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Abstract: In target-in-the-loop laser beam projection sce-
narios typical of remote sensing, directed energy, and 
adaptive optics applications, a transmitted laser beam 
propagates through an optically inhomogeneous medium 
toward a target, scatters off the target’s rough surface, 
and returns back to the transceiver plane. Coherent beam 
scattering off the randomly rough surface results in strong 
speckle modulation in the transceiver plane. This speckle 
modulation has been a long-standing challenge that lim-
its performance of remote sensing, active imaging, and 
adaptive optics techniques. Using physics-based models 
of laser beam scattering off a randomly rough surface, 
we show that received speckle-field spatial and temporal 
characteristics can be used to evaluate the intensity dis-
tribution of the beam projected onto the target. We derive 
analytical expressions that directly couple the measured 
target-return wave statistical characteristics, or ‘speckle 
metrics’, with characteristics of the laser beam intensity 
distribution on the target surface. We also show how 
measured speckle metrics can be utilized for evaluation 
of laser beam quality at the target surface and for adaptive 
compensation of atmospheric turbulence-induced phase 
aberrations.
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1  Basic considerations for analysis

1.1   Target-in-the-loop and double-pass wave 
propagation configurations

There are a number of optical systems based on the so-
called target-in-the-loop (TIL) wave propagation con-
figuration. Figure 1A presents an example of this type of 
propagation geometry. In the TIL system types, a trans-
mitted (outgoing) wave A propagates in an optically inho-
mogeneous medium along the optical axis (z-direction) 
toward a target, and after scattering off the target’s surface 
at the plane z = L, the return wave ψ propagates back to the 
receiver plane z = 0.

The optical system in Figure 1B offers a different 
example of the TIL propagation scenario where the target 
(scatterer) is the eye retina surface, and the optical inho-
mogeneities (eye lens aberrations) are located in the 
optical system pupil plane [1, 2]. The laser beam is focused 
onto the retina, and the scattered wave then propagates 
back through the same phase aberrations.

In contrast with ‘unidirectional’ (single-pass) wave 
propagation, optical waves in TIL systems propagate 
through refractive index inhomogeneities in both the 
forward (outgoing wave) and backward (scattered or return 
wave) directions. If the transmitter and receiver apertures 
are closely located or co-located, propagation of both 
waves may occur through practically the same refractive 
index irregularities. This results in a cascade of interesting 
effects known as backscatter enhancement [3–9].

The TIL propagation scenario with co-located trans-
mitter and receiver apertures (transceiver aperture) is 
referred to as the double-pass wave propagation con-
figuration, while the term target-in-the-loop is used to 
describe the more general case, including system configu-
rations with spatially separated receiver and transmitter 
apertures.

The TIL wave propagation configuration is commonly 
encountered in a number of applications including mili-
tary (laser target designation, active imaging, directed 
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energy systems), laser technology (laser cutting, drilling, 
materials joining, additive laser manufacturing), laser 
medicine (laser tissue ablation, retina imaging, laser 
surgery), and remote sensing (remote spectroscopy, laser 
target tracking, laser vibrometry).

The performance of TIL systems depends on various 
factors: the transmitted laser beam wavelength, coher-
ence, intensity and phase profiles, properties of the 
propagation medium’s refractive index inhomogenei-
ties, characteristics of the target (velocity, shape, surface 
roughness, reflection/scattering coefficient, etc.).

In many TIL applications, the target size may exceed 
the characteristic size of the illuminated area on its 
surface, referred to as the target hit spot. This corresponds 
to TIL system operation with extended and noncooperative 
targets [10–12]. In this case, characteristics of the return 
wave depend on the spatial distribution of the optical 
field on the target surface, as well as on the characteris-
tics of the target itself. TIL propagation with laser beam 
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Figure 1 Target-in-the-loop wave propagation configurations with 
(A) wave propagation through a continuously distributed (‘thick’) 
optically inhomogeneous medium, and (B) through a medium with a 
‘thin’ pupil-plane phase-distorting layer (eye-lens).

scattering off an extended target represents one of the 
most challenging problem for remote sensing and wave-
front control applications considered [13–15].

1.2  Spatial scales

Rigorous performance analysis of TIL systems is a compli-
cated problem because of its strong dependence on multi-
ple spatial and temporal scales. In most TIL propagation 
scenarios, the smallest spatial scales are related with the 
outgoing wave scattering off the rough target surface. 
Typical light scattering geometry is illustrated in Figure 2A, 
where rough surface at a point rr ̅ is described by the 
random profile function z = ξ(r). Here, { , } { , , }z x y z= =r r  is 
the coordinate vector at a surface point. The correlation 
length ls and rms σs of this function define the smallest 
characteristic spatial scales upon which the TIL propaga-
tion characteristics depend. In typical scenarios, ls and σs 
are on the order of one to several hundred microns.

The largest spatial scale of TIL propagation is related 
with the characteristic size D

ψ
 of the return wave footprint 

at the receiver plane. The spatial scale D
ψ
 can be roughly 

estimated as D
ψ
�Lθs, where L is the distance to the target 

and θs�σs/ls is the characteristic angle of the surface 
roughness slope. Even for relatively smooth (mirror-like) 
surfaces, the footprint size can significantly exceed the 
receiver aperture diameter D. For very rough surfaces 
(large θs), the return wave footprint can be on the order 
of L – from hundreds of meters to tens of kilometers for 
typical TIL applications.

1.3  Computational issues

The ratio of the largest to the smallest spatial scales in TIL 
propagation scenarios can be enormous: D

ψ
/ls�107–1010. 
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Figure 2 Wave scattering off a randomly rough surface: (A) scattering geometry; (B) notional representation of the scattered light intensity 
angular dependence (ensemble averaged over many roughness realizations) on the observation (scattering) angle θ for (1) mirror-like 
surface; (2) slightly rough surface; and (3) very rough surface. The narrow peak in the retroreflection scattering direction θ-θinc in curve (3) 
corresponds to the enhanced backscattering effect. In (A) a locally plane outgoing wave enters the surface at the incidence angle -θinc. Plane 
z = 0 corresponds to the target surface in the absence of roughness.
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This represents a serious problem for predictive numeri-
cal analysis of TIL systems.

The rule of thumb for such analysis states that the 
following considerations should be accounted for. First, 
the numerical grid pixel size lpix (measured in units of 
physical length) should be smaller than the smallest 
spatial scale, that is lpix < ls. Second, the entire computa-
tional grid length Npix‧lpix should be larger than the largest 
spatial scale D

ψ
, where Npix is the numerical grid size in 

pixels. The numerical grid size Npix required for accurate 
numerical analysis of return wave propagation can be 
estimated by the ratio Npix�D

ψ
/ls

. This order-of-magni-
tude estimation leads to the required numerical grid size 
Npix�107–1010, which significantly exceeds current compu-
tational capabilities.

There are some commonly used computational ‘tricks’ 
that allow to cope with this problem. Instead of D

ψ
, the 

transmitter aperture diameter D is commonly utilized as 
the largest spatial scale, which leads to a more realizable 
number for the required grid size Npix�D/ls.

In most cases, even this reduced grid size is still too 
large. Typically, D is on the order of tens to hundreds of 
centimeters and, correspondingly, D/ls�103–105. A further 
decrease in Npix up to a computationally affordable grid 
size of Npix = 512–1024 can be obtained via approximation 
of surface roughness by a random function having an arti-
ficially large correlation length (ls�1 mm or even larger). In 
addition, the surface roughness is commonly considered 
to be a δ-correlated random function with respect to the 
numerical grid.

Even these artificially imposed replacements of the 
largest and smallest spatial scales are typically insuffi-
cient. The scattered field localization area expands rapidly 
as the propagation distance increases and reaches the 
computational grid boundary at relatively short distances 
from the target. This leads to violation of the third impor-
tant rule for numerical analysis: the grid size should be 
large enough so that both the optical field amplitude and 
first-order spatial derivatives of the field are always neg-
ligibly small at the numerical grid boundary (zero-field 
boundary conditions). Violation of these grid boundary 
conditions commonly results in instability of the compu-
tational process.

To avoid this computational instability associated 
with rapid increase in the return field localization area, the 
zero-field boundary conditions are imposed artificially. 
This is equivalent to considering TIL wave propagation 
inside a box of size Npix‧lpix having absorbing walls. These 
artificially introduced absorbing walls result in auxiliary 
boundary diffraction that may impact computational 

accuracy. Although the absorbing walls allow stable 
numerical schemes, the obtained computational results 
can be inadequate.

1.4  Temporal scales

Additional obstacles for the analysis of TIL systems are 
the existence of multiple temporal scales: the time scale 
τat related with the dynamics of atmospheric turbulence 
effects, the characteristic time τAO of phase distortion com-
pensation using adaptive optics (AO) technique, the time 
delay τd = 2L/c related with double-pass wave propagation 
over the distance 2L at the speed of light c, and several 
other characteristic time scales τs associated with changes 
in the target surface roughness realizations inside the 
target hit spot.

For most atmospheric TIL beam control applica-
tions, the time scales obey the following inequality: 
τs < τAO < τd < τat. The slowest time scale is typically associ-
ated with the atmospheric parameter τat, which depends 
on the atmospheric turbulence conditions, wind speed, 
and beam slew. The time scale τat commonly varies from 
10-1 to 10-3

 s or even considerably less when tracking fast 
moving targets.

The fastest TIL temporal processes are related with 
changes in the target surface roughness pattern inside 
the illuminated area (target hit spot) of size bs. For a 
target surface moving (or spinning) with linear velocity 
vs, complete update of surface roughness realizations 
occurs at the time scale τs�bs/vs. Changes in surface 
roughness realization are dependent on several other 
factors including beam jitter, target surface vibration, 
and atmospheric turbulence-induced beam fluctua-
tions and beam wander at the target surface. All of the 
factors associated with the scattering process may 
result in fast (on the order of tens of kHz or even higher) 
random fluctuations in the return field at the receiver 
plane.

For the case of target illumination using a broadband 
laser source, the time τs can be associated with the laser 
source coherence time τc~1/Δω, where Δω is the laser fre-
quency bandwidth. For broadband target illumination, 
the time scale τc can be negligibly small.

The difficulties in rigorous analysis of TIL propaga-
tion mentioned above highlight the importance of simpli-
fied models and analytical approximations that can be 
applied to the analysis of scattering and return wave prop-
agation. In the following sections, we consider several 
such models.
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2   Scattering and speckle-field 
propagation in a vacuum

2.1   Statistical models of randomly rough 
surfaces

A qualitative picture of optical wave scattering for targets 
with different surface roughness types is shown in  
Figure 2B. A slightly rough surface results in an attenu-
ation of the specularly reflected outgoing beam inten-
sity and the appearance of a diffuse component with a 
wide angular distribution for the scattered light intensity 
(curves 1 and 2 in Figure 2B). As the surface becomes more 
rough, the diffuse component increases, and the specular 
component practically vanishes (curve 3).

Analytical models that describe wave scattering 
depend on surface roughness characteristics such as the 
surface roughness height σs, correlation length ls, surface 
roughness slope (the ratio σs/ls), and the statistical model 
for the roughness profile function. The following two 
models are the most commonly used: small-amplitude 
perturbation [16–19] and the Kirchhoff (small-slope) 
approximation [17, 20, 21].

The small-amplitude perturbative technique is typi-
cally applied to slightly rough surfaces where the rough-
ness amplitude rms σs is significantly less than the 
wavelength λ, and the roughness slopes are small σs/ls1 
(mirror-like surface).

The small-slope approximation is used for analysis 
of scattering from smooth surfaces with large roughness 
amplitudes where ls > σsλ. The condition ls > σs simpli-
fies analysis because multiple-scattering effects can be 
neglected [17].

In the small-slope approximation, wave scattering at 
each point { , ( )}z=r r r  on the randomly rough surface 

is described in the geometrical optics approximation. At 
each point ,r  the optical field is represented as a sum of 
the incident wave and the wave reflected from the plane 
tangent to this point, as shown in Figure 3A. Contribu-
tions to the optical field scattered in the angular direc-
tion θ originate from rough surface points, all of which 
have the identical tangent plane angular orientation. This 
means that all scattered field components in the direction 
θ have the same polarization.

For closely located transmitter and receiver apertures, 
often referred to as the small-angle scattering condition, 
the scattered wave has the same polarization as the out-
going wave. Thus, with the small-slope approximation 
and under small-angle scattering conditions, depolariza-
tion effects can be neglected, and TIL propagation can be 
described using scalar fields having the same polarization 
for both the outgoing and scattered waves. Note that scat-
tering off random surfaces with small-scale roughness, as 
well as multiple scattering (scattering off very rough sur-
faces), can result in a random depolarization of the scat-
tered field [17].

The surface roughness profile function ξ(r) is com-
monly described by a zero-mean, strictly stationary, 
isotropic, Gaussian random process. In this case, the two-
point moment 〈ξ(r1)ξ(r2)〉 can be represented in the form 
[17, 20, 22]

 
2

1 2( ) ( ) ( ),s sK rξ ξ σ〈 〉=r r
  (2.1)

where 〈 〉 denotes ensemble-averaging over realizations 
of the random surface roughness, r1 and r2 are vectors in 
the target plane r = |r1-r2|, and Ks(r) is the surface roughness 
autocorrelation function.

For most cases, a good approximation of the auto-
correlation function is given by the Gaussian expression 
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Figure 3 Geometrical representation of wave scattering for the case of an outgoing wave normally incident to the rough surface. For 
the single and multiple scattering shown in (A), optical rays are reflected from the corresponding tangent planes: ray trajectory R1 corre-
sponds to single scattering and ray trajectory R2 to multiple scattering. Inset (B) illustrates the scattering process in terms of the scattering 
wavevector ks = k

θ
-kinc, where kinc and k

θ
 are vectors orthogonal to the wavefronts of the incident and scattered waves, correspondingly. The 

ray trajectories R2 (solid line) and R3 (dashed line) in (C) are reciprocal. The scattering process associated with coherent summation of recip-
rocal waves results in the enhanced backscattering effect [22].
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 2 2( ) exp( - / 2 ),s sK r r l=   (2.2)

where ls is the transversal roughness correlation length 
previously introduced.

2.2   Multiple-scattering and enhanced 
backscattering

Large surface roughness amplitudes and slopes (very 
rough surfaces) result in multiple scattering of the reflected 
light. Multiple-scattering geometry with the consequent 
specular reflection of light from two tangent planes (sec-
ond-order scattering) is illustrated in Figure 3C. Compare 
single-scattering corresponding to the trajectory for ray R1 
with second-order scattering shown by ray R2.

The graphical representation of multiple scattering 
in Figure 3C corresponds to the Kirchhoff approximation 
extended to analysis of the multiple-scattering phenom-
ena [23]. Multiple scattering is responsible for the phe-
nomenon known as the enhanced backscattering effect 
– the appearance of a well-defined peak in the angular 
dependence of the scattered field intensity in the retrore-
flection direction, as shown in Figure 2B [22, 24, 25].

The origin of this peak is associated with coher-
ent interference between the double-scattered recipro-
cal waves, as illustrated in Figure 3C. The reciprocal ray 
trajectories R2 and R3 hit the surface at the same points, 
but in backward order. These reciprocal waves propagate 
the same distance and are always in phase. This leads to 
constructive interference between the reciprocal wave-
fronts and a factor of 2 increase (in theory) in the scattered 
wave’s intensity in the retroreflection direction.

In practice, the measured enhanced backscattering 
(peak height in the retroreflection direction) is noticeably 
smaller than a twofold increase because of the dominant 
contributions from single scattering. For this reason, the 
enhanced backscattering peak can only be observed by 
averaging the speckle patterns that originate from wave 
scattering over many surface roughness realizations. The 
angular width of the enhanced backscattering peak is on 
the order of Δθbs�λ/ls for normal incidence to the target 
surface [22].

In TIL applications, wave scattering typically occurs 
off metallic (perfectly conducting) surfaces having large-
scale surface roughness amplitudes (σsλ) that are in 
many cases not necessarily smooth. Nevertheless, because 
of the dominant contribution from single-scattering pro-
cesses, both the multiple-scattering and the enhanced 
backscattering contributions can typically be neglected 
(unless TIL system operation is based on these effects). 

For this reason, the small-slope approximation appears 
sufficient for analysis in most TIL wavefront control 
applications.

2.3  Scattered field boundary conditions

Consider for simplicity a rough surface oriented nearly 
orthogonal to the direction of outgoing wave  propagation 
(z-direction), and assume that the small-slope approxi-
mation can be applied. Also assume that the complex 
amplitude of the incident wave at the target surface 
A(r, z = L)≡AT(r) = |AT(r)|exp[iφT(r)] is a slowly varying 
 function on the scale of the roughness correlation length 
ls, where |AT(r)| and φT(r) are the modulus and phase, 
 correspondingly. This means that the incident wave’s 
wavevector kinc(r)≡∇φT(r) is a constant on the scale of 
ls and that due to the outgoing wave’s propagation in 
an optically inhomogeneous medium, variations in the 
vector kinc(r)’s direction occur over spatial scales signifi-
cantly larger than ls.

Define the scattering vector ( ) { ( ), ( )}s s s
zk⊥≡k r k r r  as 

ks(r)≡k
θ
-kinc(r), where k

θ
 is a wavevector corresponding to 

scattering in the angular direction θ. For a target surface 
oriented nearly orthogonal to the outgoing wave’s propa-
gation direction and for relatively small scattering angles 
(small-angle scattering conditions), we have | ( ) | 0s

⊥k r �  
and, hence, ( ) | ( ) |s s

zk r k r�  (see Figure 3B).
It can be shown that under these assumptions the 

return wave complex amplitude at the target plane 
ψT(r)≡ψ(r, z = L) can be approximated by the following 
boundary condition [17, 26]

 
( ) ( ) ( ) ( ) exp[ ( ) ( )] ( ),s

T T z TT A V ik Aψ ξ= ≡r r r r r r r
  (2.3)

or equivalently,

 

ψ

ξ

= = = ≡
=

( , ) ( ) ( , )
( ) exp[ ( ) ( )] ( , ),s

z

z L T A z L
V ik A z L

r r r
r r r r   (2.4)

where

 

ξ

γ ξ

= =
+

( ) ( ) exp[ ( ) ( )]
( ) exp[ ( ) ( ) ( )].

s
z

s
z

T V ik
ikS ik

r r r r
r r r r

  (2.5)

The function T(r) in expressions (2.3)–(2.5) describes 
the characteristic complex scattering coefficient for a 
target with a randomly rough surface, while the function 
V(r) = γ(r)exp[ikS(r)] corresponds to the scattering coeffi-
cient in the absence of roughness. Here, the phase func-
tion S(r) depends on the target shape and orientation, 
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and the reflection coefficient 0  ≤  γ(r)  ≤  1 describes a tar-
get-induced complex field attenuation. In the case of an 
extended target with a flat surface, γ(r) is a constant.

Formally, the scattering condition (2.3) coincides with 
the corresponding expression for a wave that, after reflec-
tion from a smooth (mirror-like) surface, passes through 
a thin random phase screen with the phase modulation 
function ( ) ( ) ( )s

s zkξ ξ=r r r  [17, 26]. This phase modulation 
depends [through the scattering vector component ( )]s

zk r  
on the outgoing wave’s wavefront slopes and, hence, on 
the wavefront phase aberrations at the target plane. (For 
most TIL systems, the outgoing wave’s wavefront slopes 
at the target are much smaller than the surface roughness 
slopes θs = σs/ls; hence, ( ) const.)s s

z zk k =r �

2.4  Speckle-field complex amplitude

In an optically homogeneous medium, scattered wave 
propagation from the target to receiver planes can be 
described in the parabolic (Fresnel) approximation of the 
diffraction theory by the following equation

 
2-2ik

z
ψ

ψ⊥

∂ =∇
∂   

(2.6)

with the boundary condition (2.4). Propagation model 
(2.6) corresponds to the small-angle TIL propagation 
geometry with closely located transmitter and receiver 
apertures.

The solution of Eq. (2.6) at the receiver plane (z = 0) 
can be represented in the form of the Fresnel diffraction 
integral as

2 2
0 -

( , 0) ( ) exp - ( - ) ( ) ( ) ,
2

s
T z

kz c i ik d
L

ψ ψ ξ
∞

∞

 ′ ′ ′ ′ ′= = + 
 

∫ ∫r r r r r r r�

 
 (2.7)

where c0 = -ik/(2πL) is a constant, and

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( , )ikS ikS
T T TV A e A e A Lψ γ γ= = =r rr r r r r r r�  (2.8)

is an auxiliary function that describes the scattered field 
complex amplitude at the target plane in the absence of 
roughness.

Propagation of the scattered wave to the receiver plane 
as described by the Fresnel integral (2.7) results in the for-
mation of an optical field composed of randomly located 
bright and dark intensity spots. This field is commonly 
referred to as a speckle field. The spatial and temporal 
correlation properties of speckle fields play an important 
role in TIL wavefront control applications. Speckle-field 

statistical characteristics are discussed in the following 
subsections.

2.5  Mutual correlation function

Consider spatial correlation properties of the speckle-
field complex amplitude. Define the mutual correlation 
function (MCF) of the speckle field at the plane z as the 
two-point product of the field complex amplitudes aver-
aged over ensemble realizations of the random surface 
roughness

 Γ
ψ
(r1, r2, z)≡〈ψ(r1, z)ψ*(r2, z)〉, (2.9)

where r1 and r2 are two vectors in the plane orthogonal to 
the direction of wave propagation. Note that for a return 
wave originating from an incoherent (e.g., star) or par-
tially coherent monochromatic (quasimonochromatic) 
light source, expression (2.9) can also be referred to as the 
mutual intensity function or mutual coherence function 
[20, 27].

For the sake of convenience, we introduce the sum 
and difference coordinates

 R = (r1+r2)/2, ρ = (r1-r2). (2.10)

With these coordinates the MCF can be represented as

 Γ
ψ
(ρ, R, z)≡〈ψ(R+ρ/2, z)ψ*(R-ρ/2, z)〉. (2.11)

2.6   Propagation of the mutual correlation 
function

For return wave propagation in an optically homogeneous 
medium, the mutual correlation function at the receiver 
plane z = 0 can be obtained by substituting the Fresnel dif-
fraction integral (2.7) into Eq. (2.11). Omitting routine alge-
braic derivations we obtain

 

2 *
0

2 2

( , , 0) | | ( / 2 ) ( / 2 ) ( , )

exp ( - )

T Tz c F
ki d d
L

ψ ξ
Γ ψ ψ′ ′ ′ ′ ′ ′= =

 
′ ′ ′ ′ ′ ′×  

 

∫ ∫R R R R

R R R R R

� �ρ ρ ρ ρ

ρ ρ ρ ρ ρ

+ -

+ ,-
 

 (2.12)

where

 F
ξ
(R′, ρ′)≡ < exp[iξs(R′+ρ′/2)-iξs(R′-ρ′/2)] > .  (2.13)

For simplicity, we have eliminated the limits of inte-
gration. In all cases, integration is performed over the 
entire (x, y) plane unless defined otherwise. We also use a 
single integral indicator.
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Equation (2.12) can be simplified if we assume that 
ξs(r) is a statistically uniform and isotropic random func-
tion. In this case, the function (2.13) depends only on the 
modulus of the difference coordinate ρ′, that is

 F
ξ
(R′, ρ′) = F

ξ
(ρ′) =  < exp[iξs(R′+ρ′/2)-iξs(R′-ρ′/2)] > . (2.14)

Correlation between the random values ξs(R′+ρ′/2) 
and ξs(R′-ρ′/2) in Eq. (2.14) vanishes when the difference 
coordinate modulus ρ′=|ρ′| exceeds the surface roughness 
correlation length ρ′ > ls. This means that in Eq. (2.12), the 
function F

ξ
(ρ′) can be assumed as nonzero only inside 

the integration area ρ′ < ls. Note that any potential differ-
ence between the characteristic correlation lengths for the 
random functions ξs(r) and ξ(r) is considered small and 
ignored.

The functions ( / 2 )Tψ ′ ′+R� ρ  and ( - / 2 )Tψ ′ ′R� ρ  in Eq. 
(2.12) can be considered only inside the area, which is 
essential for integration over the variable ρ′.

The complex amplitude ( / 2 )Tψ +′ ′R� ρ  in Eq. (2.12) 
depends on the slowly varying (on the spatial scale ρ′~ls) 
functions γ(R′+ρ′/2), AT(R′ ± ρ′/2), and S(R′ ± ρ′/2) [see Eq. 
(2.8)]. Inside the area ρ′  ≤  ls, the first two functions can be 
approximated by using the first terms in the Taylor series 
expansions: γ(R′ ± ρ′/2)�γ(R′) and AT(R′ ± ρ′/2)�AT(R′).

In contrast, in the approximation of function 
S(R′ ± ρ′/2), we keep the first two terms S(R′ ± ρ′/2)�S(R′) 
± ρ′∇S(R′)/2, as the term kρ′∇S(R′)/2 can be nonzero even 
inside the area of size ls.

We then obtain the following approximation for the 
function ( / 2 )Tψ +′ ′R� ρ  in Eq. (2.12)
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Assume that inside the illuminated target area the 
gradient ∇S(R′) in Eq. (2.15) can be approximated by a 
constant: ∇S(R′)�α = const. This corresponds to a general 
tilt of the surface by an angle of |α| inside the target hit-
spot area. By substituting expressions (2.14) and (2.15) into 
Eq. (2.12), we obtain
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 (2.16)

Consider the argument kρ′R′/L in the last exponen-
tial term of Eq. (2.16) and note that the area essential for 

integration over the variable R′ coincides with the target 
hit-spot area of size bs. Thus, inside both of the areas in 
Eq. (2.16) essential for integration – the area of size ls for 
integration over ρ′ and the area of size bs for integration 
over R′ – the term kρ′R′/L does not exceed its maximum 
value Ls/L, where Ls = klsbs.

Assume that Ls/L1, which corresponds to a target 
located at the distance LLs = klsbs. In this case, the term 
exp(ikρ′R′/L) in Eq. (2.16) can be replaced by unity. For 
most TIL propagation scenarios, the condition LLs is ful-
filled. As an estimation, consider λ = 1.0 μm, ls = 50 μm, and 
bs = 0.25 m. For this example, Ls�80 m.

For propagation distances LLs, the speckle-field 
MCF (2.16) can be represented in the following form [28]
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(2.18)
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(2.19)

2.7  Speckle-field correlation spatial scales

An important property of the representation (2.17)–(2.19) 
is that the speckle-field MCF modulus

 |Γ
ψ
(ρ, R, z = 0)| = |c0|2|Φ(ρ)Φ

ξ
(R)|  (2.20)

is a factorized function with respect to the sum R = (r1+r2)/2 
and difference ρ = (r1-r2)/2 coordinates: the function Φ(ρ) 
depends only on ρ, while Φ

ξ
(R) is only a function of the 

coordinate vector R. This means that the function Φ(ρ) 
alone defines spatial correlation properties of the MCF 
with respect to the difference coordinate ρ, that is, local 
correlations occurring within the vicinity of the coordinate 
vector R. The function Φ

ξ
(R) describes changes occurring 

with local correlations when the observation points r1 and 
r2 are relocated without changing the difference vector ρ.

Consider the properties of these functions. First, note 
that Φ(ρ) in Eq. (2.18) is the Fourier transform of the auxil-
iary function 2 2| ( ) | ( ) ( , )T I Lψ γ=R R R�  defined by Eq. (2.8), 
and hence, the function Φ(ρ) is independent of the statis-
tical properties of the target surface roughness.
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We can estimate the characteristic localization area of 
the function Φ(ρ) – the range of the variable ρ correspond-
ing to nonzero function values. The size of this area can 
be easily calculated for a target hit spot of size bs with a 
Gaussian intensity distribution: 2 2

0( , ) exp( - / ).sI L I b=R R  
Assume for simplicity that γ(R) = 1, and from Eq. (2.18), we 
obtain

 2 2
0( ) exp( - / ),spaΦ Φ ρ=ρ  where  (2.21)

 
2 /( ) /( )sp s sa L kb L bλ π= =

  (2.22)

and Φ0 is a constant. For a fixed coordinate R, the MCF 
(2.20) is localized inside an area of size asp. This means that 
the correlation between the speckle-field complex ampli-
tudes at points r1 and r2 vanishes if the separation distance 
between these points |r1-r2| exceeds 2asp. The spatial scale 
asp in Eq. (2.21) is commonly used as an estimate of the 
speckle-field correlation length, also called speckle radius.

2.8   Average intensity and speckle-field 
footprint

Consider the properties of the function Φ
ξ
(R) as described 

by expression (2.19). The function Φ
ξ
(R) is the Fourier 

transform of the product of two functions: exp(ikαρ′) and 
F

ξ
(ρ′). From the Fourier transform shift theorem, which 

states that a linear phase shift in the frequency domain 
[the term exp(ikαρ′)] introduces a translation in the coor-
dinate domain, and from expression (2.19), we obtain

 

2( - ) ( ) exp ,kF i d
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 ′ ′ ′=  
 

∫R R Rρ ρ
  

(2.23)

where R
α
 = αL describes a linear shift of the sum coordi-

nate in the receiver plane resulting from a local tilt of the 
target surface inside the illuminated area.

The speckle-field average intensity distribution 〈Isp(R)〉 
≡〈I(R, 0)〉 at the receiver plane can be obtained by substi-
tuting ρ = 0 into Eq. (2.11) for the MCF:

Γ
ψ
(0, R, 0) = 〈ψ(R, 0)ψ*(R, 0)〉 = 〈Isp(R)〉.

Correspondingly, from expressions (2.17) and (2.23), 
we obtain
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(2.24)

where ˆ -
α

=R R R  and

 
2 2( 0) ( ) ( , ) .I L dΦ γ=∫ R R R  (2.25)

According to Eqs. (2.24) and (2.25), the speckle-field 
average intensity 〈Isp(R)〉 is the result of incoherent sum-
mation of the scattered field contributions from all surface 
elements (summation of intensities).

The average intensity localization area defines the 
speckle-field footprint at the receiver plane. For estimation 
of the footprint size, consider the function F

ξ
(ρ′) in Eq. 

(2.24). This function depends on the random phase modu-
lation function ξs(r) = ks

z(r)ξ(r), where ks
z(r) is a component 

of the scattering vector ks(r) = k
θ
-kinc(r) [see expressions 

(2.3), (2.5) and (2.14)].
For simplicity, assume that variations in the incident 

wave’s wavefront slopes at the target surface are small 
and can be neglected [kinc(r)�kinc]. We also assume that the 
target surface is orthogonal to outgoing wave propagation 
direction, so that k

θ
 = -kinc�kz = k. In this case, | |s s

zkk �  and 
-2 -2 .s

z zk k k=�  In this approximation, ξs(r) = -2kξ(r).
Consider the surface roughness profile ξ(r), which 

can be described by a Gaussian random process (Gauss-
ian rough surface). For this case, expression (2.14) can be 
represented as [20, 27]
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where Ks(ρ′) is the Gaussian autocorrelation function 
with correlation length ls defined by Eq. (2.2). Inside the 
region ρ′�ls, the autocorrelation function can be approxi-
mated with good accuracy as 2 2( ) exp[ -( ) /2 ]s sK lρ ρ=′ ′  

2 21-( ) /2 .slρ′� In this case, for F
ξ
(ρ′) in Eq. (2.26), we obtain

 
2 2 2( ) exp{ -4 [ 1- ( )]} exp[ -2( ) ],s s sF k K k

ξ
ρ σ ρ θ ρ=′ ′ ′�

  
(2.27)

where θs = σs/ls is the characteristic angle for the rough 
surface slopes.

Substituting Eq. (2.27) into Eq. (2.24) results in
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where c
α
 = |c0|2, and 2 2 2 2( / ).I s s slθ θ σ= =  The distance

 
2 2 2 2( / ) ,I s s sR L L l L

ψ
θ θ σ= = =

  
(2.29)

describes the characteristic radius for the average inten-
sity localization area in the receiver plane, and can be 
referred to as the speckle-field footprint radius. Corre-
spondingly, the speckle-field footprint size (diameter) is 
given by D

ψ
 = 2R

ψ
.
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It is convenient to represent the average intensity 
(2.28) as a function of the scattering angle vector θ = R/L:

 
2 2( - ) ( 0) exp( -| - | / ).sp II c

α
Φ θ〈 〉=θ α θ α

  
(2.30)

This expression describes the angular distribution 
of the speckle-field average intensity, and the parameter 

2 2I sθ θ=  in Eq. (2.30) characterizes the speckle-field 
angular width (half-angle). Note that θI depends only on 
surface roughness characteristics (ratio σs/ls).

A more general analysis shows that the average 
speckle-field intensity in the selected angular direction 
θ is proportional to the probability W(∇ξ) of the surface 
roughness slopes ∇ξ for which scattering in the direction 
θ corresponds to specular reflection: ( ) - ( ) /s s

zkξ ⊥∇ =r k r  
[17, 20]. Generally speaking, this means that the average 
intensity angular distribution depends on the incident 
wave’s wavefront phase. Nevertheless, for smooth spatial 
variations of the phase inside the illuminated area, this 
dependence is relatively weak and with most TIL appli-
cations can be neglected. Similarly, variations of surface 
curvature (shape) inside the target hit spot result in 
changes in probability of the surface roughness slopes 
and, hence, may impact the average intensity angular 
distribution [20, 29].

On the contrary, the surface roughness statistics, as 
well as the incident wave spatial phase modulation (aber-
rations) at the target surface and the surface shape, have 
practically no impact on the speckle-field correlation 
length asp. Spatial correlation properties of the speckle-
field depend exclusively on the outgoing wave’s intensity 
distribution on the target surface. This property of speckle 
fields can be used for image quality analysis and adaptive 
imaging [30, 31].

2.9  Van Cittert-Zernike theorem

Compare the characteristic width of the average intensity 
angular distribution 2 2( / )I s slθ σ=  with the angular 
speckle-size defined by θsp = asp/L. From Eq. (2.22), we 
obtain θsp = λ/(πbs). The ratio θI/θsp�10(bs/λ)θs of these 
two characteristic angular scales of the speckle-field 
MCF is enormously large. For a typical example where 
λ = 1.0  μm, θs = 0.1, and bs = 0.25 m, we obtain θs�0.3 rad. 
and θI/θsp = 2.3‧105. For the propagation distance L = 1.0 km, 
the beam footprint size is R

ψ
 = LθI�300 m, and the charac-

teristic speckle size is given by asp�1.3 mm. Compare the 
beam footprint size and the speckle size with the receiver 
telescope aperture size (diameter) D. For D = 1.0 m, we have 
R

ψ
 = 100D, and D = 770asp.

This example shows that for a large size region of 
the receiver plane Ω, which significantly exceeds the TIL 
system receiver telescope aperture and contains a large 
number of speckles, the function Φ

ξ
(R) in Eq. (2.17) can be 

considered as a constant: Φ
ξ
(R)�const. For a target surface 

tilted by the angle α, Φ
ξ
(R)�Φ

ξ
(R

α
) = const.

By substituting this approximation and Eq. (2.18) for 
the function Φ(ρ) into expression (2.17) for the mutual cor-
relation function, we have
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For γ(r) = const and R
α
 = 0, this formula coincides with 

the expression for the well-known Van Cittert-Zernike 
theorem describing the evolution of the mutual coher-
ence function for an optical wave originating from an 
incoherent light source with intensity distribution I(r, L) 
[20, 27].

Assuming R
α
 = 0 (orthogonal to the optical axis 

surface), from Eq. (2.31) for the average intensity, we 
obtain
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(2.32)

The integral (2.32) describes the formation of the 
speckle-field average intensity as a process of incoherent 
summation of scattered field contributions from many 
surface elements. From Eq. (2.32), it also follows that in 
this approximation, the speckle-field average intensity is 
a constant: ( ) const.sp spI I〈 〉= =r

Using two-dimensional Fourier transforms and Eq. 
(2.31), represent the MCF modulus in the form

 

2

2| ( , ,0) | | ( ) ( , ) |,
( 2 )

k L
Lψ ξ α ψ

Γ Φ
π

=q R R qI
  

(2.33)

where q = (k/L)ρ = kθ is the transversal vector in the spec-
tral domain, and I(q, L) is the spectral amplitude of the 
function 2 2| ( ) | ( ) ( , ).T I Lψ γ=r r r�

It follows from the Van Cittert-Zernike theorem (2.31), 
(2.33), that for an extended target with uniform attenu-
ation [γ(r) = const], the speckle-field MCF, and hence, 
the speckle-field spatial correlation length asp are solely 
dependent on the incident wave intensity distribution on 
the target surface IT(r)≡I(r, L). For a Gaussian intensity of 
width bs, the length asp (speckle-size) is simply inversely 
proportional to bs [see Eq. (2.22)].
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3   Target-in-the-loop beam quality 
metrics

3.1  Target-plane beam quality metrics

The spatial correlation properties of speckle fields 
described above can be used in adaptive TIL laser beam 
projection (directed energy) systems [14, 32, 33]. These 
systems are designed to create a hit spot of the small-
est possible size on a remotely located target and, thus, 
increase the laser beam power density (hit-spot bright-
ness) on the target surface [34]. The desired increase in 
the hit-spot brightness can be achieved by actively (adap-
tively) controlling (preshaping) the outgoing wave phase 
at the TIL system transmitter aperture.

This phase control can be based on optimization of a 
selected measure (metric) JT = J[IT(r)] that characterizes the 
‘quality’ of the target hit-spot intensity distribution IT(r) 
(target-plane beam quality metric) through the use of various 
metric optimization techniques [13, 14, 32, 35–38]. Note that 
these wavefront control techniques can only be applied to 
TIL laser beam projection systems that operate over rela-
tively short propagation paths, so that the time delay τd = 2L/c 
associated with TIL propagation can be neglected (τd < τAO).

The same general requirements for the desired target-
plane intensity distribution can be described using dif-
ferent metrics. For example, an increase in laser beam 
energy density on the target surface can be achieved by 
maximizing the target-plane metric known as the sharp-
ness function [39]
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(3.1)

or by minimizing the metric
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which characterizes the target hit-spot width bs. Here,
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where rc is the beam centroid vector, and W0 is the total 
beam power.

3.2   Receiver-plane metrics: basic 
requirements

The problem with wavefront control techniques based on 
target-plane beam quality metric optimization is that in 

TIL propagation geometry, the target-plane intensity IT(r) 
in Eqs. (3.1)–(3.3) cannot be directly measured. Estimation 
of the beam quality at the target surface can only be per-
formed using measurements of the return field character-
istics at the receiver aperture (plane z = 0) – receiver-plane 
metrics.

Note that the return speckle-field amplitude at the 
receiver plane ψ(r, z = 0) is a random function. It depends 
on many factors including the target-plane field intensity 
IT(r) and phase φT(r) distributions, instantaneous realiza-
tions of the target surface roughness ξ(r), and the target 
orientation, shape, and reflection coefficient inside the 
illuminated area [as described by the functions γ(r) and 
S(r) in Eq. (2.5)].

The questions to be answered are first, what kind of 
speckle-field characteristics should be measured; and 
second, how should these characteristics be processed 
to ‘filter’ undesirable dependencies of the speckle field 
on the factors mentioned above to obtain a measure 
Jsp = Jsp[ψ(r, z = 0)] (speckle-field based metric) that depends 
solely on the target-plane intensity distribution IT(r) and 
can be used instead of target-plane beam quality metrics.

The measure Jsp, referred to as a speckle-field based 
beam quality metric or just speckle metric, can be used as 
a performance metric for adaptive wavefront control in TIL 
laser beam projection systems if the following conditions 
are fulfilled: (a) Jsp can be computed based on measure-
ments of the speckle-field characteristics at the receiver 
aperture; (b) Jsp monotonically depends on the selected 
target-plane beam quality metric JT, and (c) both the 
speckle-field measurements and computations of Jsp can 
be performed over a time τJ that is shorter than the charac-
teristic time τT for which the hit-spot intensity distribution 
can be considered stationary (‘frozen’).

Target plane intensity variations typically result from 
either atmospheric turbulence-induced beam intensity 
fluctuations (scintillations) with a characteristic time τat 
or from adaptive optics-induced outgoing wave phase 
modulations with the characteristic time constant τAO.

3.3   Speckle-average power-in-the-bucket 
metric

The simplest example of a speckle metric is the speckle-
average power-in-the-bucket metric 〈JPIB〉

 
2 2 2| ( , 0) | ( ) ,

R R
PIB spS S

J z d I dψ〈 〉= 〈 = 〉 = 〈 〉∫ ∫r r r r
  

(3.4)

where SR is the receiver telescope aperture area and 
Isp(r)≡I(r, 0) is the return-wave (speckle-field) intensity 
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distribution. The metric 〈JPIB〉 can be measured using a 
receiver telescope with a large-area single photodetector 
in its focal plane. The metric (3.4) depends on the ensem-
ble-average speckle-field intensity distribution 〈Isp(r)〉. 
In most practical cases, the speckle-field beam footprint 
size D

ψ
 as defined by Eq. (2.29) significantly exceeds the 

receiver telescope aperture size D, and hence, the average 
intensity 〈Isp(r)〉 in Eq. (3.4) can be considered independ-
ent of the vector r: ( ) const.sp spI I〈 〉= =r

For a Gaussian surface orthogonal to the optical axis, 
from Eqs. (2.24), (2.25), and (2.28), we have (with accuracy 
to a constant insignificant for our analysis)

 
2 2( ) ( ) .PIB R sp R TJ S I S I dγ〈 〉= ∫ r r r=

 
(3.5)

The metric (3.5) depends solely on the target-plane 
intensity distribution and, thus, formally satisfies the first 
speckle-metric requirement introduced above.

Let us examine if this metric can characterize the 
target hit-spot brightness and, hence, satisfy the second 
speckle-metric requirement. For an extended target with 
uniform reflectivity coefficient [γ(r) = const], the integral 
in Eq. (3.5) is proportional to the outgoing beam’s total 
power W0 and, hence, does not depend on the target 
plane intensity distribution. Accordingly, for extended 
targets that significantly exceed the hit-spot beam size 
and have uniform reflectivity (no glints) – a so-called 
resolved target – the speckle-average power-in-the-
bucket (PIB) metric cannot serve as a speckle-metric and, 
hence, cannot be used for control of the outgoing beam 
phase.

For the opposite case of an unresolved target – a 
small target, or a target with an unresolved bright glint 
for which γ(r) = δ(r-rg), where rg is the target/glint coordi-
nate vector – the PIB metric is proportional to the outgo-
ing beam intensity on the target or glint point: 〈JPIB〉~IT(rg). 
For unresolved targets, the measure JT = IT(rg) represents 
a target-plane beam quality metric whose value mono-
thonically increases with an increase in the laser beam 
power density on the small target or target glint. Thus, for 
unresolved targets, the metric 〈JPIB〉 satisfies the second 
speckle-metric requirement (〈JPIB〉~JT), and maximization 
of this metric leads to increases in target hit-spot bright-
ness [38].

For intermediate cases where the size of a resolved 
target is on the order of the target hit-spot beam size bs, the 
PIB metric (3.5) can be used as speckle-metric only during 
the initial stages of adaptive wavefront phase control. 
This means that use of metric (3.5) for adaptive wavefront 
control can only result in partial improvement of the hit-
spot brightness.

3.4  Speckle-metric measurements

Assume that the target surface and laser beam are moving 
with respect to each other in a direction orthogonal to the 
TIL system optical axis with a linear velocity of vs. The 
characteristic time of complete surface roughness reali-
zation update can then be estimated by τsbs/vs, where 
bs is characteristic beam size on the target surface. For 
computing speckle-average metrics such as 〈JPIB〉, assume 
that ensemble averaging can be replaced by time averag-
ing of a sufficiently large number Msp of instantaneous 
speckle-field intensity distributions Isp(r, tm), m = 1, …, 
Msp corresponding to different surface roughness realiza-
tions. (This corresponds to the ergodicity assumption.) 
Speckle patterns are captured at the moments tm = mΔ, 
where Δ is the time interval between subsequent measure-
ments. The receiver system photo-array integration time 
τph is assumed sufficiently short to obtain instantaneous 
(‘frozen’) intensity snapshots.

In order to obtain statistically independent speckle-
pattern realizations, the time interval Δ between subse-
quent measurements should exceed τs, that is Δ > bs/vs. 
Correspondingly, the total time required for the speckle 
metric measurement is τJ = MspΔ > Msp(bs/vs). Because 
speckle metrics should be estimated faster than the char-
acteristic time for the changes in the propagation medi-
um’s optical inhomogeneities and laser beam wavefront 
phase, for atmospheric TIL systems, the measurement 
time τJ should be significantly shorter than both the char-
acteristic atmospheric time τat and adaptive optics system 
response time τAO, that is, τJτAOτat. This leads to the fol-
lowing requirement: vsMspbs/τat. As an example, assume 
bs = 10 cm, τat = 5‧10-3 s and Msp = 25. This gives vs > 500 m/s. 
This simple analysis shows that obtaining speckle-metric 
by capturing a time sequence of speckle patterns is only 
possible for extremely fast moving (or spinning) targets. 
In practice, to obtain speckle averaging, even partial 
surface roughness realization update can be sufficient 
so that the target surface motion velocity could be up to 
an order of magnitude less (vs  ≥  50 m/s in the example 
considered).

For targets with static or slowly moving (quasistatic) 
surface motion, speckle averaging can be performed by 
using artificially induced small-amplitude fast steering 
(dithering) of the outgoing beam that provides rapid shifts 
in the target hit spot over distances exceeding the beam 
size bs, thus, updating the surface roughness realization 
inside the illuminated area [12, 33]. Note that fulfilling 
the speckle-averaging condition τsτJτAOτat requires 
tip and tilt modulation of the outgoing beam wavefront 
phase with dithering frequencies, ωdith~1/τs, in the 10-MHz 
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range, which cannot be achieved using conventional 
opto mechanical beam-steering mirrors.

The required hit-spot dithering frequency can never-
theless be realized by using laser transmitters based on 
phased fiber array as shown in Figure 4A [33]. This laser 
beam transmitter (beam director) is composed of densely 
packed fiber collimators that are optically coupled with a 
narrow-linewidth multichannel master oscillator power 
amplifier (MOPA) system that utilizes single-mode polari-
zation maintaining fibers [40–42]. Each channel of the 
MOPA system includes a LiNbO3 fiber-integrated phase 
shifter capable of GHz-rate control of the piston phase of 
the beam transmitted through its corresponding fiber col-
limator. The high-frequency hit-spot dithering required 
for speckle metric measurements can be achieved in this 
system using a piston-wise (stair-mode) approximation 
of the outgoing beam wavefront tilts as illustrated by the 
inset at the right top corner in Figure 4B. Note that dith-
ering of the outgoing beam also results in an undesired 
overall increase of the projected beam’s long-exposure 
hit-spot footprint and the corresponding decrease of the 
time-averaged power density. For this reason, the stair-
mode dithering amplitude should be small, but still large 
enough to provide a statistically representative ensemble 
of uncorrelated (or at least weakly correlated) speckle-field 
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Figure 4 Laser beam projected systems based on adaptive wave-
front control using stochastic parallel gradient descent (SPGD) 
optimization of speckle metrics: (A) fiber-array laser transmitter 
and (B) conventional beam projection system with fiber-array-based 
target illuminator (shown inside dashed box).

realizations that can be used for speckle-metric evalu-
ation. A small dithering amplitude is also important for 
mitigation of anisoplanatic effects [12].

Owing to the high bandwidth of the fiber-integrated 
phase shifters, they can be used for both hit-spot dither-
ing and speckle-metric optimization leading to coher-
ent combining (phasing) of the outgoing beams at the 
target plane. This fiber-array beam projection system with 
speckle-metric based adaptive wavefront control is shown 
in Figure 4A. Speckle metric optimization in this system is 
performed using the stochastic parallel gradient descent 
(SPGD) control algorithm [43, 44]. In a beam projection 
system with a conventional laser transmitter telescope 
as shown in Figure 4B, the phased fiber array is utilized 
as a target illuminator that uses hit-spot dithering solely 
for speckle-metric sensing. Speckle metric optimization 
in this adaptive optics system is achieved by shaping the 
outgoing beam wavefront phase with a deformable mirror 
(DM) that is located in the common optical train for both 
the target illuminator and the projected laser beams. For 
efficient combining of these beams before entering the 
transmitter telescope, they should have slightly different 
wavelengths or orthogonal polarization states. For com-
pensation of the MOPA system-induced random phase 
shifts in the fiber-array illuminator in Figure 4B, the out-
going beams should be phased at the pupil plane, which 
can be achieved with an additional speckle metric AO 
control system shown inside the dashed box in Figure 4B. 
This control system optimizes the local speckle-metric 

,loc
spJ  which is obtained by focusing a small portion of the 

illuminator beam onto a rough surface.
A different approach to speckle metric measurements 

is based on sensing in parallel the speckle-field inten-
sity distributions inside the non-overlapping areas {Ωm}, 
(m = 1, …, Ms) belonging to a single large-area speckle-
field realization. The speckle-field intensity distributions 
inside these areas are assumed uncorrelated.

Note that in expression (2.31), the speckle-field MCF 
|Γ

ψ
(ρ, R, 0)| is practically independent of the sum coordi-

nate vector R. This means that speckle-field realizations 
inside non-overlapping areas {Ωm}, separated by distances 
of speckle size asp or larger, can be considered as statisti-
cally independent. Sensing of the speckle-field intensity 
distributions in the areas {Ωm} can be performed by either 
using a high-resolution photo-array that captures the 
large-area speckle-field intensity pattern or by using an 
array of Msp operating in parallel speckle metric sensors. 
In this ‘space-averaging’ approach, the corresponding 
requirement on the speed of mutual displacement of 
target surface and laser hit spot is Msp times less restricted 
(vs > bs/τat).
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3.5  Speckle size-based beam quality metrics

The characteristic speckle-field correlation length 
(speckle size) asp represents another example of speckle 
metric referred to here as a speckle-size metric [15, 32, 45, 
46]. In accordance with the Van Cittert-Zernike theorem 
(2.33), the correlation length asp depends on the charac-
teristic target hit-spot size bs. Increasing the speckle size 
leads to the desired decrease in target hit-spot size.

The ‘true’ (MTF-based) estimation of the correlation 
length asp requires computationally expensive statistical 
analysis of speckle-field intensity patterns that are diffi-
cult (if even possible) to perform within a relatively short 
time τJ < τAO < τat. Here, we do not distinguish between the 
spatial correlation lengths associated with the speckle 
field and the speckle-field intensity. This difference is 
insignificant for beam quality metric analysis. On the 
other hand, for the purpose of controlling the outgoing 
beam phase, the ‘true’ value of the correlation distance 
asp can be replaced by any other characteristic (metric) 
Jsp = Jsp(asp) that depends on the ‘true’ speckle size asp, but is 
more convenient for measurements or computations.

Consider an example of such a metric based on indi-
rect speckle-size estimation using computation of speckle 
pattern edges [15]. Assume that the registered speckle-
field intensity distribution Isp(r) (speckle image) contains 
a large number of speckles. Examples of these types of 
speckle images, along with the TIL system prototype used 
for their capturing, are shown in Figure 5.

Consider image processing of speckle-intensity dis-
tribution, referred to as edge detection of speckle images. 
The edge detection can be performed using various tech-
niques: digital, parallel optoelectronic, or on-chip elec-
tronic edge processing. Regardless of the technique used, 
edge detection can be described by an edge-detector oper-
ator E applied to the speckle-field intensity Isp(r), resulting 
in the ‘edge-image’ je(r) = E[Isp(r)]. Figure 5 shows examples 
of speckle-pattern edge processing. Edge images B and 
D are computed using the digital gradient Sobol opera-
tor ∇ applied to the binarized speckle-intensity patterns 

( ) [ ( )- ],bin
sp sp spI sign I I=r r  where spI  is a selected intensity 

threshold level corresponding to the aperture-average 
(mean) speckle-field intensity value. The sign function 
is used to enhance the speckle pattern contrast. In this 
example, the edge-detector operator can be represented 
in the form 2[ ( )] | ( ) | .bin

sp spE I I= ∇r r
By integrating the edge image je(r) over the receiver 

aperture area SR, we can obtain a characteristic that 
is sensitive to the averaged speckle size (speckle-size 
metric) [15]
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Figure 5 TIL system model for speckle-metric analysis [15]. The 
photos DF and F are captured by the target-plane photo-array and 
correspond to the defocused and focused laser beams on the target 
surface. The bottom photos are speckle-field intensity distribu-
tions registered by the receiver [(A) and (C)] and the corresponding 
edge images [(B) and (D)]. Speckle pattern (A) and edge image (B) 
correspond to the defocused beam DF; speckle pattern (C) and 
edge image (D) correspond to the focused beam F. The receiver 
and target-plane cameras are synchronized to allow simultaneous 
measurements of the speckle and target-plane intensity distribu-
tions used for computation of the speckle-size metric Jsp and the 
target-plane metric J₂, correspondingly. The metric Jsp computation 
time τJ�0.01 s. An aluminum half-sphere ~5.0 cm in diameter is 
used as an extended target. The laser wavelength is 0.514 μm. The 
optical relay (lenses L₁ and L₂) is used to expand the input beam 
from 10 mm to 80 mm in diameter. The second optical relay (lenses 
L₃ and L₄) is used for speckle-pattern scaling.
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sp e spS S

J j d E I d≡∫ ∫r r r r=
  

(3.6)

To illustrate the physical meaning of the speckle-size 
metric (3.6), consider the edge images in Figure 5B and D. 
These edge images are composed of speckle contours so 
that the metric Jsp in Eq. (3.6) represents the total contribu-
tion of edges within a registered speckle pattern. Having a 
defocused beam on the object surface (as shown by photo 
DF) corresponds to a small characteristic speckle size at the 
receiver aperture as in Figure 5A and a dense edge-image 
pattern as in Figure 5B and a larger Jsp value. In contrast, the 
sharply focused beam (photo F) corresponds to the large 
speckles in C, the sparse edge image D, and a small Jsp.

Consider a more detailed analysis of dependence of 
the speckle-size metric (3.6) on the laser beam size at the 
extended target for the TIL system shown in Figure 5 [15]. 
In the experiments, the size of the laser beam hit spot on 
the target surface bs was controlled by applying control 
voltage uF to a deformable mirror incorporated into the 
transmitter telescope.
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For measurement of intensity distribution IT(r) on the 
target surface, a portion of the outgoing beam was directed 
by the beam splitter to the target-plane photo-array (CCD 
camera) placed in a plane conjugate to the target surface, 
as shown in Figure 5. The intensity IT(r) was used to calcu-
late the target-plane beam quality metric (sharpness func-
tion) J2 using expression (3.1). The scattered off-the-target 
surface speckle field propagated to the receiver telescope 
located near the transmitter system.

By continuously changing the control voltage uF 
applied to the deformable mirror electrodes, the beam 
size on the target was varied from highly defocused (bs�5.0 
mm) as shown in photo DF in Figure 5, to sharply focused 
in photo F (bs�0.2 mm). Further increases in the control 
voltage resulted in the laser beam focusing on planes 
located in front of the target, with a corresponding monot-
onic increase in the target-plane beam size.

Dependence of the target-plane metric J2 [Eq. (3.1)], 
speckle-size metric Jsp [Eq. (3.6)], and the speckle average 
power-in-the-bucket metric 〈JPIB〉 [Eq. (3.4)] on changes in 
the control voltage are shown in Figure 6. Both J2 and Jsp 
metrics have their extrema (maximum for J2 and minimum 
for Jsp) at approximately the same voltage corresponding to 
the smallest possible beam size on the target surface, while 
metric 〈JPIB〉 is practically insensitive to the target beam size.

The presence of well-localized single extrema on the 
speckle-size metric curve that coincide with the extremum 
for the target-plane metric is exactly the property of the 
speckle-based metric required for adaptive control in TIL 
projection systems.

In closed-loop experiments with an adaptive TIL 
system prototype (in a setting similar to that shown in 
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Figure 6 Normalized beam quality metrics J, where J is either the 
target-plane metric J2, or the speckle-size metric Jsp, or the average 
PIB metric 〈JPIB〉, vs. controlling voltage uF applied to the deformable 
mirror in the TIL beam projection system shown in Figure 5. Beam 
size on the target changed from bs�5.0 mm (uF = -80 V) to the sharply 
focused beam with bs�0.2 mm for uF = -8 V and further to the highly 
defocused beam bs�7.0 mm (uF = -80 V) with the indicated control 
voltage change.

Figure 6), utilization of the speckle-size metric Jsp for the 
outgoing beam adaptive wavefront control resulted in 
significant improvement of hit-spot brightness on the 
extended target surface [15]. Note that adaptive control 
based on the speckle-average PIB metric 〈JPIB〉 [Eq. (3.4)] 
failed to increase the target hit-spot brightness. The TIL 
speckle-size metric optimization system was able to 
operate with a strongly defocused beam where the initial 
hit-spot size exceeded its minimum size by nearly 20 times. 
In these scenarios, adaptive beam control using the target-
plane metric J2 was unstable and required an initial beam 
prefocusing. At the same time, the beam size on the target 
achieved by optimizing metric J2 was nearly diffraction-
limited, while for the speckle metric, it was three to five 
times larger. Note that it is impossible to use the target-
plane metric in actual TIL systems because of the absence 
of information [target-plane intensity IT(r)] required for J2 
metric computation. Here, the metric J2 was only used for 
purposes of analyzing speckle-metric efficiency.

This behavior of the closed-loop adaptive optics 
system can be understood through analysis of the metric 
curve shapes in Figure 6. The sharpness function curve 
(target-plane metric J2) has a better localized extremum 
than does the more shallow minimum for the speckle 
metric Jsp. At the same time, the metric Jsp shows sensitivity 
to the target hit-spot size over a large range of beam sizes 
corresponding to the control voltage change in Figure 6.

This highlights an important property of speckle 
metric optimization in target-in-the-loop adaptive 
systems. These systems work well when there are a 
number of speckles inside the receiver aperture. While 
speckle-metric optimization adaptive control reduces the 
beam size on the object up to the point where there are 
only a few speckles inside the receiver aperture, it is no 
longer valid to replace the ‘true’ ensemble averaging by 
space averaging for speckle-size metric computation. The 
use of space averaging in this case leads to an increase of 
noise in metric measurement. As a result, with speckle-
size metric optimization, the beam width on the target 
can be noticeably larger than the diffraction-limited 
beam size.

In contrast, conventional adaptive optics is typi-
cally efficient exactly under conditions where the target-
induced speckles are large (on the order of transceiver 
aperture size), that allows efficient sensing of wavefront 
phase aberrations using conventional wavefront sensors. 
Thus, the speckle-size metric-based adaptive technique 
can be used for precompensation of phase distortions 
under conditions of strong speckle modulation (many 
speckles inside adaptive optics transceiver aperture) 
where conventional adaptive techniques typically fail. A 
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combination of conventional and speckle metric-based 
adaptive techniques may provide effective target-in-the-
loop adaptive optical control in the presence of strong 
speckle-field modulation.

Other approaches to improve the performance of 
speckle-size-based TIL systems are the use of multi-
ple receiver apertures or large apertures that exceed the 
transmitter aperture size, so that even with diffraction-
limited compensation, the receiver telescope captures a 
sufficient number of speckles for accurate speckle-metric 
estimation.

4  Speckle-field intensity fluctuations

4.1  Basic assumptions

In the previous discussion of speckle metrics, we were not 
entirely consistent in the sense that the introduced beam 
quality metrics in Section 3 were based on speckle-field 
intensity measurements, but the physical arguments jus-
tifying their use in adaptive wavefront control were based 
on analysis of correlation properties of the speckle-field 
complex amplitude – not intensity.

There are two reasons for this inconsistency. First, 
as we have shown in this section, the spatial correlation 
properties of the speckle-field complex field and intensity 
are alike in that both depend similarly on the TIL outgoing 
wave intensity distribution on the target. Second, rigor-
ous analysis of the correlation properties of speckle-field 
intensity is a significantly more complicated problem than 
the corresponding analysis of the speckle-field complex 
amplitude correlation described.

In addition, to avoid considering the multiple-scat-
tering problem, derivation of the speckle-field MCF in 
Section 2 was based on the smooth surface assumption, 
which allowed use of the small-slope approximation 
leading to a closed-form expression for the speckle-field 
MCF [Eq. (2.17)–(2.19)].

In this section, we depart from these restrictions and 
directly consider analysis of spatial and temporal corre-
lation properties of speckle-field intensity fluctuations 
originating from scattering off very rough surfaces. This 
analysis is based on qualitative models of the scattering 
process [47–49]. Here, we highlight some of the physical 
assumptions that form the basis for these models. The 
main contribution to the scattered field at the observa-
tion point r originates from a large number of small target 
surface areas with centers in the specular reflection 
points. Correspondingly, the speckle field at each point 

r can be considered as the superposition of waves arriv-
ing at r from these small surface areas. The summation of 
these waves occurs incoherently. As a result, the ensem-
ble-average intensity at the observation point r is propor-
tional to the integral of the intensity distribution IT(r) = I(r, 
L) over the target surface areas. This incoherent character 
of intensity summation can be seen in the expression for 
average intensity [Eq. (2.32)] obtained using the small-
slope approximation in Section 2.

Obviously, when the surface roughness slopes 
(parameter θs�σs/ls) increase, the number of specular 
reflection points also increases. In accordance with the 
central limit theorem, if the number of statistically inde-
pendent random components forming the optical field 
complex amplitude is large, the resulting field complex 
amplitude can be considered normally distributed [21]. 
This means that the field modulus (amplitude) has a Ray-
leigh probability distribution, and its phase is uniformly 
distributed over the interval [-π, π] [18].

Under this assumption, the angular distribution of the 
speckle-field average intensity [see Eq. (2.30)] is assumed 
to be significantly wider than the angular area of the TIL 
system receiver aperture where the speckle-field statisti-
cal properties are considered. These arguments will be 
applied for analysis of the speckle-field intensity spatio-
temporal correlation properties.

4.2   Speckle-field complex amplitude 
representation

Consider a partitioning of the target surface into the small 
regions {Ωl}, (l = 1, …, N) of area δs≡(dx‧dy) with centers 
at points {rl} and assume that the complex amplitude on 
the target surface AT(rl) = A(rl, z = L) can be approximated 
inside these regions by the constant values Al = AT(rl). We 
also assume that each surface region Ωl contains a large 
number of specular reflection points. Correspondingly, at 
the receiver aperture point (r, z = 0), each complex ampli-
tude component Al(r, z = 0)≡al exp(iφl) originating from the 
corresponding surface region Ωl is a normally distributed 
random variable with phase φl having a uniform probabil-
ity distribution over the interval [-π, π] and amplitude al 
with a Rayleigh probability distribution.

The resulting total return-field complex amplitude at 
the point can be represented in the form

 1 1
( , 0) exp( ), exp( ), 

N N

l l l l l
l l

z a i a i iψ φ ϕ Φ
= =

= = = +∑ ∑r
 

(4.1)

where N is the number of target surface regions {Ωl}. 
The phase φl in Eq. (4.1) is represented as the sum of two 
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components: φl = ϕl+Φl, where Φl is the mean value of φl. 
The phase component ϕl is dependent only on the surface 
roughness random variable and has uniform over [-π, π] 
probability distribution and zero mean.

On the contrary, the deterministic phase component 
Φl depends on the outgoing wave phase ( )T

l T lϕ ϕ ′≡ r  at the 
surface region Ωl central point ( , )l z L′ =r  and on the phase 
shift ( , ) ( , )l lkRϕ ′ ′=r r r r  related with the optical path length 
associated with spherical wave propagation from the tar-
get-plane point ( , )l z L′ =r  to the receiver-plane point (r, 
z = 0). (For simplicity, we assumed the target surface is flat 
and oriented orthogonally to the optical axis.) This propa-
gation occurs over the distance 2 2 1/2( , ) ( | - | ) .l l lR R L′ ′≡ = +r r r r

The phase component Φl may also include an addi-
tional term ( , )a a

l lϕ ϕ ′≡ r r  that accounts for phase aberra-
tions of the spherical wave due to propagating through 
an optically inhomogeneous medium between these two 
points. Thus, for the phase Φl, we obtain

 

Φ Φ ϕ ϕ

ϕ ϕ

≡ = + + =′
+ + +′ ′ ′2 2 1/2

( , )
( ) ( | - | ) ( , ).

T a
l l l l l l

T l l a l

kR
k L

r r
r r r r r   (4.2)

In order to associate the amplitudes {al} in Eq. (4.1) 
with the outgoing wave complex amplitude at the target 
surface, consider the expression for the speckle-field 
average intensity  < Isp(r) > ≡〈ψ(r,0)ψ*(r, 0)〉. Using Eq. 
(4.1)  < Isp(r) >  can be represented as

 

( ) ( ,0)
exp[ ( - ) ( - )] .

sp

l m l m l m
l m

I I
a a i iϕ ϕ Φ Φ

< >≡< >
= < + >∑∑

r r

  
(4.3)

By assuming statistical independence of the random 
amplitudes and phases, Eq. (4.3) reads

( ) exp[ ( - )] exp[ ( - )].sp l m l m l m
l m

I a a i iϕ ϕ Φ Φ< >= < >< >∑∑r
 

 (4.4)

Note that for the random variables {ϕl} with probabil-
ity distribution uniform over [-π, π] and zero mean, the 
first exponential term in Eq. (4.4) can be represented in 
the form
   < exp[i(ϕl-ϕm)] >  = δl,m,  (4.5)

where δl,m is the Kronecker symbol [17].
Expression (4.4) for the average intensity can be 

simplified by using Eq. (4.5) and the known relation-
ship 2 2( 4/ )l la aπ< >= < >  between the mean value and 
variance for random variables with Rayleigh probability 
distribution

 
2( ) ( 4 / ) . sp l

l
I aπ< >= < >∑r

  (4.6)

Consider expression (2.32) for the speckle-field 
average intensity obtained with the small-slope 
approximation. Similar to Eq. (4.6), the integral in this 
expression can be represented in the form of a sum of 
contributions corresponding to the small target surface 
regions {Ωl}
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2
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( 2 )sp l l
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kI I L s
L

γ δ
π
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(4.7)

Equations (4.6) and (4.7) for the average intensity 
coincide if we represent the random amplitudes al in the 
form

 
1/ 2( ) | ( ) |( ) ,l l l la c A sγ δ ξ′ ′= r r

 (4.8)

where c = k/(2πL), and ( ) ( , )l lA A L′ ′≡r r  is the target-plane 
complex amplitude at the central point of the target 
surface region, Ωl and ξl are statistically independent aux-
iliary random variables with Rayleigh probability distri-
butions and equal mean values (for all l)

 
2/ 4, and 1.l m lξ ξ π ξ< >=< >= < >=   (4.9)

4.3   Moving target: speckle-field intensity 
fluctuations

Assume a target surface moving with a constant veloc-
ity vs and consider the deviation δIsp(r1, t) of the scat-
tered field intensity from its average value at the receiver 
point (r1, L = 0) resulting from this motion, also referred to 
as the intensity fluctuation δIsp(r1, t) = Isp(r1, t)- < Isp(r1, t) > . 
Using Eq. (4.1) and expression (4.8), for the deviation 
δIsp(r1, t = t1), we obtain

2
1

,
2 2

( , ) | ( ) || ( ) |exp[ ( - )]

- | ( ) | .

sp l m l m l m
l m

l
l

I t c A A i s

c A s

δ φ φ ξ ξ δ

δ

′ ′

′

∑
∑

1r r r

r

=

 (4.10)

To simplify the notation, we have assumed that 
γ(r′) = 1.

At time t = t2=t1+τ, the target surface is displaced by 
the distance |vs|τ. The intensity fluctuation at the receiver 
point (r2, L = 0) at t = t2 is given by the expression

2
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where ˆˆ ˆl l lφ ϕ Φ= +  is the phase component at the obser-
vation point r2 originating from the surface region Ωl. 
Because the random variables ξl, ˆ ,lξ  and ϕl ˆ lϕ  are deter-
mined only by surface roughness inside the region Ωl and 
do not change with either the surface displacement or 
observation point relocation, we can assume in Eq. (4.11) 
that ˆ

l lξ ξ=  and ˆ .l lϕ ϕ=

4.4  Speckle-field intensity fluctuations MCF

Consider the spatiotemporal correlation properties of the 
speckle-field intensity fluctuations. Similar to Eq. (2.9), 
the mutual correlation function (MCF) for the speckle-
field intensity fluctuations can be defined as

 Γ
δI(r1, r2, τ)≡ < δIsp(r1, t1)δIsp(r2, t2) > . (4.12)

By substituting expressions (4.10) and (4.11) into Eq. 
(4.12) and taking into account that ˆ

l lξ ξ=  and ˆ ,l lϕ ϕ=  we 
obtain

4
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In the derivation of this expression, we assumed sta-
tistical independence of the random variables ξl and ϕl. 
Also, the properties (4.5), (4.9) of the random variables ϕl 
and ξl were used.

By substituting into Eq. (4.13) expressions for the 
phases in the form (4.2) and taking into account that 

( ) | ( ) |exp( ),T
l l lA A iϕ=′ ′r r  we have

4
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where 2 2 1/ 2
1( | - | ) ,l lR L ′= + r r  2 2 1/ 2

2
ˆ ( | - | ) ,l l sR L τ= + +′r v r  and 

, 1 1 2[ ( , )- ( , )]-[ ( , )- ( , )].a
l m a l a m a l s a m sΘ ϕ ϕ ϕ τ ϕ τ= + +′ ′ ′ ′ 2r r r r r v r r v r

If we assume that the inequality 1| |lL ′>> −r r  is valid for 
all target regions {Ωl} and for all receiver aperture points r1, 
the expressions for Rl and ˆ

lR  in Eq. (4.14) can be approxi-
mated by the first two terms of the Taylor series expansion: 

2
1| - | /( 2 )l lR L L′+ r r�  and 2

2
ˆ | - | /( 2 ).l l sR L Lτ′+ +r v r�  The first 

exponential term in Eq. (4.14) can then be replaced by 
the expression 2,1exp[ - ( - ) / ],p sik Lτ′ vρ ρ  where ,p m

′ ′ ′= −r rρ l  
ρ2,1 = r2-r1, and p is the new summation index.

Using the coordinate vectors p′ρ  and ,l′r  Eq. (4.14) can 
be represented in the form

4
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 (4.15)

By assuming that the surface-illuminated area con-
tains a sufficiently large number of specular reflection 
points, the summation in Eq. (4.15) can be replaced by 
integration over the surface area

4
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2 2
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 (4.16)

where we made the following substitutions: ρ2,1→ρ and 
p → .′ ′ρ ρ  In this expression,

Θa = [ϕa(r′, r1)-ϕa(r′-ρ′, r1)]-[ϕa(r′+vsτ, r2)-ϕa(r′+vsτ-ρ′, r2)].

Expression (4.16) represents the Fourier transform of 
a convolution integral (internal integral over d2r′). Using 
the convolution theorem stating that the Fourier trans-
form of a convolution of two functions is the product of 
their Fourier transforms, from Eq. (4.16), we obtain
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 (4.17)

where Φa(r′, r1, r2) = ϕa(r′, r1)-ϕa(r′+vsτ, r2), and ρ = r2-r1.
The spatial mutual correlation function of the speckle-

field intensity fluctuations can be obtained by substitut-
ing τ = 0 into Eq. (4.17)

 

δ
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 (4.18)

where IT(r′) = A(r′)A*(r′) is the intensity distribution on the 
target surface.

The expression for Γ
δI(r1, r2, 0) depends on the instan-

taneous (‘frozen’) phase aberration function ϕa(r′, r) asso-
ciated with spherical wave propagation from the target 
surface point (r′, L) to the receiver aperture point (r, L). 
For this reason, the function Γ

δI(r1, r2, 0) in Eq. (4.18) can 
be referred to as the instantaneous MCF for the speckle-
field intensity fluctuations. The instantaneous MCF 
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corresponds to ensemble averaging over the target surface 
roughness realizations (speckle-averaging) for ‘frozen’ 
propagation medium optical inhomogeneities.

Consider phase distortions originating from a thin 
layer of optical inhomogeneities located close to the 
receiver pupil plane (pupil-plane phase screen), as illus-
trated in Figure 7A.

In this case, the phase aberration function is inde-
pendent of the coordinate r′ inside the target surface-
illuminated area, and hence, ϕa(r′, r1) = ϕa(r1). This 
corresponds to the case of TIL system operation with a so-
called isoplanatic target (isoplanatic beacon). For an iso-
planatic beacon, the first exponential term in Eq. (4.18), 
exp[iφa(r1)-iϕa(r2)], does not depend on the integration 
variable r′ and, hence, has no impact on the MCF.

For the opposite case of a phase screen located near 
the target plane (target-plane phase screen), phase aberra-
tions depend on the target point coordinate rather than on 
the observation point coordinate, as shown in Figure 7B. In 
this case, ϕa(r′, r1) = ϕa(r′, r2), and similar to the pupil-plane 
phase screen case, the first exponential term in Eq. (4.18) is 
unity. Correspondingly, the presence of target-plane phase 
aberrations has no impact on the spatial correlation prop-
erties of the speckle-field intensity fluctuations.

For phase-distorting layers located either at the 
receiver pupil plane or at the target plane, the expression 
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Figure 7 Wave propagation in an optically inhomogeneous medium 
represented by a thin phase screen located in the receiver plane (A), 
and in the target plane (B). In (A), phase aberrations correspond-
ing to spherical wave propagation from the target points A and 
B to the receiver points r1 and r2 are independent of target point 
location: ϕ ϕ′ ′=1 2( , ) ( , )a A a Ar r r r  and ϕ ϕ′ ′=r r r r1 2( , ) ( , ).a B a B  In (B), the 
corresponding aberrations are independent of the receiver point: 
ϕ ϕ′ ′=1 1( , ) ( , )a A a Br r r r  and 2 2( , ) ( , ).a A a Bϕ ϕ′ ′=r r r r  Propagation geometry in 
(A) corresponds to isoplanatic and in (B) to anisoplanatic condi-
tions. In both TIL propagation scenarios, the presence of phase-
distorting layers does not impact the speckle-field intensity mutual 
correlation function.

for the speckle-field intensity fluctuation MCF (4.18) coin-
cides with the expression for the MCF obtained in an opti-
cally homogeneous medium when ϕa(r′, r1) = 0:

 δ
Γ τ τ τ∗′ ′′ ′ ′+∫

24 2 ( , ) ( ) ( ) exp[ ( - ) / ] .I T T s sc A A ik L dr r v r v rρ = ρ
 

 (4.19)

Note that in this case, the MCF (4.19) only depends on the 
difference coordinate ρ = (r1-r2).

The spatial MCF for speckle-field intensity fluc-
tuations in an optically homogeneous medium can be 
obtained by substituting τ = 0 into Eq. (4.19)

 

2

4 2 ( ,0) ( , ) exp .I
kc I L i d
Lδ

Γ
 

= ′ ′ ′  ∫ r r rρ ρ
  

(4.20)

Correspondingly, the expression for the variance of 
the speckle-field intensity fluctuations can be obtained 
from Eq. (4.20) by considering the case ρ = 0

 δ
σ Γ  ′ ′≡ = =< > ∫

22 4 2 2 ( 0,0) ( , ) ( , ) .I I spc I L d I Lr r r
  

(4.21)

Here, we used expression (2.32) for the average speckle-
field intensity.

It follows from Eq. (4.21) that the intensity fluctuation 
variance is proportional to the squared average intensity. 
This speckle-field property is the result of the normal 
probability distribution assumption for the field complex 
amplitude.

4.5  Characteristic speckle size

Compare expression (4.20) for the speckle-intensity fluc-
tuation MCF with expression (2.31) for the speckle-field 
complex amplitude MCF. Both functions are determined 
by the Fourier transform of the target hit-spot intensity 
distribution IT(r′)≡I(r′, L), and hence, in both cases, the 
corresponding spatial correlation lengths are determined 
by the spectral width of the function I(r′, L). Nevertheless, 
because in Eq. (4.20) the Fourier integral is squared, the 
correlation lengths for the speckle-field complex ampli-
tude (speckle-size asp) and the speckle-intensity fluctua-
tions (speckle-size ˆ

spa ) do not coincide.
For a target hit spot with Gaussian intensity distribu-

tion of size bs

 
= 2 2( ) exp( - / ),T s sI I r br

  (4.22)

where Is is a constant, these correlation lengths are linked 
by the relationship
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= =
  

(4.23)

As in practice, speckle-size estimation is based on 
speckle field-intensity measurements, the intensity fluc-
tuation MCF width defines the ‘true’ speckle size. Note 
that the characteristic speckle size in Eq. (4.23) have 
exactly the same dependence on the propagation path 
length L, beam size bs, and wavelength (wave number k).

As an example, estimate the characteristic speckle 
size ˆ

spa  for typical TIL beam projection scenarios. Assume 
a TIL transmitter system with an outgoing beam having 
a Gaussian intensity distribution of size a0 (beam radius) 
and an extended target located at a distance L from the 
transmitter aperture. The diffraction-limited (smallest 
possible) beam size on the target (target hit-spot size) is 

0/( ).dif
sb L ka=

In accordance with Eq. (4.23), the characteristic 
speckle size 0

ˆ /( ) .dif dif
sp sa L kb a= =  Thus, under optimal 

laser beam projection conditions, the speckle size is on 
the order of the transmitter aperture size.

For a collimated outgoing beam, the target hit-spot 
size 2 1/2

0 [ 1 ( / ) ] ,col
s db a L L= +  where = 2

0 .dL ka  For short 
distances (L < 0.5Ld), the speckle size can be approxi-
mated by 0

ˆ ˆ( / ) ( / ).col dif
sp d sp da a L L a L L=�  A beam transition 

from collimated to optimally focused on the target surface 
results in an L/Ld-fold speckle-size increase. This example 
shows that during TIL system operation, the characteristic 
speckle size can vary over quite a wide range.

From the diffraction-limited speckle-size estimation 
0

ˆ ,dif
spa a�  it follows that diffraction-limited performance 

can be achieved in TIL wavefront control systems based on 
speckle-size metric optimization only if the receiver aper-
ture size aR is chosen to be significantly larger than the cor-
responding size of the transmitter aperture a0. The condition 
aR > a0 is required in order to obtain a sufficient number of 
speckles inside the receiver aperture for speckle-size metric 
estimation in near-diffraction-limited TIL system operation.

4.6   Speckle-field intensity temporal 
fluctuations

Target surface and/or laser beam hit spot motion causes 
the speckle field inside the receiver aperture to change, 
resulting in temporal fluctuations of intensity at the 
observation point. To analyze these fluctuations, consider 
expression (4.17) for the speckle-field intensity MCF.

In expression (4.17), the influence of surface motion 
is associated with two terms that are dependent on 
the coordinate shift vsτ: the product ( ) ( ),T T sA A τ∗′ ′+r r v  

and the exponential term exp[ikr′(vsτ)/L]. The term 
( ) ( )T T sA A τ∗′ ′+r r v  is nonzero only if the coordinate shift 

|vs|τ does not exceed the characteristic beam size bs on 
the target surface. This condition defines the first char-
acteristic time τs = bs/vs (vs = |vs|) upon which the speckle-
field intensity temporal correlation depends. The time τs 
corresponds to complete update of the surface roughness 
inside the target hit-spot area and defines the longest cor-
relation time scale in the intensity fluctuation process. 
Temporal correlation is possible only when τ < τs.

Consider now the exponential term exp[ikr′(vsτ)/L] in 
Eq. (4.17). This term can be approximated by one when for 
all points r′ inside the target hit-spot area of size bs the 
condition kr′(vsτ)/L1 is fulfilled. This condition can be 
represented as ττ0, where τ0 = L/(vskbs) is the second char-
acteristic time scale upon which the intensity fluctuation 
correlation properties depend. Using expression (4.23) for 
the speckle size, we obtain 0

ˆ/( ) / .s s sp sL v kb a vτ = �  The 
speckle-field intensity temporal correlation properties 
are dependent on the ratio of the two characteristic time 
scales τ0/τs.

Assume first that τ0/τs1 and ττ0. In this case, the 
distance vsτ is so small that in Eq. (4.17), we can use the 
approximation AT(r′+vsτ)�AT(r′). The spatiotemporal MCF 
Γ

δI(ρ, τ) can then be expressed through the spatial MCF, 
that is [48],

 Γ
δI(ρ, τ) = Γ

δI(ρ-vsτ).  (4.24)

Expression (4.24) shows that for the time scale τbs/vs, all 
temporal changes in the speckle-field intensity at a fixed 
observation point only depend on the speckle-pattern 
motion as a whole. Note that the condition τ0/τs < 1 can be 
represented in the form 2 .sL kb<<  This corresponds to the 
near-field diffraction regime for the TIL return beam in the 
absence of surface roughness.

In the near-field diffraction regime, speckles can move 
without change over distances that significantly exceed 
their size. In this case, the characteristic intensity tempo-
ral correlation time τc can be estimated as the time required 
for a speckle to cross the observation point 0

ˆ / .c sp sa vτ τ= =  
Correspondingly, the intensity fluctuation temporal spec-
trum is localized within the frequency bandwidth

 ωI�1/τ0=vskbs/L.  (4.25)

Consider the opposite case where τ0/τs1 and τ < τsτ0. 
This condition corresponds to the far-field (Fraunhofer) dif-
fraction regime 2( ).sL kb>  In this regime, moving speckles 
change within distances that do not exceed the character-
istic speckle size ˆ .spa  For τ < τsτ0, the phase shift kr′(vs τ)/L  
is small; hence, the exponential term exp[ikr′(vsτ)/L] can 
be substituted with one in Eq. (4.17).



388      M.A. Vorontsov: Speckle-effects in target-in-the-loop laser beam projection systems © 2013 THOSS Media & 

The speckle-field intensity fluctuation MCF in the far-
field diffraction regime is given by

4
22 ( , ) ( ) ( ) exp[ - / ] .

2I T T s
k A A ik L d

Lδ
Γ τ τ

π
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∫ r r v r rρ = ρ

 
 (4.26)

For the temporal correlation function in the far-field 
regime, we then obtain
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From Eq. (4.27), for a Gaussian hit-spot intensity dis-
tribution at the target (4.22), we have
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Correspondingly, the frequency spectrum GI(ω) for 
the speckle-field intensity fluctuation at an observation 
point is determined by the Fourier transform of Γ

δI(τ) and 
is given by

 

2

2( ) ( 0 ) exp - ,
2( )I I

I

G G ω
ω

ω

 
=  

     
(4.29)

where ωI = vs/bs is the characteristic frequency bandwidth 
for intensity fluctuations at a point.

Note that the frequency spectrum bandwidth ωI for 
speckle-field intensity fluctuations (in both the near- and 
far-field regimes) depends on the spatial extent (target hit-
spot size) of the outgoing wave intensity distribution at 
the target surface [see Eqs. (4.25) and (4.29)]. This property 
is the basis for the TIL speckle metrics described below.

5   Aperture average intensity  
fluctuations and speckle metrics

5.1   Temporal correlation and power 
spectrum

In the previous analysis, the speckle-field intensity fluc-
tuations were considered at a single point on the receiver 
plane (point measurements). In practice, return-field 
measurements are commonly performed using a receiver 
with finite aperture of size aR. This corresponds to regis-
tration of the instantaneous value of the aperture-average 

speckle-field intensity, which is proportional to the power-
in-the-bucket (PIB) signal (3.4)

 
2 2 2( ) ( ) | ( , 0) | ( ) ( , ) ,PIB spJ t P z d P I t dψ= = =∫ ∫r r r r r r

  
(5.1)

where P(r) is the receiver telescope pupil function. In 
the case of a receiver telescope with circular aperture of 
radius aR, the pupil function P(r) = 1 for |r|  ≤  aR, and P(r) = 0 
otherwise.

The time-varying component (fluctuation) of the PIB 
signal is defined as

 
2( ) ( )- ( ) ( ) ( , ) .PIB PIB PIB spJ t J t J t P I t dδ δ≡ < >=∫ r r r

  
(5.2)

Note that the signal δJPIB(t) describing photocurrent fluc-
tuations is proportional to the varying component of the 
PIB receiver sensor photocurrent.

Using Eq. (4.12), the temporal correlation function 
ΓPIB(τ) of the PIB signal varying component can be repre-
sented in the form
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(5.3)

Assume that speckle-field propagation occurs either in 
an optically homogeneous medium, or in a medium with 
phase-distorting layers located only at either the receiver 
and/or target planes. In this case (see Subsection 4.4), 
the speckle-field intensity fluctuation mutual correlation 
function Γ

δI(r1, r2, τ) in Eq. (5.3) depends only on the differ-
ence coordinate ρ = r2-r1. Correspondingly
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 (5.4)

where

 
2( ) ( - / 2 ) ( / 2 ) .M P P d= +∫ R R Rρ ρ ρ

 
(5.5)

Assume that the receiver aperture size aR is significantly 
larger than the characteristic length of the function Γ

δI(ρ, τ)  
fall-off that defines the speckle size ˆ .spa  Within the area 
of size ˆ

spa  essential for integration over the variable ρ in 
Eq. (5.4), the function M(ρ) can be approximated by a con-
stant [M(ρ)�M0].

Substitute expression (4.16) for the speckle-field 
intensity fluctuation MCF into Eq. (5.4). Assuming that 
Θa = 0, we obtain
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where C = M0[k/(2πL)]4. By taking into account that the 
integral over the variable ρ is proportional to the δ func-
tion δ(ρ′), Eq. (5.6) can be simplified [14, 48]:

 
2( ) ( ) ( ) ,PIB T T sC I I dΓ τ τ= +∫ r r v r

 
(5.7)

where IT(r)≡I(r, L). Note that the correlation function ΓPIB(τ) 
for the PIB signal-varying component (5.7) has the same 
form for both the near- and far-field diffraction regimes.

From a practical viewpoint, the use of the PIB signal 
fluctuation power spectrum GPIB(ω) can be more conveni-
ent than the correlation function ΓPIB(τ). In accordance 
with the Wiener-Khintchine theorem, ΓPIB(τ) and GPIB(ω) 
are linked by the Fourier transform relationship. [We 
assume that the varying component of the power-in-the-
bucket signal (5.1) is a stationary random process.]
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(5.8)

For a Gaussian-shaped intensity distribution IT(r) of size 
bs, similar to Eq. (4.29), we obtain
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(5.9)

where ωPIB = vs/bs is the characteristic frequency bandwidth 
for PIB signal fluctuations. The PIB signal fluctuation 
power spectrum bandwidth increases with surface veloc-
ity and decreases with the target hit-spot size bs. Note 
that for a Gaussian beam, the characteristic correlation 
time for PIB signal fluctuations τPIB = 1/ωPIB coincides with 
the characteristic time of surface roughness realization 
update τPIB = τs = bs/vs.

5.2   Power-in-the-bucket fluctuation  
variance as a speckle metric

From expressions (5.7) and (5.8) follows an important 
property of power-in-the-bucket fluctuations – both the 
temporal correlation function ΓPIB(τ) and power spectrum 
GPIB(ω) of this signal depend on the target hit-spot inten-
sity distribution IT(r). This property allows one to obtain a 
set of speckle metrics for wavefront phase control in TIL 
laser beam projection systems [14, 32, 50].

Consider first the variance 2
PIBσ  for PIB signal fluctua-

tions. The expression for 2
PIBσ  can be obtained by substi-

tuting τ = 0 into Eq. (5.7)

 
2 2 2 2( 0) ( ) .PIB PIB PIB TJ C I dσ Γ δ= =< >= ∫ r r

 
(5.10)

Using the Fourier transform relationship between ΓPIB(τ) 
and GPIB(ω), the PIB fluctuation variance can also be 
expressed through the temporal power spectrum GPIB(ω) as

 
2

0
( 0) ( ) .PIB PIB PIBG dσ Γ ω ω

∞
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(5.11)

By comparing expressions (5.10) and (3.1), it follows that 
the PIB fluctuation variance is proportional to the target-
plane metric sharpness function J2, so that 2

2 .PIB CJσ =  
This means that the variance 2

PIBσ  can be considered as a 
speckle metric whose maximization results in an increase 
in the sharpness function [14].

Compare the efficiency of metrics  < JPIB >  and 2 .PIBσ  
As discussed in Subsection 3.3, the metric  < JPIB >  defined 
by Eq. (3.4) is proportional to the ensemble-average 
speckle-field intensity  < Isp(r) >  and can characterize the 
target hit-spot power density (hit-spot brightness) for rela-
tively small (unresolved) targets or extended targets with 
a single bright glint. On the contrary, the metric 2

PIBσ  is 
proportional to the target-plane beam quality metric J2 
and can only be applied for the target plane beam quality 
characterization for extended (resolved) targets. When the 
target size aT becomes smaller so that aT < bs, the charac-
teristic speckle size starts to be dependent on the target 
size, rather than on the beam size bs, and correspondingly, 
the time-varying component δJPIB decreases. This results 
in the decrease in the signal-to-noise ratio measurements 
for 2 .PIBσ  Note that for a point-source (unresolved) target, 
the variance 2

PIBσ  is zero, and hence, it cannot be used as 
a performance metric.

These ‘complimentary’ properties of the time-average 
and time-varying components of the PIB signal can be 
used in the following combined speckle metric:

 
2 ,PIB PIB PIBJ JΣ σ β≡ + < >

 (5.12)

where 0 < β  ≤  1 is a weighting coefficient.
Speckle-metric (5.12) is useful in typical TIL laser beam 

projection scenarios, where the initial (prior to outgo-
ing beam control) beam size bs significantly exceeds the 
target size aT (unresolved target), while the diffraction- 
limited (compensated) beam size dif

sb  is significantly 
smaller than aT. Indeed, prior to compensation when bs > aT, 
the speckle- metric PIBJ Σ  only depends on the target-plane 
intensity distribution through the term  < JPIB > . The term 2

PIBσ  
in Eq. (5.12) is then determined only by the target size aT 
and, hence, is independent of the target-plane beam size.

When bs (bs�aT) decreases, the metric compo-
nent  < JPIB >  becomes less sensitive to the beam size, as 



390      M.A. Vorontsov: Speckle-effects in target-in-the-loop laser beam projection systems © 2013 THOSS Media & 

a major portion of the laser beam is already within the 
target surface area. On the contrary, the influence of the 
term 2

PIBσ  increases. For bs < aT (resolved target regime), the 
term  < JPIB >  is independent of the target hit-spot size, and 
dependence of the metric PIBJ Σ  on the target hit-spot size is 
only due to the term 2 .PIBσ

5.3   Speckle metrics based on received- 
signal temporal spectrum analysis

Consider some issues related with practical evaluation of 
the speckle-metrics  < JPIB >  and 2 2 .PIB PIBJσ δ=< >  For a moving 
target surface, these metrics can be estimated by time 
averaging the measured power-in-the-bucket signal JPIB(t) 
(We assume that JPIB(t) is a stationary and ergotic random 
process.)

 

1 ( ) ,
t T

PIB PIB PIBt
J J J d

T
ξ ξ

+
< > = ∫�

  
(5.13)
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+
 ≡< >  ∫�
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where T is the averaging (sampling) time. Note that PIBJ  
corresponds to the estimation of the mean value (dc com-
ponent) of the signal JPIB(t) over the time interval [t, t+T]. 
In practice, the computation of PIBJ  and 2

PIBσ  in Eqs. (5.13) 
and (5.14) can be performed using either digital or analog 
signal multiplication and integration.

Another practical approach for speckle-metric evalu-
ation is based on spectral analysis of sufficiently long 
sections of the signal JPIB(ξ) (t  ≤  ξ < t+T). In this approach, 
registered sections of the signal JPIB(ξ) are first used for 
the computation of random spectrum realizations. These 
spectrum realizations are then averaged to obtain the 
power spectrum estimation ( ).T

PIBG ω
In the spectral approach, the PIB metric  < JPIB >  cor-

responds to the zero spectral component of the power 
spectrum: ( 0).T

PIB PIBJ G ω< > =�  The speckle-metric 2
PIBσ  is 

determined by integrating the power spectrum ( )T
PIBG ω  

over the entire frequency band [see Eq. (5.11)].
An important advantage of the speckle-metrics (5.10) 

and (5.12) over the speckle-size metric (3.6) discussed 
in Section 3.5 is that the values  < JPIB >  and 2

PIBσ  can be 
computed using measurements of the one-dimensional 
signal JPIB(t) obtained from a single photodetector, 
while speckle-size metric estimation requires process-
ing of the two-dimensional speckle-intensity patterns 
Isp(r) (speckle images) registered by a high-resolution 
photo-array.

The primary disadvantage of the PIB speckle- 
metrics  < JPIB >  and 2

PIBσ  is that their estimation requires 
the processing of sufficiently long sections of the signal 
JPIB(ξ): t  ≤  ξ < t+T. This processing time is an important issue 
for TIL systems operated in the presence of dynamically 
changing (e.g., turbulence-induced) phase distortions, 
as the total time τJ=T+τproc required for speckle-metric 
estimation, including the sampling time T and the signal 
processing time τproc must be small in comparison with the 
characteristic time of phase distortion change: τJτat. For 
simplicity, we assume that the signal processing time τproc 
is small in comparison with the sampling time and can be 
ignored, so that τJ�T.

Consider the speckle-metric estimation error εT result-
ing from the PIB signal averaging over the finite sampling 
time T. This error depends on the shape of the PIB signal 
power spectrum GPIB(ω) and the sampling time T [51]. For 
the error to be small requires that T1/ωPIB, where ωPIB is 
the power spectrum bandwidth (cutoff) frequency. In this 
case, the error variance 2

Tε  asymptotically approaches 
GPIB(ω = 0)/T, indicating that a significant error contribu-
tion originates from the low-frequency spectral compo-
nents [51].

Examples of typical power spectra ( )T
PIBG ω  corre-

sponding to different beam sizes on the moving target 
surface are shown in Figure 8. The power spectrum for the 
smaller beam (curve 1) is wider than the spectrum for the 
larger beam (curve 2). This dependence of the power spec-
trum on the target hit-spot size supports the physical basis 
for the described speckle metrics.

The use of the relatively short sampling time T causes 
large fluctuations in the low-frequency spectral com-
ponents as clearly seen in Figure 8 where accuracy in 
determining spectral components is low. It follows that 
to decrease the error εT (without increasing the sam-
pling time T) requires a decrease in the low-frequency 
contributions.

This goal can be achieved by increasing the power 
spectrum width (cutoff frequency ωPIB) by fast steering of 
the outgoing laser beam. To estimate the requirements for 
steering speed, consider a beam with a Gaussian target-
plane intensity distribution of size bs. In accordance with 
Eq. (5.9), the power spectrum cutoff frequency is ωPIB = vs/bs.

Assume that for accurate speckle-metric estima-
tion the required condition 1/ωPIBTτat is satisfied if 
1/ωPIB = bs/vs = 10-2T = 10-4τat. From this equality, we obtain  
vs�(bs/τat)‧104.

Consider as an example beam steering along a circuit 
of radius ast that defines beam steering amplitude. In this 
case, for the steering frequency fs (cycles/s), we obtain 
fs = 1/Ts = vs(2πast)-1 = 104bs/(2πastτat). For estimation, let 
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τat = 5‧10-3 s, and ast = bs (minimum distance that provides 
surface roughness update along the steering beam trajec-
tory). It follows that fs�10 MHz. This beam steering fre-
quency can be achieved using coherent fiber-array beam 
projection systems with stair-mode wavefront dithering 
technique as described in Section 3.4 (see Figure 4) [33, 52].

The speckle-metric estimation error εT can be reduced 
using spectral filtering of the signal JPIB(t) prior to its pro-
cessing. This implies that changes in the target hit-spot 
size can be estimated by integrating the power spectrum 

( )T
PIBG ω  only within one or several spectral regions (spec-

tral bands) where the accuracy in determining the signal 
spectral components is high, as illustrated in Figure 8.

Consider the N selected power spectrum bands of 
widths Δj and central frequencies ωj, (j = 1, …, N) and 
assume that the spectral components inside these spec-
tral bands are integrated. This corresponds to the use of a 
bank of band-pass spectral filters. Output signal from the 
jth band-pass filter can be represented in the form

 

/2

- /2
( , ) ( ) .j j

j j
j j PIBP G d

ω ∆

ω ∆
ω ∆ ω ω

+
=∫

  
(5.15)

This band-pass filtering of the PIB fluctuation signal 
JPIB(t) gives rise to a spectral metric of the type [14, 46]
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Figure 8 Normalized power-in-the-bucket fluctuation power 
spectra ( ),T

PIB
G f  (f = ω/2π) experimentally obtained with the optical 

TIL system in Figure 5. The power spectra correspond to the target 
hit-spot size bs�0.2 mm (1) and bs�0.6 mm (2). The speckle field is 
produced by scattering the outgoing beam off the rough surface of a 
rotating metal disc. The linear speed in the vicinity of the target hit 
spot is vs�8 m/s. The power spectrum ( )T

PIB
G f  is computed by aver-

aging a set of three random spectra calculated based on sequential 
sampling of the PIB signal JPIB(nT+mΔt) over time T = 13.5 ms,  
where n = 0, 1, 2, m = 0, …, 2047, and Δt�6.6 μs. Bars with central 
frequencies f1 and f2 and spectral widths Δ1 and Δ2 illustrate the 
band-pass filtering technique used for computation of the spectral 
metric (5.16). The values P(f1,Δ1) and P(f2,Δ2) correspond to the power 
spectrum integrated over the band-pass filter and are given by 
heights of the bars.
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where βj is the weighting coefficient. In contrast with the 
speckle-metric 2

PIBσ  defined by Eq. (5.12), the power spec-
trum frequency components below ω1-Δ1/2 and higher 
than ωN+ΔN/2 do not contribute to the spectral metric JS. 
Control of the parameters upon which spectral metric 
(5.16) depends (coefficients βj, band-pass filter widths Δj, 
and central frequencies ωj) allows optimization of the 
dependence of metric JS on the target hit-spot intensity 
distribution.

In contrast with speckle metric 2
PIBσ  whose value 

is directly associated with the target-plane metric J2, a 
similar type of analytical expression linking metric JS with 
a physically meaningful target-plane metric is not avail-
able. Nevertheless, both experiments and the following 
discussions support the arguments provided for the deri-
vation of the metric (5.16) and demonstrate that with a 
correct selection of parameters in (5.16), the metric JS can 
be used as a speckle metric, with its global maximum cor-
responding to the undistorted target hit-spot beam inten-
sity distribution [14].

5.4  Experimental analysis of speckle metrics

The analytical expressions (4.19) and (5.4) upon which 
the speckle-field based metrics introduced above are 
based on are derived in Section 4 for somewhat idealized 
conditions: propagation in an optically homogeneous 
medium, near-normal incidence of the outgoing wave, 
small-angle scattering from a uniform metal surface with 
Gaussian roughness, etc. In practice, these conditions are 
not always satisfied. At the same time, such deviations 
from the idealized conditions as the propagation medium 
optical inhomogeneities, the non-Gaussian surface rough-
ness, uneven target shape, etc., cannot be easily incorpo-
rated into the theory. On another hand, accurate computer 
simulation of TIL propagation, including scattering and 
speckle metric measurements that accounts for these 
factors represents quite a challenging problem. For this 
reason, experimental evaluation of the discussed speckle 
metrics plays an important role.

Such experimental analysis typically includes direct 
comparison of a selected speckle-metric Jsp with one or 
another target-plane metric JT that characterizes the hit-
spot intensity distribution, e.g., the beam size bs on the 
target surface. The corresponding dependence Jsp(JT) is 
referred to as the speckle-metric discrimination curve. 
Note that in practice, it is more convenient to measure 
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dependence of speckle metrics not on target-plane 
metrics but on a controlling parameter upon which 
metric JT monotonically depends on, such as the control-
ling voltage uF applied to the deformable mirror electrode 
in Figure 6.

Consider the discrimination curves for the metrics 
2

sp PIBJ σ=  and Jsp = Js shown in Figure 9. These discrimina-
tion curves were obtained in an experimental setup similar 
to the one shown in Figure 5 where a rotating metal disk 
with a size significantly exceeding the target hit-spot size 
was used as a moving target. The beam size bs (the target-
plane metric) on the target surface was varied by moving 
the target along the optical axis a distance Δz from the 
position (Δz = 0) corresponding to the smallest beam size 

min.sb  Correspondingly, the target displacement Δz was 
used as a controlling parameter. Discrimination curves 
for the speckle metrics 2

sp PIBJ σ=  and Jsp = Js are shown on 
a logarithmic scale in Figure 9 [14].

Speckle-metric estimations were performed using 
analog processing of the power-in-the-bucket signal JPIB(t), 
which included PIB signal multiplication and time inte-
gration for the metric 2 ,PIBσ  and band-pass spectral filter-
ing with output spectrum integration for the metric JS.

All discrimination curves in Figure 9A have a 
maximum at the point of zero displacement (Δz = 0) corre-
sponding to the smallest possible beam size on the target. 
Note that for the metric Js, the discrimination curve shape 
depends on the band-pass filter’s central frequency f1.

Similar analysis of the speckle-metric discrimination 
curves was performed for nonflat targets (metal sphere 
and cylinder), targets with various surface roughness cor-
relation lengths ls ranging from ls�10 μm to 300 μm, and 
tilted targets with a scattering angles between -20° and 

20° [14]. In all cases examined, the metric discrimination 
curves had a single peak at Δz = 0 corresponding to the 
smallest beam size on the target surface, although such 
characteristic discrimination shape parameters as peak 
value and width were different.

Consider as an example laser beam projection on a 
rapidly spinning aluminum cylinder (diameter bT = 10 mm) 
installed in a drill as shown in the inset photo in Figure 
10A. In this experiment, the outgoing collimated laser 
beam of diameter D = 25 mm was focused onto the target 
using a lens with focal distance F = 200 cm. The projected 
beam size bs varied by displacing the target from the lens 
focal plane. Figure 10A shows the measured dependen-
cies Jsp(bs) for the following metrics: (a) spectral metric 
Jsp =  JS  = P(f₁,Δ₁) with a single band-pass filter, where Δ₁ = 1.0 
kHz and f₁ = 20 kHz; (b) the speckle-average power-in-the-
bucket metric Jsp = JS  =  < JPIB > ; and (c) metric Jsp = JS+ < JPIB > , 
which is similar to the speckle metric (5.12).

The discrimination curves in Figure 10A illustrate the 
complimentary properties of metrics JS and  < JPIB > . The 
speckle-average PIB metric  < JPIB >  is sensitive to the beam 
size at the target plane only when at least a portion of the 
beam energy misses the target. When a major portion of 
the laser beam is already within the target surface area, 
the metric  < JPIB >  becomes less sensitive to the beam 
size. In the experiments described here, this occurs 
for the target hit-spot size 0.25 .PIB

s s Tb b b< � This behav-
ior of metric  < JPIB >  suggests that optimization of this 
metric using an adaptive optics system can only partially 
decrease the target hit spot size.

On the contrary, spectral metric JS is highly sensitive 
to the beam size only when the entire beam is located 
within the target surface area <( ).PIB

s sb b  Optimization of 
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Figure 9 Dependence of the speckle metrics 2
sp PIBJ σ=  [Eq. (5.14)] and Jsp = Js [Eq. (5.16), N = 1] on the target displacement Δz from the optimal 

position Δz = 0 corresponding to the smallest beam size min

s
b  at the target for laser beam projection on a rotating aluminum disc (A) and on 

a distorted water surface (B) used as the targets. Discrimination curves marked by circles correspond to a spectral metric with single band-
pass filter JS = P(f1,Δ1), where Δ1 = 1.0 kHz, f₁ = 20 kHz for black circles, and f₁ = 30 kHz for white circles. Dots on the Δz axis and the correspond-
ing numbers (in parentheses) correspond to the normalized target hit-spot size bs. Surface roughness characteristics are correlation length 
ls�60 μm, roughness slopes θs = σs/ls�1.0 rad (estimated based on the scattered wave angular divergence), and surface speed vs�8.0 m/s. 
For case (B), speckles resulted from the outgoing beam scattering of small amplitude water-surface waves excited by a piezo-vibrometer 
operating at 1.0 kHz frequency. The speckle metric 2

sp PIBj σ= in (B) is normalized by 2 2max .max PIBσ σ=
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this metric using an adaptive optics system can potentially 
lead to a nearly diffraction-limited beam size at the target 
surface, but only if the target hit spot is reduced prior to 
optimization so that the speckle field characteristics are 
determined only by the size of the target-plane beam and 
are independent of the target size bT.

From this viewpoint, the speckle metric Jsp = JS =  < JPIB >  
has an obvious advantage as it can be used to reduce an 
initially (even highly) defocused beam of size bsbT to a 
nearly diffraction-limited hit spot.

Speckle-metric ‘robustness’ with respect to surface 
roughness statistical characteristics is illustrated in 
Figure 9B, where the metric 2

PIBσ  was obtained using 
measurements of the target-return optical wave that origi-
nated from outgoing wave scattering off a distorted water 
surface. Although statistical properties of the distorted 
water surface are different from the Gaussian roughness 
model discussed in Section 3, the discrimination curve 

2 ( )PIB zσ ∆  has a similar shape with a single maximum at 
zero displacement (Δz = 0). Note that for all scenarios of 
laser beam projection on extended targets considered, the 
power-in-the-bucket mean value  < JPIB >  was practically 
independent of the beam size bs and, hence, cannot be 
used as a speckle metric.

Now consider speckle-metric discrimination curve 
measurements based on outgoing beam steering on a 
stationary target [45]. The experimental analysis shows 
that beam steering amplitude ast alters the discrimina-
tion curve contract that is characterized by the factor 
η = (max  Jsp-min Jsp)/(max Jsp+min Jsp), where min Jsp cor-
responds to the speckle metric value obtained with a 
highly defocused beam. For small steering amplitudes 
(ast < 0.3bs), the discrimination curve 2 ( )PIB zσ ∆  contrast 
is low (η < 0.2), and noise in metric measurements is high 
(low signal-to-noise ratio). When the scanning amplitude 
is increased, the discrimination curve contrast monotoni-
cally increases reaching a value of η�0.9 at the scanning 
amplitude ast�2bs. A further increase in ast typically does 
not change the discrimination curve’s contrast.

Experiments with laser beam projection onto an 
extended target (in a system similar to the one shown in 
Figure 4) with both outgoing and speckle-field propaga-
tion through a set of dynamically changing phase-dis-
torting layers show that the presence of phase distortions 
along the propagation path does not change the most 
important speckle-metric property for TIL wavefront 
control applications – the monotonic dependence of these 
metrics on the target hit-spot size [14, 45].

As an example, Figure 10B illustrates dependence 
of the speckle-metric 2

PIBσ  on the controlling voltage 
uF applied to the deformable mirror (see Figure 4). The 
speckle metric 2

PIBσ  was obtained for speckle-field prop-
agation through a set of six equidistantly located phase-
distorting layers (laboratory-generated turbulence). Use 
of a deformable mirror with controllable curvature made 
it possible to vary the beam size on the target. The system 
was aligned so that the smallest beam size corresponded to 
uF = 0. The speckle-metric discrimination curve measured in 
the presence of turbulence is compared in Figure 10B with 
the corresponding discrimination curve obtained without 
turbulence (curve 1). In both cases, the speckle-metric 
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Figure 10 Speckle-metric discrimination curves measured in a 
beam projection experimental setup similar to the one in Figure 4. 
The targets are a spinning aluminum cylinder in (A) and rotating 
disk in (B). The spinning target with projected laser beam is shown 
in the photo insert in (A). Normalized speckle metrics JS,  < JPIB > , and 
Jsp =  < JPIB > +JS are shown in (A) as functions of the normalized target 
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PIB
σ  in 

(B) are functions of the control voltage uF applied to the deformable 
mirror. They correspond to propagation in an optically homogene-
ous (1) and turbulent (2) medium. Turbulence was created using 
two baseboard electrical heaters placed 1/3 and 2/3 of the distance 
between the transmitter telescope and target. The laser beam 
propagated through different sections of the heated air three times. 
This corresponds to the presence of six uncorrelated, equidistant 
phase-distorting layers located along L = 70 m propagation distance. 
Gray-scale images (I) and (II) in (B) correspond to the laser beam hit 
spot on the rotating disc for optimal focusing conditions (uF = 0): (I) 
without turbulence and (II) with turbulence.
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discrimination curve maximum corresponds to the small-
est beam footprint size on the target surface. The influence 
of dynamically changing optical inhomogeneities in the 
propagation medium on speckle-field propagation and 
speckle-metric characteristics are analyzed in [53].

6  Conclusion
Target-in-the-loop propagation in an optically inhomo-
geneous medium such as the atmosphere has attracted 
much attention with the increased use of optical systems 
operated with extended noncooperative targets such as 
laser tracking and interrogation systems, laser vibrom-
eters, active and synthetic-aperture imaging systems, 
laser lidars, and high-power laser beam projection and 
beam relay systems. Most of these systems are equipped 
with fast-framing sensors capable of instantaneously 
measuring target-return speckle field characteristics. This 

can provide rapid estimation of speckle-field statistical 
properties for mitigation of speckle effects and adaptive 
compensation of turbulence-induced wavefront aberra-
tions. These new developments require an understand-
ing of the physics of optical wave propagation and laser 
beam scattering off randomly rough target surfaces, as 
well as knowledge of the speckle-field statistical proper-
ties that are relevant to target-in-the-loop systems. This 
paper introduces these topics using (where it is possible) 
physics-based insights, rather than rigorous mathemati-
cal derivations.
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