 9 
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Figure 51 Conjugate foci of an elongated ellipsoid used in grazing 
incidence.

pivots of the whiffletrees. These 18 actuators should allow 
the generation of non-uniform force distributions for 
slight corrections of Cv1, Astm3, and possibly Tri5 modes. 
However this complexity would lead to 16758 actuators for 
M1 instead of 2394 for the piston and tip-tilt modes only.

9  X-ray optics and active optics
The extremely short wavelengths of X-rays require the fab-
rication of mirrors showing super-smooth surfaces. This 
is without doubt one of the most important features of 
X-ray optics because slope discontinuities due to ripple 
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errors entail absorption and scattering effects, which may 
severely degrade the performance. One usually allows a 
surface roughness not exceeding 2–3 Â. For this reason, 
active optics figuring with rigid laps and in situ active 
optics would greatly improve the performance of aspheric 
tubular mirrors. This technique has not been much used 
up to now except for long stripe mirrors in synchrotron 
instrumentations.

9.1  Grazing incidence: X-ray relay mirrors

For example, starting from a toroid tube – i.e., where the 
meridian sections are segments of a circle – the elasticity 
theory of tubular shells allows obtaining meridian sections 
of a stigmatic elongated ellipsoid. This tubular shape is 
required to build accurate relay mirrors used in synchro-
tron facilities for X-ray instrumentation tests (Figure 51).

Let us consider a rotational symmetry tube, around its 
χ-axis, bent by a uniform load q applied outside or inside 
all along the surface of the tube, one may notice that gen-
erally the radial deformation – extension or compression 
– is always of the same sign, i.e., of monotonic sign, all 
along χ. If one assumes now a monotonic sign extension 
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or compression of a tubular shell, caused by a uniform 
load q applied at the surface of the shell, one can show 
that the radial thickness distribution T(χ) can be selected 
to remain of finite value. This avoids distributions, which 
exhibit local infinite thicknesses. For generating a given 
polynomial flexure along the shell, i.e., along its axis χ, 
this theory provides the two solution families proposed by 
Lemaitre [1, 35]:

⇒ If the first family is represented by a load q > 0 and thick-
ness T(χ) from χ = 0 to outer ends  ± χmax, then a second family 
exists with q < 0 and T(χ) from χ = 0 to  ± χmax.

From this law, one displays thickness distributions of 
two families, which generate a parabolic flexure W(χ2) (cur-
vature mode) and a fourth-degree flexure W(χ4) by uniform 
loading q positive and negative (Figure 52). A combined dis-
tribution of these thicknesses easily provides the conver-
gence mode and stigmatism mode for the elasticity design 
of elongated ellipsoids usable as X-ray relay mirrors [1].

9.2   X-ray tubular telescope mirrors and sine 
condition

Future high angular resolution two-mirror tubular 
X-ray telescopes will probably evolve from the classical 

paraboloid-hyperboloid (PH) optical design (Figure 53) 
toward a Wolter-Schwarzchild (WS) design – as derived by 
Chase VanSpeybroeck [36] – which fully satisfies Abbe’s 
sine condition (Figure 54). Owing to the extremely short 
wavelength, and the new telescope projects requiring a 0.1 
arcsec resolution goal, it is obvious that the implementa-
tion of active optics will be necessary.

We have developed an elasticity theory of weakly 
conical shells [1, 35] and applied it to the optical design 
of such high-resolution telescope mirrors. Analytic results 
show that radial flexure distributions can be gener-
ated along the shell with a monotonic sign. This latter 
feature avoids the difficulty of a distribution with infinite 
thicknesses.

Let us represent the distribution of the radial flexural 
extension – or compression – W(χ) along the symmetry 
axis χ of the tube as the series
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where χ is the axis of the mirror, which ends at [-β; β], α, 
a constant to be set up for obtaining a monotonic sign 
of the flexure all along the mirror, and An, coefficients 
determined by the mirror shape deviation to a best fit 
cone or circle. The result of the weakly conical shell 

Figure 53 Left: Basic paraboloid-hyperboloid (PH) design of the two-mirror grazing incidence X-ray telescope. Right: Chandra X-ray 
 Observatory launched in 1999 is a PH design (NASA).
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theory provides the thickness T(χ) as easily derived 
from the flexure W(χ) by a linear product law (Lemaitre 
[1, 35]):

 0 0( ) ( ) ( 1-2 ) /( 1- / ), [ - , ]T W C i t aχ χ χ χ β β= ∈  (5)

where C is a constant (from load q, Young modulus E), i is 
the mirror slope at χ = 0, t0 is the shell thickness at χ = 0, a0 
is the shell radius, respectively, at χ = 0.

This law has been applied to the determination of the 
thickness distribution T(χ) for mirror #1 of the WS design 
in Figure 54. The result is that the thickness profile T(χ) 
also shows two inflexion points very similar to that of the 
optical design (Figure 55).

In addition to obtaining smooth-surface X-ray mirrors 
by active optics methods, it has been emphasized by 
O’Dell et al. [37] and O’Dell [38] that in situ adaptive optics 
should be implemented to compensate for various defor-
mation modes such as the residual deviation modes and 
some eigenmodes of a tubular mirror.

9.3  Segmented X-ray telescope mirrors

Similarly to large ground-based telescopes in the visible 
and infrared, future large space-based X-ray telescopes 
will require use of segmented and active mirrors. Current 
projects under investigation, e.g., Constellation X-ray 
Mission (NASA) and Xeus (ESA), mostly have architectures 
based on formation flyers.

From the above results of a monolithic tubular shell, 
active optics can be applied to the aspherization of an 
X-ray segment of tubular telescope. The boundaries of 
this segment are derived from the stress distributions of a 
truncated part of a full shell [1] (Figure 56). Three bound-
ary conditions must be satisfied for the aspherization of a 
segment through a harness.
This harness must fulfill the following properties:

C1: facets at  ± ψ/2 supported by normal pressure p,
C2: facets free to slide in the dihedral planes  ± ψ/2,
C3: receive reaction Rp to load q at largest facet end.
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q

0
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-0.01

LO
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-0.5 0.5 x0 -0.5 0.5 x0

Figure 55 Weakly conical shell and thickness distribution T(χ) showing two inflexion points as for the optical shape of mirror #1 of WS 
primary mirror (in Figure 54). Aspherization by uniform load q from the best fit circle, here shown by the inner line Li of the section. The 
outer line LO provides the thickness distribution T(χ). Note the axial reaction Rq due to the uniform load q, which must be compensated.
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Figure 56 Left: X-ray telescope segment: configuration for aspherization by stress figuring and uniform loading. Right: Schematic harness 
satisfying the boundary conditions C1, C2, and C3.
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The accurate achievement of these conditions does not 
present major technical difficulties.

10  Conclusions
The design of active optics systems may require the use 
of a large number of actuators such as for large existing 
monolithic telescope mirrors where the force actuators are 
uniformly distributed over the back surface of the mirror. 
However, active optics systems for smaller optics than 
8 m, which have to generate specific deformation modes, 
as presented here, could benefit from an optimal low 
number of actuators.

Since the pioneer work, almost 50 years ago, active 
optics methods have provided fascinating imaging 
quality in astronomy both in high angular resolution 
and in limiting magnitude detection. Active optics 
methods are key features for providing astronomers with 
powerful new telescopes and associated astronomical 
instrumentations.
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